Секція 2. ОБЛАДНАННЯ ХАРЧОВИХ ВИРОБНИЦТВ
ТА УДОСКОНАЛЕННЯ ПРОЦЕСІВ І АПАРАТІВ
ХАРЧОВИХ ВИРОБНИЦТВ
UDC 65.015.11:664.849
1
DEVELOPMENT OF THE COMBINED MACHINE
FOR APPLE PUREE PREPARATION
G. Deinychenko, D. Dmytrevskyi, V. Perekrest, R. Lazurenko
In the article the existing technologies for making apple puree were
analyzed. The necessity of improving the process of production applesauce and
equipment for its implementation is proved. The relevance of experimental research
to determine the rational parameters of the stage of heat treatment is substantiated.
It was found that increasing steam pressure and the duration of the heat treatment
process increase the depth of heat treatment of apples and reduce the penetration
force of the product. The rational parameters of the process of heat treatment of
fruit raw materials are determined. The design of a combined apparatus for
producing applesauce has been developed, the main modes of its operation have
been determined. This combined machine allows to reduce material costs due to the
elimination of auxiliary operations.
Keywords: apple puree, heat treatment, wiping, cutting force, grinding.
РОЗРОБКА КОМБІНОВАНОГО АПАРАТА
ДЛЯ ПРИГОТУВАННЯ ЯБЛУЧНОГО ПЮРЕ
Г.В. Дейниченко, Д.В. Дмитревський, В.В. Перекрест,
Р.С. Лазуренко
Удосконалення процесу переробки плодової сировини є актуальною
науково-технічною задачею. Одним із найбільш перспективних напрямів
інтенсифікації процесу виготовлення яблучного пюре є застосування апаратів
комбінованої дії. У статті проаналізовано існуючі технології приготування
яблучного пюре. Доведено необхідність удосконалення процесу виготовлення
яблучного пюре та обладнання для його реалізації. Обґрунтовано
актуальність проведення експериментальних досліджень для визначення
раціональних параметрів стадії термічної обробки. Установлено, що
підвищення тиску пари та подовження тривалості термічної обробки
збільшують глибину термічної обробки яблук і зменшують зусилля
© Дейниченко Г.В., Дмитревський Д.В., Перекрест В.В., Лазуренко Р.С., 2020
98
проникнення продукту. Визначено, що після термічної обробки яблук величина
сили різання під тиском буде різною. Виявлено, що на силу різання впливають
тиск пари, тривалість термічної обробки, термін зберігання і сорт яблук. Зі
збільшенням терміну зберігання яблук зростає значення нарізання після
термічної обробки.
Експериментально доведено, що за однакових параметрів термічної
обробки глибина такої обробки буде однаковою для яблук, які відрізняються
геометричними розмірами. Установлено, що глибина термічної обробки яблук
суттєво не відрізняється залежно від геометричних розмірів та форми плода.
Ці дані вказують на те, що різниця у впливі термічної обробки парою
надлишкового тиску на яблука, що відрізняються геометричними розмірами,
не є істотною і дозволяє проводити комбінований процес переробки. Це
значно зменшує складність і енергоспоживання технологічного процесу.
Визначено раціональні параметри термічної обробки фруктової сировини.
Розроблено та обґрунтовано конструкцію комбінованого апарата, визначено
основні режими його роботи. Апарат дозволяє зменшити матеріальні
витрати внаслідок усунення допоміжних і перевантажувальних операцій,
підвищити продуктивність за рахунок переходу на безперервний режим
роботи. Установлено, що використання запропонованого пристрою,
призначеного для харчової промисловості й ресторанного господарства,
поліпшить якість переробки сировини під час виробництва пюре, заощадить
матеріальні ресурси та зменшить споживання енергії.
Ключові слова: яблучне пюре, термічна обробка, протирання, зусилля
різання, подрібнення.
РАЗРАБОТКА КОМБИНИРОВАННОГО АППАРАТА
ДЛЯ ПРИГОТОВЛЕНИЯ ЯБЛОЧНОГО ПЮРЕ
Г.В. Дейниченко, Д.В. Дмитревский, В.В. Перекрест,
Р.С. Лазуренко
Проанализированы существующие технологии изготовления яблочного
пюре. Доказана необходимость усовершенствования процесса производства
яблочного пюре и оборудования для его реализации. Обоснована актуальность
проведения экспериментальных исследований по определению рациональных
параметров термической обработки. Выявлено, что увеличение давления пара
и продолжительности термической обработки увеличивают глубину
термической обработки яблок и уменьшают усилие пенетрации продукта.
Определены рациональные параметры термической обработки плодового
сырья. Разработана конструкция комбинированного аппарата для получения
яблочного пюре, определены основные режимы его работы. Аппарат
позволяет уменьшить материальные затраты вследствие устранения
вспомогательных операций.
Ключевые слова: яблочное пюре, термическая обработка,
протирания, усилие резания, измельчение.
99
Statement of the problem. Fruit and vegetable industry is an
important sector of the agro-industrial complex of Ukraine. Today, special
attention is paid to improving production technology, introducing more
productive equipment, expanding the range of processed products. The
production of various high-quality baby and diet food products, food
concentrates, fresh-frozen fruits and vegetables, semi-finished products,
canned food of high readiness is developing rapidly.
The production of food for children of different ages, as well as
functional products is a separate sub-sector that differs from the production
of conventional products with specific requirements for raw materials,
technology, equipment, sanitary and anti-epidemic regime, environmental
and chemical control. In recent years, in the field of hygiene and physiology
of baby food created multicomponent formulations of products, balanced in
chemical composition. Semi-finished products made from fresh fruits and
berries used in the confectionery industry as raw materials. These semifinished products are produced by confectionery or canning industries. The
main fruit and berry semi-finished products include: fillings from various
fruits, fruit and berry puree, etc. [1].
Fruit and berry puree is a grated fruit pulp. One of the most common
in the confectionery industry is apple puree, which in most fruit and berry
products is the main raw material, and purees of other types are introduced,
as a rule, as flavorings [2].
Fruit processing is a rather laborious process, which requires storage
and processing, the presence of special shops and staff. In order to preserve
the vitamin composition and produce a quality product, there is a need to
develop and improve equipment for processing fruit raw materials, which
will be energy efficient and environmentally friendly. In order to intensify
the development of new equipment and improve existing it is necessary to
carry out a number of theoretical and experimental studies, which will
determine the impact of varietal characteristics of apples and parameters of
the blanching process on the efficiency of product processing.
Fruit and vegetable products are perishable goods, and therefore,
their consumption in fresh form for a long time, as well as its delivery to the
point of sale is a rather difficult problem. Therefore, fast and high-quality
processing of fruits and vegetables is needed.
Review of the latest research and publications. During the production
of food from apples, much of the raw material that is processed goes to waste
and mostly during the wiping process. Based on this, the method of wiping
plays a significant role in the economy of industrial production of apple food, as
the cost of raw materials is 75% of the cost of products produced. You should
also pay attention to the equipment used for the wiping process. Many fruits and
vegetables are pre-cooked before canning [3].
100
To date, the effect of temperature and duration of heat treatment on
the structuring ability of apple puree has been studied. It is established that
the change of heat treatment modes leads to a significant change in its
structuring ability. Prolonged exposure to temperature reduces the ability of
apple puree to structure due to partial degradation of pectin
macromolecules. Depending on the type of fruit and the degree of their
maturity, the duration and temperature of heat treatment are selected
individually so that the flesh of the fruit softens along the entire depth.
Insufficient heat treatment generates significant waste during wiping [4].
At excessive heat treatment fruits strongly boil, there is a deep
disintegration of pectin substances. As a result, the puree is liquid, its
gelling properties are reduced. Inactivation of enzymes during heat
treatment prevents the oxidation of tannins by air oxygen. Therefore,
insufficient heat treatment can cause darkening of the puree during wiping.
In addition, during the heat treatment of fruits and berries are the removal of
air from the tissues and partial caramelization of sugars, which leads to a
yellowish color in fruits with light flesh [5].
The developed combined method of processing consists of the process
of thermal treatment of the fruit with steam and their mechanical grinding.
The primary task in conducting studies of the combined process of fruit
processing was to determine the rational duration of heat treatment. Heat
treatment of apples is one of the main stages in the process of obtaining apple
puree. Raw materials are subjected to heat treatment, which is carried out in
water vapor, in hot water, aqueous solutions of acid, alkali, salt, hot animal or
vegetable fats, and by contact with the surface of heating, before cutting,
grinding and wiping. To ensure the desired depth of heat treatment, it is
necessary to set a rational duration for the treatment of apples with steam or
water. During the research, the dependence of the depth of heat treatment of
apples on the duration of treatment with water, steam, pressure was established.
Apples blanching was carried out in boiling water for 70–90 min at atmospheric
pressure and hot steam at 115…125 ºС for 30 min. Thus, there is a need to
create equipment that minimizes the loss of raw materials and will improve the
quality of finished product.
The objective of the research is to develop a device for
implementing the combined process of obtaining applesauce, as well as
substantiating the advantages of its use.
Presentation of the research material. The main task during the
research of the combined process of making apple puree was to determine
the rational duration of heat treatment, as heat treatment of apples is one of
the main stages in the process of obtaining apple puree.
101
Based on literature data and patent research, it is established that the
most promising area of production of apple puree is the use of a combined
effect of the processes of pre-treatment with steam and mechanical wiping of
the product. The presented combination of processes can be implemented using
the proposed design of the apparatus for making apple puree. The developed
combined method of making apple puree consists of the process of heat
treatment of fruits with steam and their subsequent mechanical grinding.
The technical task of development is to improve the quality of the
finished puree through the consistent use of combined mechanisms for
grinding, rubbing, boiling, mixing, introduction of the necessary additional
components and more uniform processing due to the use of rational designs
of knives and perforated turns of the screw for fruit processing, reduction of
material and energy resources, increase of productivity due to transition to a
continuous mode of work. To implement the proposed method, a combined
machine for the production of puree has been developed (Fig. 1).
Fig. 1. The scheme of the combined machine for production of puree:
1 – the valve; 2 – the loading bunker; 3 – the screw; 4 – the case cylindrical;
5 – hollow shaft; 6 – the hatch for unloading; 7 – the screw for giving of raw
materials; 8 – pulleys; 9 – shovels; 10 – perforated drum; 11 – reducer;
12 – belts; 13 – electric motor; 14 – feed auger; 15 – juice collector; 16 – hatch
for waste; 17 – knives; 18 – grinding grate; 19 – auger with variable pitch;
20 – steam line; 21 – condensate pipe; 22 – extruder; 23 – hatch; 24 – friction
transmission; 25 – rotating shaft; 26 – barometer; 27 – cover; 28 – working
chamber; 29 – nozzle for supplying steam, 30 – steam bath; 31 – anchor stirrer;
32 – condensate receiver; 33 – gateway shutter; 34 – support rack
102
The combined device of continuous action for the production of
puree includes a loading hopper 2 with placed in it the conveying auger 3,
the housing 4, the valves 1, the hollow shaft 5.
The device contains four chambers, two of them are located in
parallel and two chambers are located in series.
In the third chamber on the high-speed shaft is a coil of the auger 14
and vertically arranged knives 17. The knives 17 have a rotation angle that
facilitates the movement of the product along the first chamber 26. The
lower part of the third chamber is perforated and connected to the juice
collector 15 of puree and includes an extruder 22 and a connected boiler 23.
The extruder 22 consists of a loading hopper 2, three working cylinders
with placed inside the motor 13 and a reducer 11, as well as four chambers:
blanched wiping, squeezing the juice, boiling and squeezing.
The juice extraction chamber has the shape of a truncated cone, the
body of this chamber is made perforated and equipped with an additional
wall 25 to form a space for collecting juice and a nozzle 15 for draining
juice. On the outer shaft 6 in this chamber are installed continuous turns 17
of the auger. At the end of the juice extraction chamber on the shaft is a
knife and a second grinding grid 18 with holes of medium diameter.
In the fourth compression chamber on the inner shaft with a
gradually increasing diameter made turns 19 of the auger with a decreasing
step to exit the chamber. At the end of the chamber there is a third grinding
grid with holes of smaller diameter. The forming head 22 of the extruder
has a nozzle. A cooking boiler is attached to the forming head 22 of the
extruder, inside which an anchor stirrer 30 with a drive is installed.
On the top cover of the boiler 27 there is also a pipe for the
introduction of the necessary additional components (sugar syrup, flavors,
structurants, stabilizers, etc.).
The vertical cylindrical and lower spherical parts of the boiler body
are equipped on the outside with a housing, inside which steam is supplied
through the pipe 29, and condensate is removed through the pipe 32.
In the lower part of the boiler 33 is a vacuum sluice gate to remove
the finished puree.
The boiler is connected to an exhaust fan to support the discharge
and ensure the removal of water vapor formed during the blasting of the
extruded product at the outlet of the nozzle.
The combined device works as follows: pre-washed fruit is loaded
through the hopper 2. On the surface of the apples act simultaneously
working bodies, which is an auger 3 which is on a hollow shaft 5, which
gets steam through the valve 1, also through this valve steam enters the
working cylinder. The auger 3 is driven by a V-belt transmission, which
103
consists of a pulley 8 and a belt 12. The raw material moves along the
cylinder while the sharp steam coats the entire surface of the apples, which
leads to complete blanching of the apples. The apples are sent to the hatch
for unloading 6. Then the apples fall into the wiping chamber. From the
unloading hatch 6 apples enter the working cylinder, where there is a screw
for feeding raw materials 7, this screw is needed to feed the raw materials to
the perforated drum 10. When the raw material enters the perforated drum
10, the raw material is wiped. Inside the perforated drum 10 is a shaft on
which are placed three blades 3 during the rotation of the blades, the raw
material is captured by the blades and presses the raw material to the
perforated drum, as a result of which the raw material is rubbed through a
sieve. The perforated drum sieve can have different diameters, this is
required for different types of raw materials (stone fruit). Waste, bones are
sent along the drum to the hatch 16. The finished puree flows from the
perforated drum to the next working cylinder.
Grated puree is fed into the receiving hopper of the loading hopper.
The drive of the screw located in the loading bunker is included. The source
product through the loading hopper enters the housing of the device. The
puree is moved to vertically rotating knives with an auger 17.
In the squeezing chamber there is a separation of part of the juice
contained in the product, due to the continuous turns 17 of the auger, made
in the form of a cone with a decreasing pitch of the turns, and its discharge
through the perforated housing. The juice formed during the crushing of the
fruit, through the perforated body and the pipe 15 flows into the juice
collector and is removed from it for further processing. The squeezed mass
of the product is sent to the second grinding grid 18 with holes of medium
diameter, where it is finally crushed with a knife.
Next, the crushed and squeezed mass is sent to the boiling chamber,
where it is subjected to intense heating. At the same time through the
nozzles 20 inside the body of the boiling chamber steam is supplied, which
conductively heats the crushed fruit particles, making them more convenient
for further processing. The steam condenses and is removed through the
nozzles below the chamber.
In the compression chamber, the shaft 19 is made with a reduced
pitch. Due to the fact that the speed of rotation of the low-speed shaft in the
compression chamber is lower than the speed of rotation of the shaft 6 in the
three previous chambers, it helps to provide the required pressure.
In the chamber there is an increase in the pressure of the puree-like
mass of the product due to a sharp decrease in the size of the screw channel.
The pressure of the puree in the compression chamber reaches the desired
value, thus forming a puree, homogeneous in structure and temperature.
104
This allows you to have a given, uniform in cross section, the temperature
of the product. After passing through the nozzle 22, the puree under excess
pressure is discharged into the boiler equipped with an anchor stirrer 31.
Simultaneously include the drive of the anchor stirrer 31 and the exhaust fan
10 to maintain discharge and ensure removal of water vapor formed during
blasting the extrudate at the nozzle. After the compressed puree mass leaves
the nozzle as a result of a sharp pressure drop, the moisture evaporates
instantly. The water vapor formed during the heating of the puree-like mass
is removed by means of an exhaust fan. Then through a branch pipe located
on the top cover of a cooking copper, a mix of additional components which
not only increase nutritional value of the crushed particles of fruits, but also
promote essential change of their structure moves. Condensate is removed
from the housing through the pipe. If the puree has a high humidity, it is
subjected to additional evaporation. To do this, the puree-like mass is
captured by the anchor stirrer 31 and pressed against the inner surface of the
boiler. At the same time through the pipe in the body structure is supplied
with steam, which further heats the puree and helps to complete the
physico-chemical transformations required to obtain the finished puree.
Due to conductive heating, the temperature of the puree mass
increases and due to the maintenance of the set value of the discharge in the
cooking boiler, further evaporation of the formed water vapor occurs, which
is removed by the fan. If the puree-like mass has a given final humidity,
then the need for its heating is eliminated and steam is not supplied to the
housing. The finished puree-like product is removed from the boiler 12 by
means of a vacuum sluice gate, which is also rotated.
The use of the proposed design of the device intended for food and
restaurant industry will improve the quality of raw materials processing for
the production of puree, intensify technological processes, save material
resources during the manufacture of the device, reduce its energy
consumption and improve working conditions.
Conclusion. Thus, the use of the proposed combined device of
continuous action for the production of puree allows to obtain puree-like
concentrates of a given composition with the introduction of the necessary
additional components for their further use in the production of
confectionery and bakery products. The device also reduces the specific
energy consumption for the production of puree concentrates through the
consistent use of mechanisms for grinding, wiping, boiling, mixing, the
introduction of the necessary additional components and more uniform
processing due to the use of rational designs of knives and perforated turns
of the auger.
105
References
1. Lin, D., Zhao, Y. (2007), “Innovations in the development and application
of edible coatings for fresh and minimally processed fruits and vegetables”,
Comprehensive Reviews in Food Science and Food Safety, Vol. 6, No. 3, рр. 60-75.
DOI: 10.1111/j.1541-4337.2007.00018.x.
2. Deynichenko, G., Dmytrevskyi, D., Chervonyi, V., Udovenko, O.,
Omelchenko, O., Melnik, O. (2017), “Modeling of the prozess of peeling jerusalen
artichoke in order to determine parameters for conducting production process”,
Eastern-European Journal of Enterprise Technologies, Vol. 3, No. 11(87), pp. 52-60.
DOI: 10.15587/1729-4061.2016.86472.
3. Pereira, R., Vicente, A. (2009), “Environmental impact of novel thermal
and non-thermal technologies in food processing”, Food Research International,
Vol. 43, No. 7, pp. 1936-1943.
4. Siti Mazli, M., Nur Aliaa, A., Nor Hidayati, H., Intan Shaidatul, M., Wan
Zuha, W. (2010), “Design and Development of an Apparatus for Grating and
Peeling Fruits and Vegetables”, American Journal of Food Technology, Vol. 5,
No. 6, pp. 385-393.
5. Baselice, A., Colantuoni, F., Lass, D., Nardone, G., Stasi, A. (2017),
“Trends in EU consumers’ attitude towards fresh-cut fruit and vegetables”, Food
Quality and Preference, Vol. 59, pp. 87-96. DOI: 10.1016/j.foodqual.2017.01.008.
Deynichenko Gregory, Dr. of Tech. Sc., Prof., Head of the Department of
Processes and Equipment Food and Hospitality-Restaurant Industry named after
M. Belaev, Kharkiv State University of Food Technology and Trade. Address:
Klochkivska str., 333, Kharkiv, Ukraine, 61051. Tel.: (057)349-45-56; e-mail:
[email protected].
Дейниченко Григорій Вікторович, д-р техн. наук, проф., зав. кафедри
процесів та устаткування харчової і готельно-ресторанної індустрії
ім. М.І. Беляєва, Харківський державний університет харчування та торгівлі.
Адреса: вул. Клочківська, 333, м. Харків, Україна, 61051. Тел.: (057)349-45-56;
e-mail:
[email protected].
Дейниченко Григорий Викторович, д-р техн. наук, проф., зав.
кафедрой процессов и оборудования пищевой и гостинично-ресторанной
индустрии им. М.И. Беляева, Харьковский государственный университет
питания и торговли. Адрес: ул. Клочковская, 333, г. Харьков, Украина, 61051.
Тел.: (057)349-45-56; e-mail:
[email protected].
Dmytrevskyi Dmytro, PhD in Tech. Sc., Assoc. Prof., Department of
Processes and Equipment Food and Hospitality-Restaurant Industry named after
M. Belaev, Kharkiv State University of Food Technology and Trade. Address:
Klochkovska str., 333, Kharkiv, Ukraine, 61051. Тel.: (057)349-45-56; e-mail:
[email protected].
Дмитревський Дмитро В’ячеславович, канд. техн. наук, доц.,
кафедра процесів та устаткування харчової і готельно-ресторанної індустрії
ім. М.І. Беляєва, Харківський державний університет харчування та торгівлі.
Адреса: вул. Клочківська, 333, м. Харків, Україна, 61051. Тел.: (057)349-45-56;
e-mail:
[email protected].
106
Дмитревский Дмитрий Вячеславович, канд. техн. наук, доц., кафедра
процессов и оборудования пищевой и гостинично-ресторанной индустрии
им. М.И. Беляева, Харьковский государственный университет питания и
торговли. Адрес: ул. Клочковская, 333, г. Харьков, Украина, 61051. Тел.:
(057)349-45-56; e-mail:
[email protected].
Perekrest Volodymyr, Assist., Department of General Engineering
Disciplines and Equipment, Donetsk National University of Economics and Trade
named after Mykhailo Tugan-Baranovsky. Address: Tramvaina str., 16, Kryvyi Rih,
Ukraine, 50005. Tel.: 0980717294; e-mail:
[email protected].
Перекрест
Володимир
Вікторович,
асист.,
кафедра
загальноінженерних дисциплін та обладнання, Донецький національний
університет економіки і торгівлі ім. М. Туган-Барановського. Адреса: вул.
Трамвайна, 16, м. Кривий Ріг, Україна, 50005. Тел.: 0980717294; e-mail:
[email protected].
Перекрест Владимир Викторович, ассист., кафедра общеинженерных
дисциплин и оборудования, Донецкий национальный университет экономики
и торговли им. М. Туган-Барановского. Адрес: ул. Трамвайная, 16, г. Кривой
Рог, Украина, 50005. Тел.: 0980717294; e-mail:
[email protected].
Lazurenko Ruslan, master, Educational-and-research Institute of Food
Technology and Business, Kharkiv State University of Food Technology and Trade.
Address: Klochkivska str., 333, Kharkiv, Ukraine, 61051. Тel.: (057)349-45-56;
e-mail:
[email protected].
Лазуренко Руслан Сергійович, магістр, Навчально-науковий інститут
харчових технологій та бізнесу, Харківський державний університет
харчування та торгівлі. Адреса: вул. Клочківська, 333, м. Харків, Україна,
61051. Тел.: (057)349-45-56; e-mail:
[email protected].
Лазуренко Руслан Сергеевич, магистр, Учебно-научный институт
пищевых технологий и бизнеса, Харьковский государственный университет
питания и торговли. Адрес: ул. Клочковская, 333, г. Харьков, Украина, 61051.
Тел.: (057)349-45-56; e-mail:
[email protected].
DOI: 10.5281/zenodo.3937771
107