Academia.eduAcademia.edu

2 Papers from Regional Conference in Hanoi

1. Design Quadrotor UAV Frame 2. PID Controller

THE 7th AUN/SEED-Net REGIONAL CONFERENCE IN MECHANICAL AND MANUFACTURING ENGINEERING (RCMME2014) Organizers AUN/SEED-Net Hanoi University of Science and Technology (HUST) Industry Sponsors: GE Hitachi Nuclear Energy Innovative Systems Software Vietnam HTMP Mechanical Company Limited Hanoi, October 9-10, 2014 5&00( WK WK2FWREHU+867+DQRL9LHWQDP Design of a Quadrotor UAV Aluminum Casting Frame   Muhammad A. Muflikhun1, Elmer R. Magsino2, Alvin Y. Chua3 1 MSMe Student, Mechanical Engineering Department, De La Salle University, Manila, Philippines, [email protected], 2 Assistant Professor, Electronics and Communications Engineering Department, De La Salle University, Manila, Philippines, [email protected] 3 Associate Professor, Mechanical Engineering Department, De La Salle University, Manila, Philippines, [email protected] Abstract: 7KLV SDSHU GHVFULEHV GHVLJQ RI TXDGURWRU IUDPH XVLQJ DOXPLQXP FDVWLQJ W\SH $77 $OWKRXJK PDQ\ SDSHU DOUHDG\ SXEOLVK DERXW TXDGURWRU 8QPDQQHG $HULDO 9HKLFOHV 8$9V  GHVLJQ TXDGURWRUXVLQJDOXPLQXPFDVWLQJVWLOOUDUHO\)UDPHWKDWDYDLODEOHLQWKHPDUNHWKDYHODFNLQWKHSULFH DQGDVVHPEO\&DVWLQJDOXPLQXPKDYHFRPSRQHQWOHVVFRPSDUHZLWKH[LVWLQJIUDPH+RPHLQGXVWU\ EDVH DQG VPDOO DOXPLQXP FDVWLQJ VKRS FDQ SURGXFH WKH VDPH IUDPH 7KLV FDXVH VPDOO DQG KRPH EDVH EXVLQHVV JURZ ZLWKRXW KDYH ODFN LQ TXDOLW\ 'HVLJQ DQG PHDVXUHPHQW RI WKH IUDPH EDVH IURP VWDQGDUG GHVLJQ RI IUDPH LQ WKH PDUNHW 7KH YDULDEOH EDVHV IURP ZLQJV OHQJWK RI TXDGURWRU $Q RYHUYLHZ RI )RUFH 6DIHW\ )DFWRU DQG 'HIRUPDWLRQ WHVW XVH 6ROLG:RUNV DQDO\VLV 7KH UHVXOW RI WKH EHVW GHVLJQ EDVHG IURP WKH KLJKHVW VDIHW\ IDFWRU DQG VPDOOHVW YRQ PLVHV VWUHVV FRPSDUH ZLWK SURSHOOHUDYDLODEOHLQPDUNHW8VLQJWKHEHVWUHVXOWGHVLJQRITXDGURWRUIUDPHXVHDOXPLQXPFDVWLQJ PDWHULDOVLVVXFFHVVIXOO\   Keywords: Design, Casting Aluminum A356.0-T6, Quadrotor Frame, SolidWorks Analysis  1. Introduction HOHYDWLRQ:LWKWKLVXVHIXOQHVVRITXDGURWRU8$9 PDQ\ PDQXIDFWRULHV DOUHDG\ EXLOG DQG VHOO  8QPDQQHG $HULDO 9HKLFOHV 8$9  DUH DHULDO YDULRXV GHVLJQ RI TXDGURWRU 8$9V 7KH GHVLJQ YHKLFOHV WKDW IOLJKW ZLWKRXW KXPDQ SLORW LQVLGH PDWHULDODQGDVVHPEO\LQVWUXFWLRQLQFOXGHGLQWKH %HFDXVH RI WKH RULJLQDO W\SH RI 8$9 LV KXPDQ ER[ DQG XVXDOO\ SHRSOH EX\ WKH VWDQGDUG IUDPH OHVV 8$9 KDYH PDQ\ DGYDQWDJHV DQG XVH LQ IURP PDVV SURGXFH 7KLV VLWXDWLRQ KDV PDQ\ PLVVLRQV VXFK DV HPHUJHQF\ PLVVLRQ DGYDQWDJHV IRU HDV\ WR EX\ DQG WKH GXULQJDGLVDVWHU>@FLYLOLDQPDSSLQJDUHD>@D PDQXIDFWRULHV DOUHDG\ FDOFXODWH WKH IRUFH WKDW VXUYH\ LQ WKH ILHOG RI DJULFXOWXUH >@ DQG PLOLWDU\ FDQ EH KDQGOLQJ E\ WKH IUDPH 7KH PLVVLRQV >@ 8$9 KDYH PDQ\ W\SH LH )L[HG GLVDGYDQWDJHVIRUPDVVSURGXFWLRQIUDPHDUHWKH ZLQJ 8$9 6LQJOH URWRU WKDW FDQ EH GLYLGHG LQWR SULFHLV H[SHQVLYH FRPSDUH ZLWK WKH SULFH RI WKH WZRW\SHV$[LDODQG&RD[LDO5RWRU8$97DQGHP UDZPDWHULDORIIUDPHWKHSURGXFWLRQEDVHGIURP 5RWRU 8$9 4XDGURWRU 8$9 %OLPS 8$9 +\EULG ELJ PDQXIDFWRULHV ZKHUH WKH KRPH DQG VPDOO 8$9 %LUGOLNH 8$9 ,QVHFWOLNH 8$9 DQG )LVK LQGXVWULHV FDQQRW SURGXFH WKH VDPH TXDOLW\ OLNH8$9>@ EHFDXVH WKH\ FDQQRW EX\ WKH LQIUDVWUXFWXUH DQG  HTXLSPHQWIRUPDVVSURGXFWLRQ 7KLV SDSHU IRFXVHV RQ WKH TXDGURWRU 8$9  EHFDXVH TXDGURWRU 8$9 DOUHDG\ XVHG IRU DHULDO 7KLVSDSHUVXJJHVWDQGSXUSRVHWRGHFUHDVHWKDW DSSOLFDWLRQ FRPELQH ZLWK H[WHUQDO LQVWUXPHQW JDS E\ LQWURGXFLQJ WKH QHZ ZD\ WR SURGXFH HPEHGGHG LQ TXDGURWRU HVSHFLDOO\ LQ WKH DHULDO TXDGURWRU IUDPH XVLQJ DOXPLQXP FDVWLQJ W\SH SKRWRJUDSK\ DQG DHULDO REVHUYDWLRQ )RU DHULDO $7:HGHVLJQPHDVXUHDQGDQDO\]HE\ SKRWRJUDSK\ DSSOLFDWLRQ D FDPHUD HPEHGGHG LQ VWDWLFIRUFHXVLQJ6ROLG:RUNVVRIWZDUHGUDZLQJWR WKHTXDGURWRUDQGXVLQJH[WHUQDOVHQVRUJURXQG JDLQWKHEHVWYDOXHDQGVL]HRITXDGURWRUIUDPH VWDWLRQ DQG UHPRWH FRQWURO SHRSOH FRQWURO WKH :H FKRRVH $OXPLQXP $7 EHFDXVH WKLV TXDGURWRUFRPELQHGZLWKFDPHUDFRFDSWXUHDQG PDWHULDOLVFRPPRQO\XVHGIRUFDVWLQJPDQ\WRROV UHFRUG YLGHR DERXW VLWXDWLRQ LQ WKH JURXQG IURP DQG KDYH EHWWHU PHFKDQLFDO SURSHUWLHV FRPSDUH  151 5&00( WK WK2FWREHU+867+DQRL9LHWQDP ZLWKDQRWKHUPDWHULDO>@$OXPLQXP$7 DOVR FKHDSHU FRPSDUH ZLWK IUDPH WKDW FDQ EH IRXQGLQWKHPDUNHW0HFKDQLFDOSURSHUWLHVRIDQ $OXPLQXP $7 FDQ EH LPSURYHG E\ FRPELQH ZLWK RWKHU PDWHULDOV DQG DOVR FDQ EH FRDWHG >@ /DVW DOXPLQXP $7 FDVWLQJ IUDPH FDQ SURGXFHG QRW RQO\ E\ ELJ PDQXIDFWRULHV EXW DOVR LW FDQ SURGXFH E\ KRPH DQG VPDOO LQGXVWULHV ZLWKRXW ELJ GLIIHUHQW RI WKH TXDOLW\DQGSHUIRUPDQFH  )URP YDULRXV MRXUQDOV WKHUH DUH DOUHDG\ H[SODLQ KRZ WR GHVLJQ WKH TXDGURWRU XVLQJ 6ROLG:RUNV GUDZLQJ VRIWZDUH >@ WHVWLQJ WKH GHVLJQ XVLQJ GHVLJQDQDO\VLVVRIWZDUHPHVKLQJFKDUDFWHUDQG WKH W\SH RI WHVWLQJ >@ DIWHU WHVWLQJ XVLQJ DQDO\VLV VRIWZDUH WKHUH DUH DOUHDG\ JDLQ WKH UHVXOWHDFKYDULDEOHVL]HDQGIURPWKDWUHVXOWZLOO EHSURGXFHWKHPRVWHIILFLHQWDQGWKHEHVWVL]HRI WKH TXDGURWRU IUDPH >@ 7KH GHVLJQ RI TXDGURWRU IUDPH EDVHG IURP WZR EUDQGV RI TXDGURWRU IUDPH WKDW FDQ EH IRXQG LQ WKH KREE\ VKRS ORFDOO\ '-, DQG ;DLUFUDIW ;9 7KH VWHS E\ VWHS WR GHVLJQ DQG JDLQ WKH EHVW VL]H VWDUWIURPPHDVXUHWKHH[LVWLQJIUDPHDQGFROOHFW WKH UDZ GDWD 6HFRQG JDLQ WKH H[WHUQDO HTXLSPHQW ZHLJKW GDWDWKDW ZLOO EH HPEHGGHG WR TXDGURWRU DV VHQVRUV PRWRU (6& %DWWHU\ DQG FDPHUD RSWLRQDO  7KH UHVXOW RI WKH H[WHUQDO VHQVRU ZLOOFRPELQHZLWKWKHZHLJKWRITXDGURWRU IUDPHDVPDVVWRWDO  7KLV VWXG\ ZLOO JDLQ WKH PHDVXUHPHQW RI TXDGURWRU 8$9 ZLWK $OXPLQXP $7 DV PDWHULDOV XVH 7KH UHVXOW ZLOO JLYH WKH DQDO\VLV RXWSXW ZLWK VDIHW\ IDFWRU DQG YRQ PLVHV VWUHVV )RUP WKH SULFH FRPSDULVRQ EHWZHHQ FDVWLQJ TXDGURWRU IUDPH ZLWK PDUNHW IUDPH WKHUH ZLOO JLYHWKHEHWWHUHIIHFWLYHQHVV  2. Aluminum Casted UAV Design  $OXPLQXP FDVLQJ 8$9 DV VKRZQ LQ WKH ILJXUH  KDYH GLIIHUHQW GHVLJQ ZLWK RWKHUV TXDGURWRU IUDPH ZH FRPSDUHV $OXPLQXP IUDPH ZLWK  RWKHUV IUDPH LH '-,  DQG ;$LU&UDIW ;9 WKH GLIIHUHQW FDPH IURP WKH DPRXQW RI SDUW DQG WRWDO ZHLJKW '-, KDYH OHVV SDUW FRPSDUH ZLWK ;$LU&UDIW DQG KDYH SDUWV PRUH WKDQ $OXPLQXP IUDPH 7KH WRWDO ZHLJKW DOVR LQIOXHQFH WKH SD\ORDG RI TXDGURWRU DQG $OXPLQXP KDYH OHVV ZHLJKWFRPSDUHZLWKRWKHUVIUDPH  )URP WDEOH  ZH FDQ PHDVXUH WKH H[LVWLQJ TXDGURWRU IUDPH DV EDVLF UHIHUHQFHV WR GHVLJQ TXDGURWRU 8$9 IUDPH %DVLF GHVLJQ DOVR LQIOXHQFH IURP H[WHUQDO LQVWUXPHQWV ZHLJKW  SURSHUWLHVDVVKRZQLQWDEOH7KHWDUJHWGHVLJQ LVIRXQGWKHKLJKHVWVDIHW\IDFWRUZLWKWKHORZHVW YRQPLVHVVWUHVV7KHPLQLPXPVDIHW\IDFWRULV GXHWRVDIHW\IOLJKWDQGWKHORQJHVWZLQJOHQJWKLV PPWRDFFRPPRGDWHORQJSURSHOOHU                D       E  Figure 1 Side view and Upper view of Aluminum casting UAV Table 1 Comparison of the uadrotor frame 4XDGURWRU)UDPH ;$LU&UDIW $OXPLQXP '-,  ;9 &DVWLQJ :HLJKW    *UDP  3&%IRUWKH &DUERQ $OXPLQXP 0DWHULDO %RDUGDQG )LEHU $7 3$*)  ,Q WKH QHZWRQ ODZ WKHUH DUH HTXDWLRQV WR JDLQ FRQYHUW DQG HVWDEOLVK WKH IRUFH IURP WKH PDVV DQGWKHJUDYLWDWLRQDFFHOHURPHWHU  ­ ½ °F m g ° °° °°      ® FT F  F  F  F ¾ ° MaterialSt rength ° °SafetyFact or ° °¯ DesignLoad °¿  152 5&00( WK WK2FWREHU+867+DQRL9LHWQDP :KHUH F  IRUFH DQG )7  7RWDO IRUFH IURP DOO SURSHOOHU ) LV IRUFH LQ ZLQJ  IRU PRWRU  ) LV IRUFH LQ ZLQJ IRUPRWRU ) LVIRUFH LQ ZLQJ  IRUPRWRUDQG)LVIRUFHLQZLQJIRUPRWRU 7KHGHVLJQFRQFHSWEDVHGIURPIUDPHVL]HRI'-, )UDPH DQG ;DLUFUDIW )UDPH 7KH IUDPH OHQJWK EDVHG IURP WKH OHQJWK RI WKH GLDPHWHU RI SURSHOOHU LQ WKH PDUNHW 7KH H[DFW YDOXH RI WKH VL]H RI SURSHOOHUV IURP WKH PDUNHW PDGH DV UHIHUHQFHVWRGUDZLQJWKHZLQJVTXDGURWRUIUDPH WKH IRUFH SODFH LQ HDFK HQGV RI WKH ZLQG DV VKRZQ LQ WKH ILJXUH  DQG IRUFHG XVLQJ YDULDEOH IRUFHZLWKWKHOHQJWKRIIRUFHV1111 11DQG17KHUHDUHWZRSDUDPHWHUVWR DQDO\]H WKH UHVXOW VDIHW\ IDFWRU DQG YRQ PLVHV VWUHVV  7KH PDWHULDO IUDPH XVH $OXPLQXP $7 DQGKDYHPHFKDQLFDOSURSHUWLHVDVVKRZQLQWKH WDEOH  Table 2 Mechanical Properties of Aluminum A356.0 T6 3URSHUW\ 9DOXH 8QLWV  (ODVWLF0RGXOXV ( 1P 3RLVVRQ V5DWLR  1$ 6KHDU0RGXOXV ( 1P 0DVV'HQVLW\  .JP 7HQVLOH6WUHQJWK  1P  &RPSUHVVLYH6WUHQJWK  1P  <LHOG6WUHQJWK 7KHUPDO([SDQVLRQ &RHIILFLHQW  1P  ( . 7KHUPDO&RQGXFWLYLW\  : P.  6SHFLILF+HDW  - NJ.    3. Frame Testing  )LJXUH  6KRZV WKH H[SHULPHQWDO WHVWLQJ VHWXS XVHG LQ GHVLJQLQJ WKH DOXPLQXP FDVWLQJ IUDPH 6ROLG:RUNVZDVXVHGWRPRGHOWKHIUDPH        Figure 2. Simulation Testing )UDPH VWUHQJWK WHVWLQJ XVHV IRUFH WHVW ZLWK WKH IRUFHEHLQJSODFHGDWWKHHQGRIHDFKZLQJ7KLV SODFHPHQWPRGHOVWKHPRWRUZKHQSODFHGDWWKLV  SRLQW)L[HG JHRPHWU\ LV SODFHG DWWKH ERWWRP RI IUDPH LQ WKH HQG RI WKH OHJ IUDPH IURP YDULDEOH WHVWV WKH ZLQJ OHQJWK DQG IRUFH DUH FKDQJHG DV VKRZQLQWKHWDEOH   Table 3 Parameter of Testing 3DUDPHWHU 9DOXH /HQJWKRI:LQJ  PP    )RUFH 1     4. Static Analysis using Solid orks and ptimi ation  8VLQJ6ROLG:RUNVWRJDLQWKHEHVWUHVXOWZLWKWKH ORQJHVW ZLQJV DFFRPSOLVK LQ WKH  PP ZLQJV OHQJWK ILJXUH   DQG IRUFH IRU HDFK ZLQJV  1 ILJXUH   7KLV SDUDPHWHU JLYH TXDGURWRU IUDPH FDQKDQGOHORDGXQWLONJ)RUFHUHVXOWGDWD JLYH WKH KLJKHVW YRQ PLVHV VWUHVV ZKHUH WKH VWUHVV JLYHQ  1 HDFK ZLQJ ZLWK UHVXOW WKH KLJKHVW YRQ PLVHV VWUHVV IRU HDFK ZLQJ JLYHV IURP  03D XQWLO  03D DV VKRZQ LQ WKH ILJXUH  4XDGURWRU IUDPH WHVW VWDUW IURP  PPXQWLOPPZLQJVOHQJWK               Figure 3. E perimental result ength vs Mass             153 Figure 4. Figure 2 E perimental result Force vs Von Mises Stress 5&00( WK WK2FWREHU+867+DQRL9LHWQDP )URPILJXUHWKHUHVXOWRIVDIHW\IDFWRUPLQLPXP IURP HDFK ZLQJ RI TXDGURWRU YDULHW\ IURP  IRU PP ZLQJ DQG IRU PP ZLQJ 7KH EHVW UHVXOW JLYHV $OXPLQXP $7 IRU TXDGURWRU IUDPH ZLWK PHDVXUHPHQW PD[LPXP OHQJWK RI ZLQJV  PP IRUFH PD[ 1 HDFK ZLQJPLQLPXPVDIHW\IDFWRUZLWKJUDP RIPDVV              Figure 5. E perimental result Force vs Safety Factor  5. Conclusion  7KLV SDSHU JLYH GDWD RI PHDVXUHPHQW RI TXDGURWRUIUDPHGHVLJQXVLQJ$OXPLQXP$ 7DVPDWHULDODQGWKHUHVXOWJLYHVYDOXHWKDWWKLV GHVLJQ FDQ EH LPSOHPHQWHG ZLWK VDWLVIDFWLRQ GDWD WKH UHVXOW JLYH LQIRUPDWLRQ ZLWK $OXPLQXP $7TXDGURWRUIUDPHFDQEHEXLOGFKHDSHU FRPSDUH ZLWK '-,  DQG ;$LU&UDIW ;9 GXH WRFKHDSHUWKHPDWHULDOVDQGIDEULFDWLRQSURFHVV $OXPLQXP FDVWLQJ DOVR ZHLJKWOHVV FRPSDUH ZLWK WZR RWKHUV IUDPH ZLWK EHWWHU VWUHQJWK DQDO\VLV DQGVDIHW\IDFWRU  6. Acknowledgment  )ROORZ DFNQRZOHGJHPHQW VWDWHPHQW RI RWKHU SDSHUV WKLV ZRUN KDV EHHQ VXSSRUWHG E\ 'H /D 6DOOH 8QLYHUVLW\ 0DQLOD DQG $81 6((' 1(7 )RXQGLQJ  7. References  >@ 6DVD 6 0DWVXGD < 1DNDGDWH 0  ,VKLNDZD .  $XJXVW  2QJRLQJ UHVHDUFK RQ GLVDVWHU PRQLWRULQJ 8$9 DW -$;$¶V $YLDWLRQ 3URJUDP *URXS ,QSICE Annual Conference, 2008 SS ,(((  >@ 6DPDG $ .DPDUXO]DPDQ 1 +DPGDQL 0 $ 0DVWRU 7 $  +DVKLP . $  $XJXVW  7KH SRWHQWLDO RI 8QPDQQHG $HULDO 9HKLFOH 8$9  IRU FLYLOLDQ DQG PDSSLQJ  DSSOLFDWLRQ ,QSystem Engineering and Technology (ICSET), 2013 IEEE 3rd International Conference on SS ,(((  >@ *UHQ]G|UIIHU * - (QJHO $  7HLFKHUW %   7KH SKRWRJUDPPHWULF SRWHQWLDO RI ORZ FRVW 8$9V LQ IRUHVWU\ DQG DJULFXOWXUHThe International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences31 %   >@ %RQH (  %RONFRP &  $SULO  8QPDQQHG DHULDO YHKLFOHV %DFNJURXQG DQG LVVXHV IRU FRQJUHVV /,%5$5< 2) &21*5(66 :$6+,1*721 '& &21*5(66,21$/ 5(6($5&+6(59,&(  >@ %RXDEGDOODK 6  6LHJZDUW 5   'HVLJQ DQG FRQWURO RI D PLQLDWXUH TXDGURWRU ,QAdvances in unmanned aerial vehicles SS  6SULQJHU1HWKHUODQGV  >@/L30DLMHU'0/LQGOH\7& /HH3 '  $WKURXJKSURFHVVPRGHORIWKHLPSDFW RI LQVHUYLFH ORDGLQJ UHVLGXDO VWUHVV DQG PLFURVWUXFWXUHRQWKHILQDOIDWLJXHOLIHRIDQ$ DXWRPRWLYH ZKHHOMaterials Science and Engineering: A460  >@<L-=/HH3'/LQGOH\7& )XNXL7  6WDWLVWLFDOPRGHOLQJRIPLFURVWUXFWXUHDQG GHIHFW SRSXODWLRQ HIIHFWV RQ WKH IDWLJXH SHUIRUPDQFH RI FDVW $7 DXWRPRWLYH FRPSRQHQWVMaterials Science and Engineering: A432    >@+XDQJ::DQJ0:DQJ+0D1 /L ;  7KHHOHFWURGHSRVLWLRQRIDOXPLQXPRQ 7L%$ FRPSRVLWH IURP LRQLF OLTXLG DV SURWHFWLYH FRDWLQJSurface and Coatings Technology213  >@/L.3KDQJ6.&KHQ%0 /HH7+   3ODWIRUP 'HVLJQ DQG 0DWKHPDWLFDO 0RGHOLQJ RI DQ 8OWUDOLJKW 4XDGURWRU 0LFUR $HULDO 9HKLFOHCommunications1    >@dHWLQVR\('LN\DU6+DQoHU&2QHU. 76LULPRJOX(8QHO0 $NVLW0)   'HVLJQDQGFRQVWUXFWLRQRIDQRYHOTXDGWLOWZLQJ 8$9Mechatronics22    >@ .RQWRJLDQQLV 6 *  (NDWHULQDULV - $   'HVLJQ SHUIRUPDQFH HYDOXDWLRQ DQG RSWLPL]DWLRQ RI D 8$9Aerospace Science and Technology29   154 RCMME 2014 9th & 10th October 2014, HUST, Hanoi, Vietnam A PID Controller for Payload Drop of a Quadrotor UAV Muhammad A. Muflikhun1, Ivan Henderson V. Gue1, Elmer R. Magsino2, Alvin Y. Chua3 1 MSMe Student, Mechanical Engineering Department, De La Salle University, Manila, Philippines, [email protected], [email protected] 2 Assistant Professor, Electronics and Communications Engineering Department, De La Salle University, Manila, Philippines, [email protected] 3 Associate Professor, Mechanical Engineering Department, De La Salle University, Manila, Philippines, [email protected] Abstract: Research in the Unmanned Aerial Vehicle (UAV) has grown rapidly in the past two decades, especially research focusing on quadrotor UAV. Quadrotors are known to be manoeuvrable and have been found to handle many different types of missions, thus giving the quadrotor an advantage in most research works. In this paper, the study focuses on the payload drop for quadrotor that uses a PID controller. Ideally, a payload drop is theoretically a disturbance in the altitude stability of the UAV. However, due to the slight differences in the values of the parameters of the quadrotor components and its placement and alignment, such payload drop affects not only its altitude but also its x- and ydisplacements as well as its roll and pitch motions. A PID controller will be implemented to study the effect of payload drop for two different payload drop scenarios with different height set points Keywords: Quadrotor UAV, Payload Drop, PID Controller 1. Introduction Unmanned Aerial Vehicles (UAV) are aerial vehicles with no direct human control inside the vehicle. UAV flight control is done by varying the speed of the rotor blades. This change in rotor speed generates different maneuvers and movements. UAV can be used with several mission, from civil mission like agriculture, mapping area or weather system mapping, or military mission in the controlling area, preventive mission or war attack. UAV have several types to support missions and have opportunity in each purpose of UAV missions. Generally, there are three types of UAV, Fixed wing, Rotor UAV, and Insect-like UAV. Fixed wing UAV have advantages in its simple mechanical construction but cannot perform hovering like helicopter. Rotor UAVs use rotors as flight mechanism with speed variety in rotors. Rotor UAVs come in many forms such as single, axial and co axial propeller design, tandem, quadrotor, hexarotor, and octorotor. Insect-like UAV designs come from nature and adapted animal flight mechanism [1,2]. This research paper focuses on the use of a quadrotor UAV, a UAV having four rotors. One of the important parts in any UAV to support its missions is its control system. Control systems in the UAV are implemented in various forms. This research paper focuses in using the Proportional Integral Derivative (PID) controller to stabilize its altitude and attitude. Many research works have employed the use of PID controllers in their quadrotor missions [3, 4, 5]. PID as a method to control a quadrotor provides advantages in terms of its simple implementation and the accuracy of results. One possible application of extending the robustness of a PID controller is in the use of a quadrotor accomplishing a payload mission [6]. In a payload mission, a quadrotor with its load still attached is seen by the PID controller as a heavy body thus requiring more upward thrust to attain a desired altitude. Once the payload is released, the quadrotor will reach a higher altitude, thus overshooting on its desired height. The PID controller must monitor this overshoot and quickly compensates for this and return the quadrotor to its desired height by lowering the upward thrust through slowing the speed of the brushless DC motor (BLDC). 2. Quadrotor Model The quadrotor operated is a Xaircraft UAV brought from a local Philippine hobby shop while the different sensors were purchased from Egizmo, a local electronics shop. 155 RCMME 2014 9th & 10th October 2014, HUST, Hanoi, Vietnam Fig. 1 depicts a quadrotor showing its upward thrusts (T1, T2, T3 and T4) and gravity affecting it. The quadrotor is able to translate along its x-, yand z-axes as well as perform roll, pitch and yaw rotations along the x-, y- and z-axis respectively. 3. Payload Drop Mission Payload mission of quadrotor already researched by many researchers [6,9]. A quadrotor with a payload may have many and different drop points. Such scenario happens in a disasterstricken area where multiple evacuation centers or base stations are established and multiple items need be delivered. Fig. 1 Quadrotor Model [7] Table 1 shows the quadrotor and controller parameters used. Table 1. Quadrotor and Controller Parameter Parameter Value Size (diameter) Mass Gravitational Acceleration (g) ESC Gain where Ii=1,2,3 are moments of inertia along its axis of rotation. Ti=1,2,3,4 are upward thrust forces, l radius of wing length, and C is the force-tomoment scaling ratio. From these equations, one can determine that the quadrotor is an under-actuated type of UAV since there are only four actuations that control six variables (position vector and rotation angles). 570 mm 2.15 kg 9.81 m/s2 .0681 N/PWM The essence of a payload drop mission is that the UAV / quadrotor can drop a payload without vertically landing and taking off (VTOL). The quadrotor will just pass a waypoint, drop the payload and continue proceeding to the next waypoint, or just return to the starting point. The payload of Quadrotor UAV can be shown in the figure 2. The equation of motion of each axis is derived by using force and moment balance and is shown in Equation (1) [8]. The Ki’s represent the drag coefficients. This can be reduced to zero if the system under study is at low speed. ­ °x ° ° ° y ° ° °z ° ° ° ®u1 ° ° °T ° ° °\ ° ° °M °¯ ½ u1 (cos M sin T cos\  sin M sin \ )  K 1 1x ° ° m ° u1 (sin M sin T cos\  cos M sin \ )  K 2 y ° ° m °  u1 (cos M cos\ )  mg  K 3 z ° ° (1) m ° 4 ° F ¾ ¦ i i 1 ° ° l  T2  T4  K 4T ° I1 ° ° l T1  T3  K 5\ ° I2 ° °  C (T1  T2  T3  T4 )  K 6M ° °¿ I3 Fig. 2 Payload of Quadrotor 4. Development of Quadrotor Model in Matlab Simulink In order to demonstrate the proposed PID controller for a payload drop, the theoretical quadrotor dynamics was modeled using Matlab Simulink. The Matlab Simulink Model is shown in Fig. 3 below. The left side of the figure denotes the constant inputs to the quadrotor system such as gravity, mass, torque, etc. The “Plant” block denotes the quadrotor dynamics while the “Controller” block depicts the PID controllers for altitude and attitude stabilization. The feedback blocks measures the current quadrotor angles and height. 5. Simulation Results The simulation parameters are set by the following parameters: height and payload mass. The quadrotor is assumed to undergo both static, one-time dropping of payload and dynamic 156 RCMME 2014 9th & 10th October 2014, HUST, Hanoi, Vietnam loading, i.e. at a certain desired altitude and time, the payload mass is gradually dropped. It is expected that the quadrotor will experience an increase in its altitude and thus expected to return to the desired height as quick as possible. payload drop happens after every 10 seconds starting from t = 0 sec. It must be intuitively be concluded that before another payload drop takes place, the quadrotor has settled to its desired altitude. Various PID constants were tested and it has been found out that the best controller gains are derived from the following assumed constants: Kp (200,250,300,350,400), Ki (175,200,225), and Kd (100,125,150,175,200). We have obtained the middle value of the average set through tuning, based on it having a result with an overshoot of at most 5% and a settling time of at most 5 seconds. In one of the simulation experiments, dropping the payload follows this scenario. Originally, the quadrotor is carrying a payload mass of 2kg. At t = 10 sec, the quadrotor drops 0.5 kg of mass making its payload equal to 1.5kg. At t = 20 sec, it reduces its payload by another 0.5 kg. This will be done until t = 40sec when the quadrotor no longer has a payload mass to carry. Fig. 3 Quadrotor Simulation Notice that from Fig. 5, within the time frame of 10 seconds, once a payload mass was dropped, a visible overshoot takes place. However, it can also be seen that the quadrotor was capable of returning to its desired height before another payload drop is to take place. Different parameter of Kp, Ki, and Kd also give the different result as simulation using dynamic loading. Static loading simulation gain after get the best value of Kp, Ki, and Kd from dynamic loading simulation as shows in the figure 5. (b). with the best parameter and payload 2 kg. The simulation results for the combination of the above coefficients are shown Fig. 4. The certain payload is 2 kg and height 5 m. The deciding factors in determining the optimal PID coefficients are based on overshoot and settling time. For this simulation, the criteria we have seen fit is the parameters producing the least overshoot with a settling time of less than 4 seconds. With these set criteria, from Fig. 4, we choose dot number 42. The combination of the PID constants is given to be: Kp = 300, Ki = 225, and Kd = 125, with overshoot 4.4 % and 3.41 second settling time. Figure 5. (a). illustrates the results when the quadrotor is subjected to dynamic loading. The 6. Conclusions Implementation of PID controller in the payload drop mission of Quadrotor has been obtained. The general parameters for this simulation use variety of payload from 0.5 kg, 1 kg, 1.5 kg, and 2 kg. 157 RCMME 2014 9th & 10th October 2014, HUST, Hanoi, Vietnam Fig. 4 Simulation using different parameter Kp, Ki, and Kd Flight test vary from 2 m, 3 m, 4 m, and 5 m. The result bases from time settling of quadrotor UAV after take-off and drop the payload. During takeoff, quadrotor oscillate before reach settle position. Quadrotor also oscillate after drop the payload. Settling time influenced by the value of Kp, Ki, and Kd. The best result given with overshoot less than 5% and settling time less than 4%. Future study can be focus in the optimization of PID controller in the payload drop mission with different parameters and can be induced noisy to the system. Another way, different controller also can improve the quadrotor movement and payload drop mission. Acknowledgements We would like to thank De La Salle University, ERDT and AUN SEED NET JICA for support and funding source of this paper. 7. References [1] Bouabdallah, S., & Siegwart, R. (2007). Design and control of a miniature quadrotor (pp. 171-210). Springer Netherlands. [2] Ratti, J., & Vachtsevanos, G. (2011, March). Towards energy efficiency in micro hovering air vehicles. In Aerospace Conference, 2011 IEEE (pp. 18). IEEE. [3] Salih, A. L., Moghavvemi, M., Mohamed, H. A., & Gaeid, K. S. (2010, May). Modelling and PID controller design for a quadrotor unmanned air vehicle. InAutomation Quality and Testing Robotics (AQTR), 2010 IEEE International Conference on (Vol. 1, pp. 15). IEEE. [4] Luong Tuan, L., & Won, S. (2013, October). PID based sliding mode controller design for the micro quadrotor. In Control, Automation and Systems (ICCAS), 2013 13th International Conference on (pp. 1860-1865). IEEE. [5] Yang, J., Cai, Z., Lin, Q., & Wang, Y. (2013, November). Self-tuning pid control design for quadrotor uav based on adaptive pole placement control. In Chinese Automation Congress (CAC), 2013 (pp. 233-237). IEEE. [6] Palunko, I., Fierro, R., & Cruz, P. (2012, May). Trajectory generation for swing-free maneuvers of a quadrotor with suspended payload: A dynamic programming approach. In Robotics and Automation (ICRA), 2012 IEEE International Conference on (pp. 2691-2697). IEEE. [7] P. Corke, Robotics, Vision and Control Fundamental Algorithms in MATLAB®, Springer 2011, pp 78–83. 158 RCMME 2014 9th & 10th October 2014, HUST, Hanoi, Vietnam (a) (b) Fig. 5 Payload drop of Quadrotor UAV a. Dynamic load, b. Static load [8] Altug, E., Ostrowski, J. P., & Mahony, R. (2002). Control of a quadrotor helicopter using visual feedback. In Robotics and Automation, 2002. Proceedings. ICRA'02. IEEE International Conference on (Vol. 1, pp. 72-77). IEEE. [9] Sadeghzadeh, I., Abdolhosseini, M., & Zhang, Y. M. (2012). Payload drop application of unmanned quadrotor helicopter using gain-scheduled PID and model predictive control techniques. In Intelligent Robotics and Applications(pp. 386-395). Springer Berlin Heidelberg. 159