1
2
3
47
6
Journal of Integer Sequences, Vol. 21 (2018),
Article 18.4.1
23 11
On Two New Classes of B-q-bonacci
Polynomials
Suchita Arolkar
Department of Mathematics and Statistics
Dnyanprassarak Mandal’s College and Research Centre
Assagao Bardez Goa
403 507, India
[email protected]
Yeshwant Shivrai Valaulikar
Department of Mathematics
Goa University
Taleigao Plateau Goa
403 206, India
[email protected]
Abstract
In this paper we define two new classes of polynomials associated with generalized Fibonacci polynomials. We call them h(x)-B-q-bonacci polynomials and incomplete h(x)-B-q-bonacci polynomials. We present some identities for the two classes
of polynomials, and the convolution property of h(x)-B-q-bonacci polynomials and its
applications.
1
Introduction
The Fibonacci sequence, polynomials associated with the Fibonacci sequence, and their extended forms produce interesting and fascinating properties. For details see [8, 14]. Arolkar
and Valaulikar introduced the B-tribonacci sequence [2] and B-tribonacci polynomials [1].
1
The B-tribonacci sequence [2] and B-tribonacci polynomials [1] are further extended to q th
order recurrence relations in [5] and [6] respectively. Arolkar and Valaulikar extended and
studied the h(x)-Fibonacci polynomials [9] to h(x)-B-tribonacci polynomials [3]. Filipponi
[7] introduced the incomplete Fibonacci and Lucas numbers. Ramı́rez [11] studied various identities related to the incomplete k-Fibonacci and k-Lucas numbers. Ramı́rez [13]
introduced interesting classes of polynomials, namely, the incomplete h(x)-Fibonacci and
h(x)-Lucas polynomials. Arolkar and Valaulikar [4] extended the incomplete h(x)-Fibonacci
and h(x)-Lucas polynomials. Ramı́rez and Sirvent [12] defined and studied identities related
to the incomplete tribonacci numbers and polynomials. Yilmaz and Taskara [10] obtained
identities for the incomplete tribonacci-Lucas numbers and polynomials.
The aim of this paper is to extend two classes of polynomials, namely, the h(x)-Btribonacci polynomials [3] and incomplete h(x)-B-tribonacci polynomials of [4] to the q th
order relations. We call them the h(x)-B-q-bonacci polynomials and incomplete h(x)-B-qbonacci polynomials. We study some properties of these polynomials.
2
h(x)-B-q-bonacci polynomials
We first define the class of h(x)-B-q-bonacci polynomials.
Definition 1. Let h(x) be a polynomial with real coefficients. The h(x)-B-q-bonacci polynomials, denoted by (q B)h,n (x), n ∈ N ∪ {0}, q ≥ 2, are defined by
(q B)h,n+q−1 (x) =
q−1
X
(q − 1)r
r=0
r!
hq−1−r (x)(q B)h,n+q−2−r (x), ∀n ≥ 1,
(1)
with (q B)h,i (x) = 0, i = 0, 1, 2, 3, . . . , q − 2 and (q B)h,q−1 (x) = 1, where the coefficients of
the terms on the right-hand side are the terms of the binomial expansion of (h(x) + 1)q−1
and (q B)h,n (x) is the nth polynomial.
For simplicity, henceforth we denote (q B)h,n (x) by (q B)h,n and h(x) by h. We have the
following identities for (q B)h,n .
(1) The nth term (q B)h,n of (1) is given by
q
( B)h,n =
⌋
⌊ (q−1)(n−(q−1))
q
X
r=0
((q − 1) (n − (q − 1) − r))r (q−1)(n−(q−1)−r)−r
h
,
r!
n ≥ q − 1, where ⌊·⌋ denotes the floor function.
Proof. We prove the identity using induction on n.
2
(2)
For n = q − 1, (2) implies
q
( B)h,q−1 =
0
X
((q − 1) (−r))r
r!
r=0
h(q−1)(−r)−r = 1.
Hence (2) is true for n = q − 1. Assume that (2) is true for n ≤ m. We divide the
result into q cases, namely, m = qk, qk + 1, qk + 2, . . . , qk + (q − 1), for some k ≥ 1.
k
j
. Then
Case (i): Let m = qk and t = (q−1)(qk−s−(q−1))
q
q−1
X
(q − 1)s
s=0
q−1
=
=
s!
t
X (q − 1)s X
((q − 1) (qk − (q − 1) − (r + s)))r (q−1)(qk+1−(q−1)−(r+s))−(r+s)
h
s!
r!
r=0
s=0
q−1
X
(q − 1)s
(q − 1)0
0!
(q − 1)1
+
1!
+
=
(q−1)k−(q−2)
X
s!
s=0
=
hq−1−s (q B)h,qk−s
p=s
(q−1)k−(q−2)
X
p=0
(q−1)k−(q−2)
X
p=1
((q − 1) (qk − (q − 1) − p))p
p!
((q − 1) (qk − (q − 1) − p))p−1
+ ···
(p − 1)!
(q−1) (q−1)k−(q−2)
X
(q − 1)
(q − 1)!
p=q−1
((q − 1) (qk − (q − 1) − p))p−s (q−1)(qk+1−(q−1)−p)−p
h
(p − s)!
((q − 1) (qk − (q − 1) − p))p−(q−1) (q−1)(qk+1−(q−1)−p)−p
h
(p − (q − 1))!
((q − 1) (qk − (q − 1)))0
0!
!
((q − 1) (qk − (q − 1) − 1))1 (q − 1)1 ((q − 1) (qk − (q − 1) − 1))0
+ ···
+
+
1!
1!
0!
!
(q−1)k−(q−2) q−1
X
X (q − 1)s ((q − 1) (qk − (q − 1) − p))p−s
+
h(q−1)(qk+1−(q−1)−p)−p .
s!
(p
−
s)!
p=q−1
s=0
3
Therefore, using
(q−1)s np−s
s=0
s!
(p−s)!
Pq−1
q−1
X
(q − 1)s
s!
s=0
X
p=0
q
(n+(q−1))p
,
p!
we have
hq−1−s (q B)h,qk−s
(q−1)k−(q−2)
=
=
((q − 1) (qk + 1 − (q − 1) − p))p (q−1)(qk+1−(q−1)−p)−p
h
p!
= ( B)h,qk+1 .
Thus, assuming the result for m = qk, we have proved it for m = qk + 1. Similarly, we
can prove the other cases.
Pq−1 (q−1)s q−1−s q
We conclude that s=0
h
( B)h,m−s = (q B)h,m+1 .
s!
Hence, by induction, the result follows.
(2) The sum of the first n + 1 terms of (1) is given by
Pq−2 Pq−1 (q−1)r q−1−r q
n
X
(q B)h,n+1 + i=0
h
( B)h,n−i − 1
r=1+i
q
r!
( B)h,r =
,
q−1
(h
+
1)
−
1
r=0
(
h 6= 0,
if q is even;
provided
h 6= 0, −2, if q is odd.
Proof. We obtain the result by induction on n. For n = q − 1,
(q B)h,q−1 = 1. Also,
Pq−2 Pq−1 (q−1)r q−1−r q
(q B)h,q + i=0
h
( B)h,q−1−i − 1
r=1+i
r!
q−1
(h + 1)
−1
P
r
q−1
(q−1)
hq−1 + r=1 r! hq−1−r (q B)h,q−1 − 1
= 1.
=
(h + 1)q−1 − 1
Pq−1
r=0 (
(3)
q
Thus, (3) is true for n = q − 1.
Assume that (3) is true for n ≤ m. Then
m+1
X
r=0
=
=
q
( B)h,r =
m
X
(q B)h,r + (q B)h,m+1
r=0
(q B)h,m+1 +
(q B)h,m+2 +
Pq−2 Pq−1
i=0
(h +
Pq−2 Pq−1
i=0
(q−1)r
r!
1)q−1 −
r=1+i
r=1+i
(h +
hq−1−r (q B)h,m−i − 1
+ (q B)h,m+1
1
(q−1)r
hq−1−r
r!
1)q−1 − 1
(q B)h,m+1−i − 1
.
Thus, the result is true for n = m + 1. Hence by induction the result follows.
4
B)h,r =
(3) The generating function for (1) is given by
(q G(B) )h (z) =
1
,
1 − z(h + z)q−1
(4)
provided |(z(h + z)q−1 )| < 1.
Proof. Let t =
j
(q−1)(n−(q−1))
q
k
∞
X
( G(B) )h (z) =
(q B)h,n z n−(q−1)
q
n=0
q−2
∞
X
X
q
n−(q−1)
( B)h,n z
+
(q B)h,n z n−(q−1)
=
=
n=0
∞
X
n=q−1
(q B)h,n z n−(q−1) , since (q B)h,i = 0, i = 0, 1, 2, 3, . . . , q − 2
n=q−1
∞ X
t
X
((q − 1) (n − (q − 1) − r))r (q−1)(n−(q−1)−r)−r n−(q−1)
=
h
z
r!
n=q−1 r=0
(q − 1)1 q−2 2
q−1
2(q−1)
=1+h z+ h
+
z + ...
h
1!
= 1 + z(h + z)q−1 + z 2 (h + z)2(q−1) + . . .
1
=
, provided |(z(h + z)q−1 )| < 1.
q−1
1 − z(h + z)
We now obtain the following property.
Theorem 2. (Convolution property for (q B)h,n )
For all n ≥ q − 1, we have
dh
d q
(( B)h,n ) = (q − 1)
dx
dx
q−2
X
(q − 2)r
r=0
r!
n+q−2−r
h(q−2)−r
X
(q B)h,i (q B)h,n+q−2−r−i
i=0
Proof. Equation (4) implies
∞
X
(q B)h,n z n−(q−1) =
n=0
5
1
.
1 − z(h + z)q−1
!
.
(5)
Differentiating both sides with respect to x, we get
∞
X
dh
d q
1
(( B)h,n ) z n−(q−1) = z(q − 1)(h + z)q−2
2
dx
(1 − z(h + z)q−1 ) dx
n=0
!2
q−2
∞
r
X
X
(q − 2) (q−2)−r r+1
dh
= (q − 1)
h
z
(q B)h,n z n−(q−1)
r!
dx
r=0
n=0
!2
q−2
∞
r
X
X
dh
(q − 2) (q−2)−r −2(q−1)+r+1
h
z
(q B)h,n z n
= (q − 1)
r!
dx
n=0
r=0
q−2
∞
n
dh X (q − 2)r (q−2)−r X X q
h
= (q − 1)
( B)h,i (q B)h,n−i z n−2(q−1)+r+1
dx r=0
r!
n=0
i=0
!
.
Comparing the coefficients of z n−(q−1) , we get
q−2
X
(q − 2)r
dh
d q
(( B)h,n ) = (q − 1)
dx
dx
r=0
r!
n+q−2−r
h(q−2)−r
X
(q B)h,i (q B)h,n+q−2−r−i
i=0
!
.
We now give an application of the convolution property. It is required to prove an identity
in the next section.
Theorem 3. For n ≥ q − 1,
⌋
⌊ (q−1)(n−(q−1))
q
X
r
r=0
((q − 1)(n − (q − 1) − r))r (q−1)(n−(q−1))−qr
h
r!
=
(q − 1) (n − (q − 1)) q
( B)h,n
q
q−2
X
h
(q − 2)r (q−2)−r
− (q − 1)
h
q
r!
r=0
n+q−2−r
X
i=0
(q B)h,i (q B)h,n+q−2−r−i
!
.
Proof. Equation (2) implies
(q B)h,n =
⌋
⌊ (q−1)(n−(q−1))
q
X
r=0
((q − 1)(n − (q − 1) − r))r (q−1)(n−(q−1))−qr
h
.
r!
6
(6)
Differentiating both sides with respect to x and simplifying, we get
dh
d q
( B)h,n h = ((q − 1)(n − (q − 1))) (q B)h,n
dx
dx
(q−1)(n−(q−1))
⌊
⌋
q
X
dh
((q − 1)(n − (q − 1) − r))r (q−1)(n−(q−1))−qr
h
.
−q
r
dx
r!
r=0
Thus,
dh
dx
=
⌋
⌊ (q−1)(n−(q−1))
q
X
r
r=0
((q − 1)(n − (q − 1) − r))r (q−1)(n−(q−1))−qr
h
r!
dh h d q
(q − 1)(n − (q − 1)) q
( B)h,n
−
(( B)h,n ) .
q
dx q dx
Hence (5) implies
⌊ (q−1)(n−(q−1))
⌋
q
X
r
r=0
((q − 1)(n − (q − 1) − r))r (q−1)(n−(q−1))−qr
h
r!
(q − 1)(n − (q − 1)) q
=
( B)h,n
q
q−2
X
(q − 2)r (q−2)−r
h
h
− (q − 1)
q
r!
r=0
3
n+q−2−r
X
(q B)h,i (q B)h,n+q−2−r−i
i=0
!
.
Incomplete h(x)-B-q-bonacci Polynomials
In this section we define the class of incomplete h(x)-B-q-bonacci polynomials and discuss
some of its properties.
Definition 4. The incomplete h(x)-B-q-bonacci polynomials are defined by
(
q
B)lh,n (x)
=
l
X
((q − 1)(n − (q − 1) − r))r
r!
r=0
(q − 1)(n − (q − 1))
∀0≤l≤
q
7
h(q−1)(n−(q−1)−r)−r (x),
and n ≥ q − 1.
(7)
⌋
⌊ (q−1)(n−(q−1))
q
(x) = (q B)h,n (x).
Note that (q B)h,n
For simplicity, we use (q B)lh,n (x) = (q B)lh,n , (q B)h,n (x) = (q B)h,n and h(x) = h. We prove
identities related to the recurrence relation for (q B)lh,n .
Theorem 5. The recurrence relation for (q B)lh,n is given by
(
q
l+q−1
B)h,n+q
=
q−1
X
(q − 1)r
r!
r=0
h
q−1−r q
(
B)l+q−1−r
h,n+q−1−r ,
(q − 1)(n − q)
, ∀n ≥ q.
0≤l≤
q
Proof. Consider,
q−1
X
(q − 1)r
r=0
q−1
=
r!
hq−1−r (q B)l+q−1−r
h,n+q−1−r
X (q − 1)r
r=0
l+q−1−r
r!
hq−1−r
X ((q − 1)(n + q − 1 − r − (q − 1) − i))i
h(q−1)(n+q−1−r−(q−1)−i)−i
i!
i=0
=
q−1
X
(q − 1)r
r=0
=
h
l+q−1−r
q−1
X
(q − 1)r
r=0
=
r!
l+q−1−r
X ((q − 1)(n − r − i))i
h(q−1)(n−r)−qi
i!
i=0
X ((q − 1)(n − r − i))i
h(q−1)(n+1)−qr−qi
i!
i=0
r!
q−1
X
(q − 1)r
r=0
q−1−r
l+q−1−r
X ((q − 1)(n − (r + i)))i
h(q−1)(n+1)−q(r+i) .
i!
i=0
r!
Taking j = i + r, we get
q−1
X
(q − 1)r
r=0
q−1
r!
l+q−1−r
(q B)h,n+q−1−r
hq−1−r
X (q − 1)r l+q−1
X ((q − 1)(n − j))j−r
=
h(q−1)(n+1)−qj
r!
(j
−
r)!
r=0
j=r
l+q−1
=
X ((q − 1)(n + 1 − j))j
h(q−1)(n+1)−qj
j!
j=0
l+q−1
= (q B)h,n+q
.
8
(8)
Theorem 6. For s ≥ 1,
(q−1)s
(
0≤l≤
j
(q−1)(n−s−(q−1))
q
q
k
l+(q−1)s
B)h,n+qs
=
X ((q − 1)s)i
l+i
(q B)h,n+i
hi ,
i!
i=0
(9)
.
Proof. Follows using induction.
j
k
l+(q−1)
l+q−1
Theorem 7. For n ≥ ql+2(q−1)
, (q B)h,n+(q−1)+s − h(q−1)s (q B)h,n+q−1
q−1
=
q−1
s−1 X
X
(q − 1)r
r!
i=0 r=1
l+(q−1)−r
h(q−1)s−(q−1)i−r (q B)h,n+(q−1)+i−r .
(10)
Proof. Follows using induction.
The next theorem is related to the sum of incomplete h(x)-B-q-bonacci polynomials
( B)lh,n .
q
Theorem 8. For all n ≥ q − 1,
⌊ (q−1)(n−(q−1))
⌋
q
X
(
q
B)lh,n
l=0
=
(q − 1) (n − (q − 1))
q − (q − 1) (n − (q − 1)) q
+
( B)h,n
q
q
q−2
X
h
(q − 2)r (q−2)−r
+ (q − 1)
h
q
r!
r=0
Proof.
P⌊ (q−1)(n−(q−1))
⌋
q
l=0
n+q−2−r
X
(q B)h,i (q B)h,n+q−2−r−i
i=0
!
.
(11)
(q B)lh,n
⌋
⌊ (q−1)(n−(q−1))
q
= (q B)0h,n + (q B)1h,n + · · · + (q B)rh,n + · · · + (q B)h,n
((q − 1)(n − (q − 1)))0 (q−1)(n−(q−1))
h
0!
((q − 1)(n − (q − 1)))0 (q−1)(n−(q−1)) (q − 1)(n − (q − 1) − 1))1 (q−1)(n−(q−1))−q
h
+
h
+
0!
1!
+ ···+
((q − 1)(n − (q − 1)))0 (q−1)(n−(q−1))
((q − 1)(n − (q − 1) − r))r (q−1)(n−(q−1))−qr
h
+ ··· +
h
0!
r!
+ ···
=
9
((q − 1)(n − (q − 1)))0 (q−1)(n−(q−1))
h
+ ···
0!
((q − 1)(n − (q − 1) − r))r (q−1)(n−(q−1))−qr
h
+ ···
+
r!
⌊ (q−1)(n−(q−1))
⌋
q
(q−1)(n−(q−1))
⌋
(q − 1) n − (q − 1) − ⌊
(q−1)(n−(q−1))
q
(q−1)(n−(q−1))−q⌊
⌋
q
h
+
⌋)!
(⌊ (q−1)(n−(q−1))
q
+
⌊ (q−1)(n−(q−1))
⌋
q
X
(q − 1)(n − (q − 1))
((q − 1)(n − (q − 1) − r))r (q−1)(n−(q−1))−qr
⌋+1−r
h
⌊
=
q
r!
r=0
=
⌊ (q−1)(n−(q−1))
⌋
q
X
r=0
⌊
(q−1)(n−(q−1))
q
((q − 1)(n − (q − 1) − r))r (q−1)(n−(q−1))−qr
(q − 1)(n − (q − 1))
+1
h
q
r!
⌋
((q − 1)(n − (q − 1) − r))r (q−1)(n−(q−1))−qr
h
r!
r=0
(q − 1)(n − (q − 1))
(q − 1)(n − (q − 1)) q
=
+1−
( B)h,n
q
q
!
n+q−2−r
q−2
X
h
(q − 2)r (q−2)−r X q
( B)h,i (q B)h,n+q−2−r−i .
h
+ (q − 1)
q
r!
r=0
i=0
−
X
r
Using (6) of Theorem 3 in Section 2, the result follows.
4
Acknowledgments
The authors thank the reviewers/referees for their comments and suggestions that helped to
improve the article.
References
[1] S. Arolkar and Y. S. Valaulikar, Generalized bivariate B-tribonacci and B-tri-Lucas
polynomials, Proc. CPMSED-2015, Krishi sanskriti publications, 2015, pp. 10–13.
[2] S. Arolkar and Y. S. Valaulikar, On an extension of Fibonacci sequence, Bull. Marathwada Math. Soc. 17 (2016), 1–8.
[3] S. Arolkar and Y. S. Valaulikar, h(x)-B-tribonacci and h(x)-B-tri Lucas polynomials,
Kyungpook Math. J. 56 (2016), 1125–1133.
10
[4] S. Arolkar and Y. S. Valaulikar, Incomplete h(x)-B-tribonacci polynomials, Turkish
Journal of Analysis and Number Theory 4 (2016), 155–158.
[5] S. Arolkar and Y. S. Valaulikar, On a B-q bonacci sequence, International Journal of
Advances in Mathematics 1 (2017), 1–8.
[6] S. Arolkar and Y. S. Valaulikar, Identities involving partial derivatives of bivariate B-q
bonacci and B-q Lucas polynomials, preprint.
[7] P. Filipponi, Incomplete Fibonacci and Lucas numbers, Rend. Circ. Mat. Palermo 45
(1996), 37–56.
[8] T. Koshy, Fibonacci and Lucas Numbers with Applications, Wiley-Interscience, 2001.
[9] A. Nalli and P. Haukkane, On generalized Fibonacci and Lucas polynomials, Chaos,
Solitons & Fractals 42 (2009), 3179–3186.
[10] N. Yilmaz and N. Taskara, Incomplete Tribonacci-Lucas numbers and polynomials, Adv.
Appl. Clifford Algebr 25 (2015), 741–753.
[11] J. L. Ramı́rez, Incomplete k-Fibonacci and k-Lucas numbers, Chinese J. of Math.
(2013), Article ID 107145.
[12] J. L. Ramı́rez and V. F. Sirvent, Incomplete tribonacci numbers and polynomials, J.
Integer Sequences 17 (2014), Article 14.4.2.
[13] J. L. Ramı́rez, Incomplete generalized Fibonacci and Lucas polynomials, Hacet. J. Math.
Stat. 42 (2015), 363–373.
[14] S. Vajda, Fibonacci and Lucas Numbers, and the Golden Section: Theory and Applications, Dover, 2008.
2010 Mathematics Subject Classification: Primary 11B39; Secondary 11B83.
Keywords:
Fibonacci polynomial, h(x)-B-q-bonacci polynomial, incomplete h(x)-B-qbonacci polynomial.
Received October 3 2017; revised versions received October 5 2017; March 16 2018; April 4
2018; April 6 2018. Published in Journal of Integer Sequences, May 7 2018.
Return to Journal of Integer Sequences home page.
11