I’ve recently in my spare time been doing some reading and reviewing on supermassive black holes, relativistic jets and wormholes especially after noticing that the supermassive black hole in the movie ‘Interstellar’ didn’t have an astrophysical jet which is required for a black hole to be supermassive. This had me thinking, where else were there any inconsistencies with our main views of black holes and quasars? What are the differences between them and what makes them a quasar?
Are there some that connect with each other at different dimensionalities beyond that of our own cosmos like what occurs with hyper-black holes or are their physics perfectly accountable for within current cosmology’s explanations without hyperdimensionality explanations?
The difficulty in even figuring this out in acquiring any data and what that data looks like is it’s so difficult to spot a black hole let a alone a wormhole. In this article from Space, writers try to figure out if any such connection occurs by observing the outbursts from Active Galactic Nuclei (AGN) which are a type of supermassive black hole heavier than those at our own galactic center. These are helpful for this type of study because the temperatures the gamma ray bursts they release can be quantified and better understood. Here’s more from the article:
Unusual flashes of gamma rays could reveal that what appear to be giant black holes are actually huge wormholes, a new study finds.
Wormholes are tunnels in space-time that can theoretically allow travel anywhere in space and time, or even into another universe. Einstein's theory of general relativity suggests wormholes are possible, although whether they really exist is another matter.
In many ways, wormholes resemble black holes. Both kinds of objects are extremely dense and possess extraordinarily strong gravitational pulls for bodies their size. The main difference is that no object can theoretically come back out after crossing a black hole's event horizon — the threshold where the speed needed to escape the black hole's gravitational pull exceeds the speed of light — whereas any body entering a wormhole could theoretically reverse course.
Assuming wormholes might exist, researchers investigated ways that one might distinguish a wormhole from a black hole. They focused on supermassive black holes with masses millions to billions of times that of the sun, which are thought to dwell at the hearts of most, if not all, galaxies. For example, at the center of our Milky Way galaxy lies Sagittarius A*, a monster black hole that is about 4.5 million solar masses in size.
Anything entering one mouth of a wormhole would exit out its other mouth. The scientists reasoned that meant that matter entering one mouth of a wormhole could potentially slam into matter entering the other mouth of the wormhole at the same time, a kind of event that would never happen with a black hole.
Any matter falling into a mouth of a supermassive wormhole would likely travel at extraordinarily high speeds due to its powerful gravitational fields. The scientists modeled the consequences of matter flowing through both mouths of a wormhole to where these mouths meet, the wormhole's "throat." The result of such collisions are spheres of plasma expanding out both mouths of the wormhole at nearly the speed of light, the researchers said.
"What surprises me most of all is that no one has proposed this idea before, because it is rather simple," study lead author Mikhail Piotrovich, an astrophysicist at the Central Astronomical Observatory in Saint Petersburg, Russia, told Space.com.
The researchers compared the outbursts from such wormholes with those from a kind of supermassive black hole known as an active galactic nucleus (AGN), which can spew out more radiation than our entire galaxy does as they devour matter around them, and do so from a patch of space no larger than our solar system. AGNs are typically surrounded by rings of plasma known as accretion disks and can emit powerful jets of radiation from their poles.