THE 7th AUN/SEED-Net
REGIONAL CONFERENCE
IN MECHANICAL AND
MANUFACTURING ENGINEERING
(RCMME2014)
Organizers
AUN/SEED-Net
Hanoi University of Science and Technology (HUST)
Industry Sponsors:
GE Hitachi Nuclear Energy
Innovative Systems Software
Vietnam HTMP Mechanical Company Limited
Hanoi, October 9-10, 2014
5&00(
WK WK2FWREHU+867+DQRL9LHWQDP
Design of a Quadrotor UAV Aluminum Casting Frame
Muhammad A. Muflikhun1, Elmer R. Magsino2, Alvin Y. Chua3
1
MSMe Student, Mechanical Engineering Department, De La Salle University, Manila, Philippines,
[email protected],
2
Assistant Professor, Electronics and Communications Engineering Department,
De La Salle University, Manila, Philippines,
[email protected]
3
Associate Professor, Mechanical Engineering Department,
De La Salle University, Manila, Philippines,
[email protected]
Abstract:
7KLV SDSHU GHVFULEHV GHVLJQ RI TXDGURWRU IUDPH XVLQJ DOXPLQXP FDVWLQJ W\SH $77
$OWKRXJK PDQ\ SDSHU DOUHDG\ SXEOLVK DERXW TXDGURWRU 8QPDQQHG $HULDO 9HKLFOHV 8$9V GHVLJQ
TXDGURWRUXVLQJDOXPLQXPFDVWLQJVWLOOUDUHO\)UDPHWKDWDYDLODEOHLQWKHPDUNHWKDYHODFNLQWKHSULFH
DQGDVVHPEO\&DVWLQJDOXPLQXPKDYHFRPSRQHQWOHVVFRPSDUHZLWKH[LVWLQJIUDPH+RPHLQGXVWU\
EDVH DQG VPDOO DOXPLQXP FDVWLQJ VKRS FDQ SURGXFH WKH VDPH IUDPH 7KLV FDXVH VPDOO DQG KRPH
EDVH EXVLQHVV JURZ ZLWKRXW KDYH ODFN LQ TXDOLW\ 'HVLJQ DQG PHDVXUHPHQW RI WKH IUDPH EDVH IURP
VWDQGDUG GHVLJQ RI IUDPH LQ WKH PDUNHW 7KH YDULDEOH EDVHV IURP ZLQJV OHQJWK RI TXDGURWRU $Q
RYHUYLHZ RI )RUFH 6DIHW\ )DFWRU DQG 'HIRUPDWLRQ WHVW XVH 6ROLG:RUNV DQDO\VLV 7KH UHVXOW RI WKH
EHVW GHVLJQ EDVHG IURP WKH KLJKHVW VDIHW\ IDFWRU DQG VPDOOHVW YRQ PLVHV VWUHVV FRPSDUH ZLWK
SURSHOOHUDYDLODEOHLQPDUNHW8VLQJWKHEHVWUHVXOWGHVLJQRITXDGURWRUIUDPHXVHDOXPLQXPFDVWLQJ
PDWHULDOVLVVXFFHVVIXOO\
Keywords: Design, Casting Aluminum A356.0-T6, Quadrotor Frame, SolidWorks Analysis
1. Introduction
HOHYDWLRQ:LWKWKLVXVHIXOQHVVRITXDGURWRU8$9
PDQ\ PDQXIDFWRULHV DOUHDG\ EXLOG DQG VHOO
8QPDQQHG $HULDO 9HKLFOHV 8$9 DUH DHULDO YDULRXV GHVLJQ RI TXDGURWRU 8$9V 7KH GHVLJQ
YHKLFOHV WKDW IOLJKW ZLWKRXW KXPDQ SLORW LQVLGH PDWHULDODQGDVVHPEO\LQVWUXFWLRQLQFOXGHGLQWKH
%HFDXVH RI WKH RULJLQDO W\SH RI 8$9 LV KXPDQ ER[ DQG XVXDOO\ SHRSOH EX\ WKH VWDQGDUG IUDPH
OHVV 8$9 KDYH PDQ\ DGYDQWDJHV DQG XVH LQ IURP PDVV SURGXFH 7KLV VLWXDWLRQ KDV
PDQ\ PLVVLRQV VXFK DV HPHUJHQF\ PLVVLRQ DGYDQWDJHV IRU HDV\ WR EX\ DQG WKH
GXULQJDGLVDVWHU>@FLYLOLDQPDSSLQJDUHD>@D PDQXIDFWRULHV DOUHDG\ FDOFXODWH WKH IRUFH WKDW
VXUYH\ LQ WKH ILHOG RI DJULFXOWXUH >@ DQG PLOLWDU\ FDQ EH KDQGOLQJ E\ WKH IUDPH 7KH
PLVVLRQV >@ 8$9 KDYH PDQ\ W\SH LH )L[HG GLVDGYDQWDJHVIRUPDVVSURGXFWLRQIUDPHDUHWKH
ZLQJ 8$9 6LQJOH URWRU WKDW FDQ EH GLYLGHG LQWR SULFHLV H[SHQVLYH FRPSDUH ZLWK WKH SULFH RI WKH
WZRW\SHV$[LDODQG&RD[LDO5RWRU8$97DQGHP UDZPDWHULDORIIUDPHWKHSURGXFWLRQEDVHGIURP
5RWRU 8$9 4XDGURWRU 8$9 %OLPS 8$9 +\EULG ELJ PDQXIDFWRULHV ZKHUH WKH KRPH DQG VPDOO
8$9 %LUGOLNH 8$9 ,QVHFWOLNH 8$9 DQG )LVK LQGXVWULHV FDQQRW SURGXFH WKH VDPH TXDOLW\
OLNH8$9>@
EHFDXVH WKH\ FDQQRW EX\ WKH LQIUDVWUXFWXUH DQG
HTXLSPHQWIRUPDVVSURGXFWLRQ
7KLV SDSHU IRFXVHV RQ WKH TXDGURWRU 8$9
EHFDXVH TXDGURWRU 8$9 DOUHDG\ XVHG IRU DHULDO 7KLVSDSHUVXJJHVWDQGSXUSRVHWRGHFUHDVHWKDW
DSSOLFDWLRQ FRPELQH ZLWK H[WHUQDO LQVWUXPHQW JDS E\ LQWURGXFLQJ WKH QHZ ZD\ WR SURGXFH
HPEHGGHG LQ TXDGURWRU HVSHFLDOO\ LQ WKH DHULDO TXDGURWRU IUDPH XVLQJ DOXPLQXP FDVWLQJ W\SH
SKRWRJUDSK\ DQG DHULDO REVHUYDWLRQ )RU DHULDO $7:HGHVLJQPHDVXUHDQGDQDO\]HE\
SKRWRJUDSK\ DSSOLFDWLRQ D FDPHUD HPEHGGHG LQ VWDWLFIRUFHXVLQJ6ROLG:RUNVVRIWZDUHGUDZLQJWR
WKHTXDGURWRUDQGXVLQJH[WHUQDOVHQVRUJURXQG JDLQWKHEHVWYDOXHDQGVL]HRITXDGURWRUIUDPH
VWDWLRQ DQG UHPRWH FRQWURO SHRSOH FRQWURO WKH :H FKRRVH $OXPLQXP $7 EHFDXVH WKLV
TXDGURWRUFRPELQHGZLWKFDPHUDFRFDSWXUHDQG PDWHULDOLVFRPPRQO\XVHGIRUFDVWLQJPDQ\WRROV
UHFRUG YLGHR DERXW VLWXDWLRQ LQ WKH JURXQG IURP DQG KDYH EHWWHU PHFKDQLFDO SURSHUWLHV FRPSDUH
151
5&00(
WK WK2FWREHU+867+DQRL9LHWQDP
ZLWKDQRWKHUPDWHULDO>@$OXPLQXP$7
DOVR FKHDSHU FRPSDUH ZLWK IUDPH WKDW FDQ EH
IRXQGLQWKHPDUNHW0HFKDQLFDOSURSHUWLHVRIDQ
$OXPLQXP $7 FDQ EH LPSURYHG E\
FRPELQH ZLWK RWKHU PDWHULDOV DQG DOVR FDQ EH
FRDWHG >@ /DVW DOXPLQXP $7 FDVWLQJ
IUDPH FDQ SURGXFHG QRW RQO\ E\ ELJ
PDQXIDFWRULHV EXW DOVR LW FDQ SURGXFH E\ KRPH
DQG VPDOO LQGXVWULHV ZLWKRXW ELJ GLIIHUHQW RI WKH
TXDOLW\DQGSHUIRUPDQFH
)URP YDULRXV MRXUQDOV WKHUH DUH DOUHDG\ H[SODLQ
KRZ WR GHVLJQ WKH TXDGURWRU XVLQJ 6ROLG:RUNV
GUDZLQJ VRIWZDUH >@ WHVWLQJ WKH GHVLJQ XVLQJ
GHVLJQDQDO\VLVVRIWZDUHPHVKLQJFKDUDFWHUDQG
WKH W\SH RI WHVWLQJ >@ DIWHU WHVWLQJ XVLQJ
DQDO\VLV VRIWZDUH WKHUH DUH DOUHDG\ JDLQ WKH
UHVXOWHDFKYDULDEOHVL]HDQGIURPWKDWUHVXOWZLOO
EHSURGXFHWKHPRVWHIILFLHQWDQGWKHEHVWVL]HRI
WKH TXDGURWRU IUDPH >@ 7KH GHVLJQ RI
TXDGURWRU IUDPH EDVHG IURP WZR EUDQGV RI
TXDGURWRU IUDPH WKDW FDQ EH IRXQG LQ WKH KREE\
VKRS ORFDOO\ '-, DQG ;DLUFUDIW ;9 7KH
VWHS E\ VWHS WR GHVLJQ DQG JDLQ WKH EHVW VL]H
VWDUWIURPPHDVXUHWKHH[LVWLQJIUDPHDQGFROOHFW
WKH UDZ GDWD 6HFRQG JDLQ WKH H[WHUQDO
HTXLSPHQW ZHLJKW GDWDWKDW ZLOO EH HPEHGGHG WR
TXDGURWRU DV VHQVRUV PRWRU (6& %DWWHU\ DQG
FDPHUD RSWLRQDO 7KH UHVXOW RI WKH H[WHUQDO
VHQVRU ZLOOFRPELQHZLWKWKHZHLJKWRITXDGURWRU
IUDPHDVPDVVWRWDO
7KLV VWXG\ ZLOO JDLQ WKH PHDVXUHPHQW RI
TXDGURWRU 8$9 ZLWK $OXPLQXP $7 DV
PDWHULDOV XVH 7KH UHVXOW ZLOO JLYH WKH DQDO\VLV
RXWSXW ZLWK VDIHW\ IDFWRU DQG YRQ PLVHV VWUHVV
)RUP WKH SULFH FRPSDULVRQ EHWZHHQ FDVWLQJ
TXDGURWRU IUDPH ZLWK PDUNHW IUDPH WKHUH ZLOO
JLYHWKHEHWWHUHIIHFWLYHQHVV
2. Aluminum Casted UAV Design
$OXPLQXP FDVLQJ 8$9 DV VKRZQ LQ WKH ILJXUH
KDYH GLIIHUHQW GHVLJQ ZLWK RWKHUV TXDGURWRU
IUDPH ZH FRPSDUHV $OXPLQXP IUDPH ZLWK
RWKHUV IUDPH LH '-, DQG ;$LU&UDIW ;9
WKH GLIIHUHQW FDPH IURP WKH DPRXQW RI SDUW DQG
WRWDO ZHLJKW '-, KDYH OHVV SDUW FRPSDUH ZLWK
;$LU&UDIW DQG KDYH SDUWV PRUH WKDQ $OXPLQXP
IUDPH 7KH WRWDO ZHLJKW DOVR LQIOXHQFH WKH
SD\ORDG RI TXDGURWRU DQG $OXPLQXP KDYH OHVV
ZHLJKWFRPSDUHZLWKRWKHUVIUDPH
)URP WDEOH ZH FDQ PHDVXUH WKH H[LVWLQJ
TXDGURWRU IUDPH DV EDVLF UHIHUHQFHV WR GHVLJQ
TXDGURWRU 8$9 IUDPH %DVLF GHVLJQ DOVR
LQIOXHQFH IURP H[WHUQDO LQVWUXPHQWV ZHLJKW
SURSHUWLHVDVVKRZQLQWDEOH7KHWDUJHWGHVLJQ
LVIRXQGWKHKLJKHVWVDIHW\IDFWRUZLWKWKHORZHVW
YRQPLVHVVWUHVV7KHPLQLPXPVDIHW\IDFWRULV
GXHWRVDIHW\IOLJKWDQGWKHORQJHVWZLQJOHQJWKLV
PPWRDFFRPPRGDWHORQJSURSHOOHU
D
E
Figure 1 Side view and Upper view of
Aluminum casting UAV
Table 1 Comparison of the uadrotor frame
4XDGURWRU)UDPH
;$LU&UDIW $OXPLQXP
'-,
;9
&DVWLQJ
:HLJKW
*UDP
3&%IRUWKH
&DUERQ
$OXPLQXP
0DWHULDO %RDUGDQG
)LEHU
$7
3$*)
,Q WKH QHZWRQ ODZ WKHUH DUH HTXDWLRQV WR JDLQ
FRQYHUW DQG HVWDEOLVK WKH IRUFH IURP WKH PDVV
DQGWKHJUDYLWDWLRQDFFHOHURPHWHU
½
°F m g
°
°°
°°
® FT F F F F
¾
°
MaterialSt rength °
°SafetyFact or
°
°¯
DesignLoad °¿
152
5&00(
WK WK2FWREHU+867+DQRL9LHWQDP
:KHUH F IRUFH DQG )7 7RWDO IRUFH IURP DOO
SURSHOOHU ) LV IRUFH LQ ZLQJ IRU PRWRU ) LV
IRUFH LQ ZLQJ IRUPRWRU ) LVIRUFH LQ ZLQJ
IRUPRWRUDQG)LVIRUFHLQZLQJIRUPRWRU
7KHGHVLJQFRQFHSWEDVHGIURPIUDPHVL]HRI'-,
)UDPH DQG ;DLUFUDIW )UDPH 7KH IUDPH OHQJWK
EDVHG IURP WKH OHQJWK RI WKH GLDPHWHU RI
SURSHOOHU LQ WKH PDUNHW 7KH H[DFW YDOXH RI WKH
VL]H RI SURSHOOHUV IURP WKH PDUNHW PDGH DV
UHIHUHQFHVWRGUDZLQJWKHZLQJVTXDGURWRUIUDPH
WKH IRUFH SODFH LQ HDFK HQGV RI WKH ZLQG DV
VKRZQ LQ WKH ILJXUH DQG IRUFHG XVLQJ YDULDEOH
IRUFHZLWKWKHOHQJWKRIIRUFHV1111
11DQG17KHUHDUHWZRSDUDPHWHUVWR
DQDO\]H WKH UHVXOW VDIHW\ IDFWRU DQG YRQ PLVHV
VWUHVV
7KH PDWHULDO IUDPH XVH $OXPLQXP $7
DQGKDYHPHFKDQLFDOSURSHUWLHVDVVKRZQLQWKH
WDEOH
Table 2 Mechanical Properties of Aluminum
A356.0 T6
3URSHUW\
9DOXH
8QLWV
(ODVWLF0RGXOXV
(
1P
3RLVVRQ V5DWLR
1$
6KHDU0RGXOXV
(
1P
0DVV'HQVLW\
.JP
7HQVLOH6WUHQJWK
1P
&RPSUHVVLYH6WUHQJWK
1P
<LHOG6WUHQJWK
7KHUPDO([SDQVLRQ
&RHIILFLHQW
1P
(
.
7KHUPDO&RQGXFWLYLW\
: P.
6SHFLILF+HDW
- NJ.
3. Frame Testing
)LJXUH 6KRZV WKH H[SHULPHQWDO WHVWLQJ VHWXS
XVHG LQ GHVLJQLQJ WKH DOXPLQXP FDVWLQJ IUDPH
6ROLG:RUNVZDVXVHGWRPRGHOWKHIUDPH
Figure 2. Simulation Testing
)UDPH VWUHQJWK WHVWLQJ XVHV IRUFH WHVW ZLWK WKH
IRUFHEHLQJSODFHGDWWKHHQGRIHDFKZLQJ7KLV
SODFHPHQWPRGHOVWKHPRWRUZKHQSODFHGDWWKLV
SRLQW)L[HG JHRPHWU\ LV SODFHG DWWKH ERWWRP RI
IUDPH LQ WKH HQG RI WKH OHJ IUDPH IURP YDULDEOH
WHVWV WKH ZLQJ OHQJWK DQG IRUFH DUH FKDQJHG DV
VKRZQLQWKHWDEOH
Table 3 Parameter of Testing
3DUDPHWHU
9DOXH
/HQJWKRI:LQJ
PP
)RUFH 1
4. Static Analysis using Solid orks and
ptimi ation
8VLQJ6ROLG:RUNVWRJDLQWKHEHVWUHVXOWZLWKWKH
ORQJHVW ZLQJV DFFRPSOLVK LQ WKH PP ZLQJV
OHQJWK ILJXUH DQG IRUFH IRU HDFK ZLQJV 1
ILJXUH 7KLV SDUDPHWHU JLYH TXDGURWRU IUDPH
FDQKDQGOHORDGXQWLONJ)RUFHUHVXOWGDWD
JLYH WKH KLJKHVW YRQ PLVHV VWUHVV ZKHUH WKH
VWUHVV JLYHQ 1 HDFK ZLQJ ZLWK UHVXOW WKH
KLJKHVW YRQ PLVHV VWUHVV IRU HDFK ZLQJ JLYHV
IURP 03D XQWLO 03D DV VKRZQ LQ
WKH ILJXUH 4XDGURWRU IUDPH WHVW VWDUW IURP
PPXQWLOPPZLQJVOHQJWK
Figure 3. E perimental result ength vs Mass
153
Figure 4. Figure 2 E perimental result Force
vs Von Mises Stress
5&00(
WK WK2FWREHU+867+DQRL9LHWQDP
)URPILJXUHWKHUHVXOWRIVDIHW\IDFWRUPLQLPXP
IURP HDFK ZLQJ RI TXDGURWRU YDULHW\ IURP
IRU PP ZLQJ DQG IRU PP ZLQJ 7KH
EHVW UHVXOW JLYHV $OXPLQXP $7 IRU
TXDGURWRU IUDPH ZLWK PHDVXUHPHQW PD[LPXP
OHQJWK RI ZLQJV PP IRUFH PD[ 1 HDFK
ZLQJPLQLPXPVDIHW\IDFWRUZLWKJUDP
RIPDVV
Figure 5. E perimental result Force vs Safety
Factor
5. Conclusion
7KLV SDSHU JLYH GDWD RI PHDVXUHPHQW RI
TXDGURWRUIUDPHGHVLJQXVLQJ$OXPLQXP$
7DVPDWHULDODQGWKHUHVXOWJLYHVYDOXHWKDWWKLV
GHVLJQ FDQ EH LPSOHPHQWHG ZLWK VDWLVIDFWLRQ
GDWD WKH UHVXOW JLYH LQIRUPDWLRQ ZLWK $OXPLQXP
$7TXDGURWRUIUDPHFDQEHEXLOGFKHDSHU
FRPSDUH ZLWK '-, DQG ;$LU&UDIW ;9 GXH
WRFKHDSHUWKHPDWHULDOVDQGIDEULFDWLRQSURFHVV
$OXPLQXP FDVWLQJ DOVR ZHLJKWOHVV FRPSDUH ZLWK
WZR RWKHUV IUDPH ZLWK EHWWHU VWUHQJWK DQDO\VLV
DQGVDIHW\IDFWRU
6. Acknowledgment
)ROORZ DFNQRZOHGJHPHQW VWDWHPHQW RI RWKHU
SDSHUV WKLV ZRUN KDV EHHQ VXSSRUWHG E\ 'H /D
6DOOH 8QLYHUVLW\ 0DQLOD DQG $81 6((' 1(7
)RXQGLQJ
7. References
>@ 6DVD 6 0DWVXGD < 1DNDGDWH 0
,VKLNDZD . $XJXVW 2QJRLQJ UHVHDUFK
RQ GLVDVWHU PRQLWRULQJ 8$9 DW -$;$¶V $YLDWLRQ
3URJUDP *URXS ,QSICE Annual Conference,
2008 SS ,(((
>@ 6DPDG $ .DPDUXO]DPDQ 1 +DPGDQL 0
$ 0DVWRU 7 $ +DVKLP . $
$XJXVW 7KH SRWHQWLDO RI 8QPDQQHG $HULDO
9HKLFOH 8$9 IRU FLYLOLDQ DQG PDSSLQJ
DSSOLFDWLRQ ,QSystem
Engineering
and
Technology
(ICSET),
2013
IEEE
3rd
International Conference on SS ,(((
>@ *UHQ]G|UIIHU * - (QJHO $ 7HLFKHUW %
7KH SKRWRJUDPPHWULF SRWHQWLDO RI ORZ
FRVW 8$9V LQ IRUHVWU\ DQG DJULFXOWXUHThe
International Archives of the Photogrammetry,
Remote Sensing and Spatial Information
Sciences31 %
>@ %RQH ( %RONFRP & $SULO
8QPDQQHG DHULDO YHKLFOHV %DFNJURXQG DQG
LVVXHV IRU FRQJUHVV /,%5$5< 2) &21*5(66
:$6+,1*721
'&
&21*5(66,21$/
5(6($5&+6(59,&(
>@ %RXDEGDOODK 6 6LHJZDUW 5
'HVLJQ DQG FRQWURO RI D PLQLDWXUH TXDGURWRU
,QAdvances in unmanned aerial vehicles SS
6SULQJHU1HWKHUODQGV
>@/L30DLMHU'0/LQGOH\7& /HH3
' $WKURXJKSURFHVVPRGHORIWKHLPSDFW
RI LQVHUYLFH ORDGLQJ UHVLGXDO VWUHVV DQG
PLFURVWUXFWXUHRQWKHILQDOIDWLJXHOLIHRIDQ$
DXWRPRWLYH ZKHHOMaterials Science and
Engineering: A460
>@<L-=/HH3'/LQGOH\7& )XNXL7
6WDWLVWLFDOPRGHOLQJRIPLFURVWUXFWXUHDQG
GHIHFW SRSXODWLRQ HIIHFWV RQ WKH IDWLJXH
SHUIRUPDQFH RI FDVW $7 DXWRPRWLYH
FRPSRQHQWVMaterials Science and Engineering:
A432
>@+XDQJ::DQJ0:DQJ+0D1 /L
; 7KHHOHFWURGHSRVLWLRQRIDOXPLQXPRQ
7L%$ FRPSRVLWH IURP LRQLF OLTXLG DV
SURWHFWLYH FRDWLQJSurface
and
Coatings
Technology213
>@/L.3KDQJ6.&KHQ%0 /HH7+
3ODWIRUP 'HVLJQ DQG 0DWKHPDWLFDO
0RGHOLQJ RI DQ 8OWUDOLJKW 4XDGURWRU 0LFUR $HULDO
9HKLFOHCommunications1
>@dHWLQVR\('LN\DU6+DQoHU&2QHU.
76LULPRJOX(8QHO0 $NVLW0)
'HVLJQDQGFRQVWUXFWLRQRIDQRYHOTXDGWLOWZLQJ
8$9Mechatronics22
>@ .RQWRJLDQQLV 6 * (NDWHULQDULV - $
'HVLJQ SHUIRUPDQFH HYDOXDWLRQ DQG
RSWLPL]DWLRQ RI D 8$9Aerospace Science and
Technology29
154
RCMME 2014
9th & 10th October 2014, HUST, Hanoi, Vietnam
A PID Controller for Payload Drop of a Quadrotor UAV
Muhammad A. Muflikhun1, Ivan Henderson V. Gue1, Elmer R. Magsino2, Alvin Y. Chua3
1
MSMe Student, Mechanical Engineering Department, De La Salle University, Manila, Philippines,
[email protected],
[email protected]
2
Assistant Professor, Electronics and Communications Engineering Department,
De La Salle University, Manila, Philippines,
[email protected]
3
Associate Professor, Mechanical Engineering Department,
De La Salle University, Manila, Philippines,
[email protected]
Abstract:
Research in the Unmanned Aerial Vehicle (UAV) has grown rapidly in the past two decades,
especially research focusing on quadrotor UAV. Quadrotors are known to be manoeuvrable and have
been found to handle many different types of missions, thus giving the quadrotor an advantage in
most research works. In this paper, the study focuses on the payload drop for quadrotor that uses a
PID controller. Ideally, a payload drop is theoretically a disturbance in the altitude stability of the UAV.
However, due to the slight differences in the values of the parameters of the quadrotor components
and its placement and alignment, such payload drop affects not only its altitude but also its x- and ydisplacements as well as its roll and pitch motions. A PID controller will be implemented to study the
effect of payload drop for two different payload drop scenarios with different height set points
Keywords: Quadrotor UAV, Payload Drop, PID Controller
1. Introduction
Unmanned Aerial Vehicles (UAV) are aerial
vehicles with no direct human control inside the
vehicle. UAV flight control is done by varying the
speed of the rotor blades. This change in rotor
speed generates different maneuvers and
movements. UAV can be used with several
mission, from civil mission like agriculture,
mapping area or weather system mapping, or
military mission in the controlling area, preventive
mission or war attack.
UAV have several types to support missions and
have opportunity in each purpose of UAV
missions. Generally, there are three types of
UAV, Fixed wing, Rotor UAV, and Insect-like
UAV. Fixed wing UAV have advantages in its
simple mechanical construction but cannot
perform hovering like helicopter. Rotor UAVs use
rotors as flight mechanism with speed variety in
rotors. Rotor UAVs come in many forms such as
single, axial and co axial propeller design,
tandem, quadrotor, hexarotor, and octorotor.
Insect-like UAV designs come from nature and
adapted animal flight mechanism [1,2]. This
research paper focuses on the use of a
quadrotor UAV, a UAV having four rotors.
One of the important parts in any UAV to support
its missions is its control system. Control
systems in the UAV are implemented in various
forms. This research paper focuses in using the
Proportional Integral Derivative (PID) controller to
stabilize its altitude and attitude.
Many research works have employed the use of
PID controllers in their quadrotor missions [3, 4,
5]. PID as a method to control a quadrotor
provides advantages in terms of its simple
implementation and the accuracy of results. One
possible application of extending the robustness
of a PID controller is in the use of a quadrotor
accomplishing a payload mission [6]. In a
payload mission, a quadrotor with its load still
attached is seen by the PID controller as a heavy
body thus requiring more upward thrust to attain
a desired altitude. Once the payload is released,
the quadrotor will reach a higher altitude, thus
overshooting on its desired height. The PID
controller must monitor this overshoot and
quickly compensates for this and return the
quadrotor to its desired height by lowering the
upward thrust through slowing the speed of the
brushless DC motor (BLDC).
2. Quadrotor Model
The quadrotor operated is a Xaircraft UAV
brought from a local Philippine hobby shop while
the different sensors were purchased from Egizmo, a local electronics shop.
155
RCMME 2014
9th & 10th October 2014, HUST, Hanoi, Vietnam
Fig. 1 depicts a quadrotor showing its upward
thrusts (T1, T2, T3 and T4) and gravity affecting it.
The quadrotor is able to translate along its x-, yand z-axes as well as perform roll, pitch and yaw
rotations along the x-, y- and z-axis respectively.
3. Payload Drop Mission
Payload mission of quadrotor already researched
by many researchers [6,9]. A quadrotor with a
payload may have many and different drop
points. Such scenario happens in a disasterstricken area where multiple evacuation centers
or base stations are established and multiple
items need be delivered.
Fig. 1 Quadrotor Model [7]
Table 1 shows the quadrotor and controller
parameters used.
Table 1. Quadrotor and Controller Parameter
Parameter
Value
Size (diameter)
Mass
Gravitational Acceleration (g)
ESC Gain
where Ii=1,2,3 are moments of inertia along its axis
of rotation. Ti=1,2,3,4 are upward thrust forces, l
radius of wing length, and C is the force-tomoment scaling ratio. From these equations,
one can determine that the quadrotor is an
under-actuated type of UAV since there are only
four actuations that control six variables (position
vector and rotation angles).
570 mm
2.15 kg
9.81 m/s2
.0681
N/PWM
The essence of a payload drop mission is that
the UAV / quadrotor can drop a payload without
vertically landing and taking off (VTOL). The
quadrotor will just pass a waypoint, drop the
payload and continue proceeding to the next
waypoint, or just return to the starting point. The
payload of Quadrotor UAV can be shown in the
figure 2.
The equation of motion of each axis is derived by
using force and moment balance and is shown in
Equation (1) [8]. The Ki’s represent the drag
coefficients. This can be reduced to zero if the
system under study is at low speed.
°x
°
°
° y
°
°
°z
°
°
°
®u1
°
°
°T
°
°
°\
°
°
°M
°¯
½
u1 (cos M sin T cos\ sin M sin \ ) K 1 1x °
°
m
°
u1 (sin M sin T cos\ cos M sin \ ) K 2 y °
°
m
°
u1 (cos M cos\ ) mg K 3 z
°
° (1)
m
°
4
°
F
¾
¦
i
i 1
°
°
l T2 T4 K 4T
°
I1
°
°
l T1 T3 K 5\
°
I2
°
°
C (T1 T2 T3 T4 ) K 6M
°
°¿
I3
Fig. 2 Payload of Quadrotor
4. Development of Quadrotor Model in
Matlab Simulink
In order to demonstrate the proposed PID
controller for a payload drop, the theoretical
quadrotor dynamics was modeled using Matlab
Simulink.
The Matlab Simulink Model is shown in Fig. 3
below. The left side of the figure denotes the
constant inputs to the quadrotor system such as
gravity, mass, torque, etc. The “Plant” block
denotes the quadrotor dynamics while the
“Controller” block depicts the PID controllers for
altitude and attitude stabilization. The feedback
blocks measures the current quadrotor angles
and height.
5. Simulation Results
The simulation parameters are set by the
following parameters: height and payload mass.
The quadrotor is assumed to undergo both static,
one-time dropping of payload and dynamic
156
RCMME 2014
9th & 10th October 2014, HUST, Hanoi, Vietnam
loading, i.e. at a certain desired altitude and time,
the payload mass is gradually dropped. It is
expected that the quadrotor will experience an
increase in its altitude and thus expected to
return to the desired height as quick as possible.
payload drop happens after every 10 seconds
starting from t = 0 sec. It must be intuitively be
concluded that before another payload drop
takes place, the quadrotor has settled to its
desired altitude.
Various PID constants were tested and it has
been found out that the best controller gains are
derived from the following assumed constants:
Kp (200,250,300,350,400), Ki (175,200,225), and
Kd (100,125,150,175,200). We have obtained
the middle value of the average set through
tuning, based on it having a result with an
overshoot of at most 5% and a settling time of at
most 5 seconds.
In one of the simulation experiments, dropping
the payload follows this scenario. Originally, the
quadrotor is carrying a payload mass of 2kg. At t
= 10 sec, the quadrotor drops 0.5 kg of mass
making its payload equal to 1.5kg. At t = 20 sec,
it reduces its payload by another 0.5 kg. This will
be done until t = 40sec when the quadrotor no
longer has a payload mass to carry.
Fig. 3 Quadrotor Simulation
Notice that from Fig. 5, within the time frame of
10 seconds, once a payload mass was dropped,
a visible overshoot takes place. However, it can
also be seen that the quadrotor was capable of
returning to its desired height before another
payload drop is to take place. Different
parameter of Kp, Ki, and Kd also give the
different result as simulation using dynamic
loading. Static loading simulation gain after get
the best value of Kp, Ki, and Kd from dynamic
loading simulation as shows in the figure 5. (b).
with the best parameter and payload 2 kg.
The simulation results for the combination of the
above coefficients are shown Fig. 4. The certain
payload is 2 kg and height 5 m. The deciding
factors in determining the optimal PID
coefficients are based on overshoot and settling
time. For this simulation, the criteria we have
seen fit is the parameters producing the least
overshoot with a settling time of less than 4
seconds. With these set criteria, from Fig. 4, we
choose dot number 42.
The combination of the PID constants is given to
be: Kp = 300, Ki = 225, and Kd = 125, with
overshoot 4.4 % and 3.41 second settling time.
Figure 5. (a). illustrates the results when the
quadrotor is subjected to dynamic loading. The
6. Conclusions
Implementation of PID controller in the payload
drop mission of Quadrotor has been obtained.
The general parameters for this simulation use
variety of payload from 0.5 kg, 1 kg, 1.5 kg, and
2 kg.
157
RCMME 2014
9th & 10th October 2014, HUST, Hanoi, Vietnam
Fig. 4 Simulation using different parameter
Kp, Ki, and Kd
Flight test vary from 2 m, 3 m, 4 m, and 5 m. The
result bases from time settling of quadrotor UAV
after take-off and drop the payload. During
takeoff, quadrotor oscillate before reach settle
position. Quadrotor also oscillate after drop the
payload. Settling time influenced by the value of
Kp, Ki, and Kd. The best result given with
overshoot less than 5% and settling time less
than 4%.
Future study can be focus in the optimization of
PID controller in the payload drop mission with
different parameters and can be induced noisy to
the system. Another way, different controller also
can improve the quadrotor movement and
payload drop mission.
Acknowledgements
We would like to thank De La Salle University,
ERDT and AUN SEED NET JICA for support and
funding source of this paper.
7. References
[1] Bouabdallah, S., & Siegwart, R. (2007). Design and
control of a miniature quadrotor (pp. 171-210).
Springer Netherlands.
[2] Ratti, J., & Vachtsevanos, G. (2011, March).
Towards energy efficiency in micro hovering air
vehicles. In Aerospace Conference, 2011 IEEE (pp. 18). IEEE.
[3] Salih, A. L., Moghavvemi, M., Mohamed, H. A., &
Gaeid, K. S. (2010, May). Modelling and PID controller
design for a quadrotor unmanned air vehicle.
InAutomation Quality and Testing Robotics (AQTR),
2010 IEEE International Conference on (Vol. 1, pp. 15). IEEE.
[4] Luong Tuan, L., & Won, S. (2013, October). PID
based sliding mode controller design for the micro
quadrotor. In Control, Automation and Systems
(ICCAS), 2013 13th International Conference on (pp.
1860-1865). IEEE.
[5] Yang, J., Cai, Z., Lin, Q., & Wang, Y. (2013,
November). Self-tuning pid control design for
quadrotor uav based on adaptive pole placement
control. In Chinese Automation Congress (CAC),
2013 (pp. 233-237). IEEE.
[6] Palunko, I., Fierro, R., & Cruz, P. (2012, May).
Trajectory generation for swing-free maneuvers of a
quadrotor with suspended payload: A dynamic
programming approach. In Robotics and Automation
(ICRA), 2012 IEEE International Conference on (pp.
2691-2697). IEEE.
[7] P. Corke, Robotics, Vision and Control
Fundamental Algorithms in MATLAB®, Springer 2011,
pp 78–83.
158
RCMME 2014
9th & 10th October 2014, HUST, Hanoi, Vietnam
(a)
(b)
Fig. 5 Payload drop of Quadrotor UAV
a. Dynamic load, b. Static load
[8] Altug, E., Ostrowski, J. P., & Mahony, R. (2002).
Control of a quadrotor helicopter using visual
feedback. In Robotics and Automation, 2002.
Proceedings. ICRA'02. IEEE International Conference
on (Vol. 1, pp. 72-77). IEEE.
[9] Sadeghzadeh, I., Abdolhosseini, M., & Zhang, Y.
M. (2012). Payload drop application of unmanned
quadrotor helicopter using gain-scheduled PID and
model predictive control techniques. In Intelligent
Robotics and Applications(pp. 386-395). Springer
Berlin Heidelberg.
159