MATHEMATI CAL METHODS I N
THE PHYSI CAL SCI ENCES
Thi r d Edi t i on
MARY L . BOAS
DePaul Uni ver si t y
CONTENTS
1
I NFI NI TE SERI ES, POW
ER SERI ES
7
1.
The Geomet r i c Ser i es
2.
3.
Def i ni t i ons and Not at i on
4
Appl i cat i ons of Ser i es
6
Conver gent and Di ver gent Ser i es
6
Test i ng Ser i es f or Conver gence ; t he Pr el i mi nar y Test
9
Conver gence Test s f or Ser i es of Posi t i ve Ter ms : Absol ut e Conver gence
A. The Compar i son Test
10
4.
5.
6.
B. The I nt egr al Test
C. The Rat i o Test
7.
8.
1
11
13
D. A Speci al Compar i son Test
Al t er nat i ng Ser i es
17
15
9.
10 .
Condi t i onal l y Conver gent Ser i es
18
Usef ul Fact s About Ser i es
19
Power Ser i es ; I nt er val of Conver gence
11 .
12 .
Theor ems About Power Ser i es
23
Expandi ng Funct i ons i n Power Ser i es
13 .
20
23
Techni ques f or Obt ai ni ng Power Ser i es Expansi ons
25
A. Mul t i pl yi ng a Ser i es by a Pol ynomi al or by Anot her Ser i es
B . Di vi si on of Two Ser i es or of a Ser i es by a Pol ynomi al
27
26
10
xi v
Cont ent s
28
C. Bi nomi al Ser i es
D. Subst i t ut i on of a Pol ynomi al or a Ser i es f or t he Var i abl e i n Anot her
Ser i es
29
E. Combi nat i on of Met hods
30
F. Tayl or Ser i es Usi ng t he Basi c Macl aur i n Ser i es
G. Usi ng a Comput er
14.
15 .
Accur acy of Ser i es Appr oxi mat i ons
Some Uses of Ser i es
36
16 .
Mi scel l aneous Pr obl ems
2
30
31
33
44
COMPLEX NUMBERS
1.
2.
3.
4.
5.
46
I nt r oduct i on
46
Real and I magi nar y Par t s of a Compl ex Number
The Compl ex Pl ane
47
Ter mi nol ogy and Not at i on
Compl ex Al gebr a
51
47
49
A. Si mpl i f yi ng t o x+i y f or m
51
B. Compl ex Conj ugat e of a Compl ex Expr essi on
C. Fi ndi ng t he Absol ut e Val ue of z
53
D. Compl ex Equat i ons
54
6.
E. Gr aphs
54
F. Physi cal Appl i cat i ons
Compl ex I nf i ni t e Ser i es
7.
8.
Compl ex Power Ser i es ; Di sk of Conver gence
El ement ar y Funct i ons of Compl ex Number s
9.
10 .
11 .
12 .
13 .
14.
15 .
16 .
17 .
3
1.
2.
3.
55
56
Eul er ' s For mul a
61
Power s and Root s of Compl ex Number s
64
The Exponent i al and Tr i gonomet r i c Funct i ons
Hyper bol i c Funct i ons
70
Logar i t hms
52
58
60
67
72
Compl ex Root s and Power s
73
I nver se Tr i gonomet r i c and Hyper bol i c Funct i ons
Some Appl i cat i ons
76
Mi scel l aneous Pr obl ems
80
74
LI NEAR ALGEBRA
I nt r oduct i on
82
82
4.
5.
Mat r i ces; Row Reduct i on
83
Det er mi nant s ; Cr amer ' s Rul e
89
Vect or s
96
Li nes and Pl anes
106
6.
Mat r i x Oper at i ons
7.
8.
9.
10 .
Li near Combi nat i ons, Li near Funct i ons, Li near Oper at or s
Li near Dependence and I ndependence
132
Speci al Mat r i ces and For mul as
137
Li near Vect or Spaces
142
11 .
12 .
Ei genval ues and Ei genvect or s ; Di agonal i zi ng Mat r i ces
Appl i cat i ons of Di agonal i zat i on
162
114
124
148
Cont ent s <, x v
13 .
14.
A Br i ef I nt r oduct i on t o Gr oups
Gener al Vect or Spaces
179
15 .
Mi scel l aneous Pr obl ems
4
184
PARTI AL DI FFERENTI ATI ON
1.
2.
3.
4.
188
I nt r oduct i on and Not at i on
188
Power Ser i es i n Two Var i abl es
191
Tot al Di f f er ent i al s
193
Appr oxi mat i ons usi ng Di f f er ent i al s
196
5.
6.
Chai n Rul e or Di f f er ent i at i ng a Funct i on of a Funct i on
I mpl i ci t Di f f er ent i at i on
202
7.
8.
Mor e Chai n Rul e
203
Appl i cat i on of Par t i al Di f f er ent i at i on t o Max i mum and Mi ni mum
Pr obl ems
211
199
9.
10.
Max i mumand Mi ni mum Pr obl ems wi t h Const r ai nt s ; Lagr ange Mul t i pl i er s
Endpoi nt or Boundar y Poi nt Pr obl ems
223
11 .
12.
Change of Var i abl es
228
Di f f er ent i at i on of I nt egr al s ; Lei bni z' Rul e
13 .
Mi scel l aneous pr obl ems
5
6
233
MULTI PLE I NTEGRALS
241
I nt r oduct i on
241
Doubl e and Tr i pl e I nt egr al s
3.
4.
Appl i cat i ons of I nt egr at i on ; Si ngl e and Mul t i pl e I nt egr al s
258
Change of Var i abl es i n I nt egr al s ; Jacobi ans
5.
6.
Sur f ace I nt egr al s
242
6.
7.
8.
9.
249
270
Mi scel l aneous Pr obl ems
273
VECTOR ANALYSI S
1 . I nt r oduct i on
276
2 . Appl i cat i ons of Vect or Mul t i pl i cat i on
4.
5.
Tr i pl e Pr oduct s
278
Di f f er ent i at i on of Vect or s
276
276
285
Fi el ds
289
290
Di r ect i onal Der i vat i ve ; Gr adi ent
296
Some Ot her Expr essi ons I nvol vi ng V
10 .
11 .
Li ne I nt egr al s
299
309
Gr een' s Theor em i n t he Pl ane
The Di ver gence and t he Di ver gence Theor em
324
The Cur l and St okes' Theor em
12 .
Mi scel l aneous Pr obl ems
314
336
FOURI ER SERI ES AND TRANSFORMS
I nt r oduct i on
340
Si mpl e Har moni c Mot i on and Wave Mot i on ; Per i odi c Funct i ons
345
3 . Appl i cat i ons of Four i er Ser i es
4 . Aver age Val ue of a Funct i on
347
1.
2.
214
238
1.
2.
3.
7
172
340
340
xvi C> Cont ent s
5.
6.
Four i er Coef f i ci ent s
Di r i chl et Condi t i ons
7.
8.
Compl ex For m of Four i er Ser i es
Ot her I nt er val s
360
Even and Odd Funct i ons
364
9.
350
355
10 .
11 .
An Appl i cat i on t o Sound
Par seval ' s Theor em
375
12 .
Four i er Tr ansf or ms
13 .
Mi scel l aneous Pr obl ems
8
358
372
378
386
ORDI NARY DI FFERENTI AL EQUATI ONS
1.
2.
I nt r oduct i on
390
390
3.
Separ abl e Equat i ons
395
Li near Fi r st - Or der Equat i ons
4.
Ot her Met hods f or Fi r st - Or der Equat i ons
5.
Second- Or der Li near Equat i ons wi t h Const ant Coef f i ci ent s and Zer o Ri ght - Hand
Si de
408
6.
Second- Or der Li near Equat i ons wi t h Const ant Coef f i ci ent s and Ri ght - Hand Si de
Not Zer o
417
Ot her Second- Or der Equat i ons
430
7.
8.
9.
10 .
11 .
12 .
13 .
9
401
404
The Lapl ace Tr ansf or m
437
Sol ut i on of Di f f er ent i al Equat i ons by Lapl ace Tr ansf or ms
Convol ut i on
444
The Di r ac Del t a Funct i on
449
A Br i ef I nt r oduct i on t o Gr een Funct i ons
Mi scel l aneous Pr obl ems
466
440
461
CALCULUS OF VARI ATI ONS
472
1.
I nt r oduct i on
2.
3.
The Eul er Equat i on
474
Usi ng t he Eul er Equat i on
478
The Br achi st ochr one Pr obl em; Cycl oi ds
482
Sever al Dependent Var i abl es ; Lagr ange' s Equat i ons
I soper i met r i c Pr obl ems
491
4.
5.
6.
7.
8.
10
1.
2.
3.
4.
5.
6.
7.
8.
9.
472
Var i at i onal Not at i on
Mi scel l aneous Pr obl ems
485
493
494
TENSOR ANALYSI S
496
I nt r oduct i on
496
Car t esi an Tensor s
498
Tensor Not at i on and Oper at i ons
502
I ner t i a Tensor
505
Kr onecker Del t a and Levi - Ci vi t a Symbol
Pseudovect or s and Pseudot ensor s
514
Mor e About Appl i cat i ons
518
Cur vi l i near Coor di nat es
508
521
Vect or Oper at or s i n Or t hogonal Cur vi l i near Coor di nat es
525
Cont ent s zyxwvutsrqponmlkjihgfedcbaZYXWVUT
" ' xvi i
10 .
11 .
11
1.
2.
3.
4.
5.
6.
7.
8.
9.
Non- Car t esi an Tensor s
Mi scel l aneous Pr obl ems
529
535
SPECI AL FUNCTI ONS
I nt r oduct i on
537
537
The Fact or i al Funct i on
538
Def i ni t i on of t he Gamma Funct i on ; Recur si on Rel at i on
The Gamma Funct i on of Negat i ve Number s
540
Some I mpor t ant For mul as I nvol vi ng Gamma Funct i ons
Bet a Funct i ons
Bet a Funct i ons i n Ter ms of Gamma Funct i ons
The Si mpl e Pendul um
545
Er
r
or
The
Funct i on
547
Asympt ot i c Ser i es
11 .
12 .
St i r l i ng' s For mul a
552
El l i pt i c I nt egr al s and Funct i ons
13 .
Mi scel l aneous Pr obl ems
543
549
554
560
SERI ES SOLUTI ONS OF DI FFERENTI AL EQUATI ONS;
LEGENDRE, BESSEL,
FUNCTI ONS
HERMI TE,
AND LAGUERRE
562
1.
2.
I nt r oduct i on
562
Legendr e' s Equat i on
3.
4.
Lei bni z' Rul e f or Di f f er ent i at i ng Pr oduct s
Rodr i gues' For mul a
568
5.
6.
Gener at i ng Funct i on f or Legendr e Pol ynomi al s
575
Compl et e Set s of Or t hogonal Funct i ons
7.
Or t hogonal i t y of t he Legendr e Pol ynomi al s
Nor mal i zat i on of t he Legendr e Pol ynomi al s
Legendr e Ser i es
580
8.
9.
564
567
569
577
578
10 .
11 .
12 .
The Associ at ed Legendr e Funct i ons
583
Gener al i zed Power Ser i es or t he Met hod of Fr obeni us
13 .
590
591
Gr aphs and Zer os of Bessel Funct i ons
Recur si on Rel at i ons
592
Di f f er ent i al Equat i ons wi t h Bessel Funct i on Sol ut i ons
14 .
15 .
16 .
17 .
18 .
19 .
20 .
21 .
22 .
23 .
541
542
10 .
12
538
585
Bessel ' s Equat i on
587
The Second Sol ut i on of Bessel ' s Equat i on
593
Ot her Ki nds of Bessel Funct i ons
595
Pendul
um
598
The Lengt heni ng
Or t hogonal i t y of Bessel Funct i ons
601
Appr oxi mat e For mul as f or Bessel Funct i ons
604
605
Ser i es Sol ut i ons ; Fuchs' s Theor em
Her mi t e Funct i ons ; Laguer r e Funct i ons ; Ladder Oper at or s
Mi scel l aneous Pr obl ems
615
607
xvi i i
13
Cont ent s
PARTI AL DI FFERENTI AL EQUATI ONS
619
1.
2.
I nt r oduct i on
619
Lapl ace' s Equat i on ; St eady- St at e Temper at ur e i n a Rect angul ar Pl at e
3.
The Di f f usi on or Heat Fl ow Equat i on ; t he Schr 6di nger Equat i on
The Wave Equat i on ; t he Vi br at i ng St r i ng
633
4.
5.
St eady- st at e Temper at ur e i n a Cyl i nder
638
6.
7.
Vi br at i on of a Ci r cul ar Membr ane
644
St eady- st at e Temper at ur e i n a Spher e
647
8.
9.
Poi sson' s Equat i on
652
I nt egr al Tr ansf or m Sol ut i ons of Par t i al Di f f er ent i al Equat i ons
10 .
14
Mi scel l aneous Pr obl ems
FUNCTI ONS OF A COMPLEX VARI ABLE
I nt r oduct i on
2.
3.
Anal yt i c Funct i ons
Cont our I nt egr al s
4.
5.
Laur ent Ser i es
678
The Resi due Theor em
6.
7.
Met hods of Fi ndi ng Resi dues
683
Eval uat i on of Def i ni t e I nt egr al s by Use of t he Resi due Theor em
8.
9.
The Poi nt at I nf i ni t y ; Resi dues at I nf i ni t y
Mappi ng
705
Some Appl i cat i ons of Conf or mal Mappi ng
Mi scel l aneous Pr obl ems
718
15
2.
Sampl e Space
Pr obabi l i t y Theor ems
7.
8.
9.
10.
11 .
667
674
682
687
702
710
PROBABI LI TY AND STATI STI CS
I nt r oduct i on
5.
6.
666
666
1.
3.
4.
659
663
1.
10 .
11 .
621
628
722
722
724
Met hods of Count i ng
729
736
Random Var i abl es
744
Cont i nuous Di st r i but i ons
750
Bi nomi al Di st r i but i on
756
The Nor mal or Gaussi an Di st r i but i on
761
The Poi sson Di st r i but i on
767
St at i st i cs and Exper i ment al Measur ement s
Mi scel l aneous Pr obl ems
776
770
REFERENCES
779
ANSW
ERS TO SELECTED PROBLEMS
781
I NDEX
al l