MySQLやPoSQLiteは、その設計上「大量の小さなクエリ」の処理が得意であるとのこと。なぜSQLiteが効率的に大量のクエリを処理できるのかについて、SQLiteが説明しています。 Many Small Queries Are Efficient In SQLite https://sqlite.org/np1queryprob.html SQLiteの利用方法を記したページによると、SQLiteでは1つのウェブページにつき200クエリが適切であるとのこと。この記述について、開発者からしばしば「1つのページにつき200クエリなんて、ばかげている」と指摘されることがあるそうです。 SQLiteは開発者か
1.入れ子集合モデルとは 木構造のデータ・サンプルとして、次のような階層の深さが 4 の組織図を例に取りましょう。一つのノードは、複数の親を持つことはない(=複数の上司を持たない)、かつ必ず一つの親を持つ(=命令系統から外れる社員がいない)と仮定します。この条件を破ると、木構造ではなくなってしまいます。 一般的な隣接リストモデルでこのデータを表現すると、次のようなテーブルになります。 --隣接リストモデルによる階層データ表現 BLE OrgChart (emp VARCHAR(32) PRIMARY KEY, boss VARCHAR(32), role VARCHAR(32) NOT NULL ); INSERT INTO OrgChart VALUES ('足立', NULL, '社長'); INSERT INTO OrgChart VALUES ('猪狩', '足立
サーバ監視サービスMackerelにおいて開発中の、高解像度・長期間のサーバメトリック収集を実現するための新しい時系列データベースDiamondを紹介します。具体的には、Amazon ElastiCache、Amazon DynamoDB、Amazon S3を組み合わせ、Amazon Kinesis StreamsとLambdaによりコンポーネント間を接続した、階層構造のデータストアアーキテクチャの設計と実装を解説します。 2018/06/05 追記: この記事の内容をWSA研#2でより一般的なアーキテクチャレベルでの貢献として書き直しました。 サーバレス時代におけるヘテロジニアス時系列データベースアーキテクチャ - ゆううきブログ はじめに 先日開催されたit Tokyo 2017にて、「時系列データベースという概念をクラウドの技で再構築する」というタイトルで登壇
こんにちは。インフラストラクチャー部 SRE グループの吉川 ( @rrreeeyyy ) です。今期オススメのアニメはツインエンジェル BREAK です。 普段の業務並びに趣味の一環として、サーバのモニタリング環境の調査や改善に取り組んでいます。 そこで本稿では、モニタリングのコンポーネントの一つとして外すことが出来ない、時系列データベースの基礎知識に関して紹介します。 そもそも時系列データ・時系列データベースとは? 時系列データというのは、特定の時間ごとに何らかの値を取得した際の、取得した一連の値を指します。 例えば、以下のようなフォーマットをしたデータなどは時系列データにあたるでしょう。 timestamp1,key,value1 timestamp2,key,value2 timestamp3,key,value3 : 時系列データベースとは、上記のような時系列データの保存・処理に
ブロックチェーン技術について説明する記事を書いていると、次のような意見を耳にすることがあります。「ブロックチェーン技術を使わずにデータベース管理システムを使えばいいのでは?」──主にITに詳しい人からこの意見が出る場合が多いようです。 筆者の個人的な意見としては、ブロックチェーン技術とデータベース管理システム(DBMS)やKVS(Key-Value Store)は目的も特性も異なる技術なので「別のもの」と考えた方が理解が早いと思います。それ以前に「そもそも、ブロックチェーンとデータベースを比べること自体が間違っている」とのご指摘もあろうかと思います。 現実に、ブロックチェーンの説明で「データベース」という用語を使う事例はいくつかあります。「ダボス会議」で知られている世界経済フォーラムによる解説動画では、パブリックブロックチェーンについて「オープンで脱・中央集権的なデータベース」と説明してい
.app 1 .dev 1 #11WeeksOfAndroid 13 #11WeeksOfAndroid Android TV 1 #Android11 3 #DevFest16 1 #DevFest17 1 #DevFest18 1 #DevFest19 1 #DevFest20 1 #DevFest21 1 #DevFest22 1 #DevFest23 1 #hack4jp 3 11 weeks of Android 2 A MESSAGE FROM OUR ity 1 accuracy 1 Actions on Google 16 Activation Atlas 1 address validation
データを扱うときに、きちんと定められたワークフローがあると助かります。具体的には、「ストーリーを伝える」(データの可視化/ジャーナリズム)ことだけを目的として分析を行いたいのか、それとも一定のタスク(データマイニング)をモデリングするためにデータに依存するシステムを構築することが目的なのか、プロセスが重要です。前もって方法論を定めておくことによって、チームの足並みが揃い、次に何をすべきか考え出そうとして無駄な時間を費やさなくて済みます。それによって早く結果が得られ、資料の公表も早くなります。 これを念頭に、Ashley Madisonの漏洩データ分析に関する 前回の記事 に続いて、私たちが現在使用しているワークフローをご紹介します。このワークフローは、データ漏洩(Ashleyのケースなど)を分析するためだけでなく、社内のデータの分析にも使用されます。ただし、重要な点として、このワークフロー
データマネージャ このステップで、クエリマネージャはクエリを実行するので、テーブルとインデックスからデータを取得する必要があります。そこでデータマネージャに対してデータを取得するよう要求するのですが、ここで次の2つの問題が発生します。 リレーショナルデータベースはトランザクションモデルを使用しています。この場合、「いつでも・どんなデータも取得できる」というふうにはいきません。どこか別の場所で、ここに格納されているデータを同時に使用したり更新したりしている可能性があるからです。 データの取得は、データベース内で実行する処理の中で最も時間のかかるもの です。従ってデータマネージャはそれを見越して、メモリバッファにデータを取得しておき、それを保持しなければなりません。 このセクションでは、リレーショナルデータベースがこの2つの問題にどう対処しているかを説明します。なお、データマネージャがデータを
リレーショナルデータベースが話題に挙がるとき、私は何かが足りないと思わずにはいられません。データベースはあらゆるところで使われており、その種類も、小規模で便利なSQLiteからパワフルなTeradataまで様々です。しかし、それがどういう仕組みで機能しているかを説明したものとなると、その数はごくわずかではないでしょうか。例えば「リレーショナルデータベース 仕組み」などで検索してみてください。ヒット数の少なさを実感できると思います。さらにそれらの記事は短いものがほとんどです。逆に、近年流行している技術(ビッグデータ、NoJavaScriptなど)を検索した場合、それらの機能を詳しく説明した記事はたくさん見つかると思います。 リレーショナルデータベースは、もはや大学の授業や研究論文、専門書などでしか扱われないような古くて退屈な技術なのでしょうか? 私は開発者として、理解していないものを
この2つの技術は、グーグル独自の技術というわけではない。しかし、ハードウェアから構築している、既存のグーグルのクラウド技術を活用し、パブリックなクラウドサービスとして提供可能なレベルの実装になっている点がGoogle BigQueryの強みとなっている。 BigQueryの特徴 他の類似サービスとの比較 巨大データを処理する技術としては、同じグーグルが使ってきた
リレーショナル・データベースは実に素晴らしいものだ。しかしモノのインターネットでのプロジェクトにおいてこれは実に役立たずだ。 少なくとも、数十億のスマートデバイスで構成される次世代ネットワークの管理について調査を行ったマキナ・リサーチによればそう言える。これによれば、リレーショナル・データベースは「構造化・均一化なデータの処理を処理するためのもの」であり、No
リリース、障害情報などのサービスのお知らせ
最新の人気エントリーの配信
処理を実行中です
j次のブックマーク
k前のブックマーク
lあとで読む
eコメント一覧を開く
oページを開く