概要 GNNは, 信号処理の観点でローパスフィルタの効果を持っている. そして, GNNが通常のMLPに比べて高精度となるようなデータでは, 低周波成分に(タスクに関して)有用な情報が多く含まれており, 高周波成分には無駄な情報が多いようなケースになっているように見受けれられる. また, 実際にタスクの精度を様々なフィルタで比較すると, 信号処理の観点での性質が反映された結果を与えている. GNNの最も大きな役割(通常のMLPとの違い)は, ローパスフィルタとしての性質の影響なのではないかと考えられる. 逆に言うと, ローパスフィルタとしての性質が生かせるようなデータが, GNNの効果が最も期待出来るものなのではないかと考えられる. 内容 はじめに GNNとはどのようなものだったか? 信号処理のいくつか GNNのローパスフィルタとしての役割 まとめ 1. はじめに Graph Neural