The normal development of the ventricular outlets and proximal region of the great arteries is a controversial subject. It is known that the conus, truncus arteriosus (truncus), and aortic sac participate; however, there are some doubts...
moreThe normal development of the ventricular outlets and proximal region of the great arteries is a controversial subject. It is known that the conus, truncus arteriosus (truncus), and aortic sac participate; however, there are some doubts as to the actual prospective fate of the truncus. Some authors propose that it gives origin to the proximal region of the great arteries and that the myocardial cells of its wall become smooth muscle. Nevertheless, others think that the truncus only forms the arterial valve apparatus and that therefore the myocardial cells transform into fibroblasts. As a first approach to beginning to elucidate which process occurs, the aim of this article was to study the histological changes in the wall of these components of the developing heart in chick embryos whose hearts had been labeled at the truncoconal boundary at stage 22HH, tracing the changes up to stage 36HH. Also, the histological constitution of the wall of the pulmonary arterial trunk and its valve apparatus were studied in the posthatching and adult hearts of chickens and rats. The conus and truncus walls were always encircled by a myocardial sleeve from the outset of their development. Between stages 26HH to 28HH, the truncal myocardial cells adjacent to the mesenchymal tissue of the ridges began to lose cell-to-cell contacts and invaded the extracellular matrix. At stage 24HH, the aortic sac began to project into the pericardial cavity and became divided into two channels by the aortic-pulmonary septum at stage 26HH. The wall of the aortic sac is mostly constituted by a compact mesenchymal tissue. Initially, it does not have smooth muscle but this starts to appear at stage 30HH. The insertion ring of the valves, a broad structure, was formed by mesenchymal tissue. Both structures were always covered by a myocardial sleeve. The leaflets developed from the truncal ridges, the segment immediately proximal to the aortic sac. Our results indicate that the proximal region of the pulmonary and aortic arteries do not originate from the truncus arteriosus; rather, we found that they take origin from the aortic sac. Thus, our findings agree with the proposal that the myocardial cells of the external sleeve of the truncus become fibroblastic and suggest that the insertion ring of the arterial valves has a dual origin: fibroblasts produced by truncal myocardial transdiferentiation and the mesenchymal tissue of the proximal region of the truncal ridges, while the leaflets have their origin from the truncal ridges. We discuss the fact that, because the truncus arteriosus does not give origin to the trunks of the aortic and pulmonary arteries, it may be necessary to modify terminology. Based on our results, together with the new findings obtained by in vivo labeling, immunostaining, a chimeric approach, and ultrastructural studies, we propose a developmental model that correlates the fate of the conus, truncus, and aortic sac with the normal morphogenesis of the ventricular outlet tracts and the trunks of the great arteries.