On the night of August 23, 1940, a young British scientist sat with his wife watching German bombers attack the English city of Birmingham, about 20 miles from the village where the couple was taking a brief vacation. Reginald V. Jones was not so much interested in what he could see as in something he couldn’t. He knew that German pilots were using a secret weapon—a new technology that allowed them to find their targets in the dark.
The weapon had the potential to give the Luftwaffe a decisive advantage. Pilots in those days navigated by what they could see: the ground in daylight and the stars at night. This made accurate bombing in darkness impossible. It wasn’t a matter of finding the right buildings; aircrews struggled to find the right city or even the right country. In May 1940, a Royal Air Force bomber on a mission to attack an airfield in Holland got lost in a storm and instead bombed an RAF base in southern England. (The unlucky pilot, a Captain Warren, was known to comrades thereafter as “Baron Von Warren.”)
In the summer of 1940, with Germany occupying mainland Europe and Britain cornered, the difficulty of finding targets in the dark worked in the defenders’ favor. German bombers flew most of their missions during the day, making them vulnerable to the RAF’s Spitfire and Hurricane fighters. But bombers that could find their way at night would be safe from the fighters, which had no way of locating them.
Jones’s job was to stop that from happening. He worked for Britain’s foreign intelligence service, MI6, as a scientific analyst. Since the start of the year, he had been playing detective, trying to piece together clues about a secret German air weapon. What was it—and could it be stopped?
WHEN JONES HAD BEEN recruited at age 27, just as war broke out in 1939, he had been handed an anonymous report sent to the British Embassy in Oslo by someone claiming to be a German anti-Nazi. It described various technologies the Nazis were working on, including one for using a radio signal to measure a friendly airplane’s distance from a transmitter. With nothing else