Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2021, Advances in Intelligent Systems and Computing
…
10 pages
1 file
The expanding utilization of the Internet has enlarged dangers and new attacks for quite a while. Altogether to recognize oddity in a network, the intrusion detection system has been proven to be a significant segment of secure networks. Machine learning model learns every time it predicts an output, and this property empowers them to distinguish the network pattern and find whether they are ordinary or noxious. There is an expanding demand for dependable and genuine dataset among the examined network. In this article, a comprehensive examination of the CSE-CIC-IDS2018 dataset is made. During the research, numerous issues and deficiencies in a dataset were found. Solutions to fix those issues led to a model different from the existing solutions. The model consisted of two components-principal component analysis and deep neural network. After pre-processing the dataset, it gave F1-score of 0.99, making it robust than other existing models.
Indonesian Journal of Electrical Engineering and Computer Science, 2022
The evolution of the internet of things as a promising and modern technology has facilitated daily life. Its emergence was accompanied by challenges represented by its frequent exposure to attacks and its being a target for intruders who exploit the gaps in this technology in terms of the nature of its heterogeneous data and its large quantity. This made the study of cyber security an urgent necessity to monitor infrastructures It has network flaw detection and intrusion detection that helps protect the network by detecting attacks early and preventing them. As a result of advances in machine learning techniques, especially deep learning and its ability to selflearning and feature extraction with high accuracy, the research exploits deep learning to analyze the real data set of CSE-CIC-IDS2018 network traffic, which includes normal behavior and attacks, and evaluate our deep model long short-term memory (LSTM), That achieves accuracy of detection up to 99%.
European Journal of Engineering Research and Science, 2020
In the present world, digital intruders can exploit the vulnerabilities of a network and are capable to collapse even a country. Attack in Estonia by digital intruders, attack in Iran's nuclear plant and intrusion of spyware in smart phone depicts the efficiency of attackers. Furthermore, centralized firewall system is not enough for ensuring a secured network. Hence, in the age of big data, where availability of data is huge and computation capability of PC is also high, there machine learning and network security have become two inseparable issues. In this thesis, KDD Cup’99 intrusion detection dataset is used. Total 3, 11,030 numbers of records with 41 features are available in the dataset. For finding the anomalies of the network four machine learning methods are used like Classification and Regression Tree (CART), Random Forest, Naive Bayes and Multi-Layer Perception. Initially all 41 features are used to find out the accuracy. Among all the methods, Random Forest provides ...
IEEE Access, 2019
Machine learning techniques are being widely used to develop an intrusion detection system (IDS) for detecting and classifying cyberattacks at the network-level and the host-level in a timely and automatic manner. However, many challenges arise since malicious attacks are continually changing and are occurring in very large volumes requiring a scalable solution. There are different malware datasets available publicly for further research by cyber security community. However, no existing study has shown the detailed analysis of the performance of various machine learning algorithms on various publicly available datasets. Due to the dynamic nature of malware with continuously changing attacking methods, the malware datasets available publicly are to be updated systematically and benchmarked. In this paper, a deep neural network (DNN), a type of deep learning model, is explored to develop a flexible and effective IDS to detect and classify unforeseen and unpredictable cyberattacks. The continuous change in network behavior and rapid evolution of attacks makes it necessary to evaluate various datasets which are generated over the years through static and dynamic approaches. This type of study facilitates to identify the best algorithm which can effectively work in detecting future cyberattacks. A comprehensive evaluation of experiments of DNNs and other classical machine learning classifiers are shown on various publicly available benchmark malware datasets. The optimal network parameters and network topologies for DNNs are chosen through the following hyperparameter selection methods with KDDCup 99 dataset. All the experiments of DNNs are run till 1,000 epochs with the learning rate varying in the range [0.01-0.5]. The DNN model which performed well on KDDCup 99 is applied on other datasets, such as NSL-KDD, UNSW-NB15, Kyoto, WSN-DS, and CICIDS 2017, to conduct the benchmark. Our DNN model learns the abstract and high-dimensional feature representation of the IDS data by passing them into many hidden layers. Through a rigorous experimental testing, it is confirmed that DNNs perform well in comparison with the classical machine learning classifiers. Finally, we propose a highly scalable and hybrid DNNs framework called scale-hybrid-IDS-AlertNet which can be used in real-time to effectively monitor the network traffic and host-level events to proactively alert possible cyberattacks.
Electronics
Anomaly detection and multi-attack classification are major concerns for cyber defense. Several publicly available datasets have been used extensively for the evaluation of Intrusion Detection Systems (IDSs). However, most of the publicly available datasets may not contain attack scenarios based on evolving threats. The development of a robust network intrusion dataset is vital for network threat analysis and mitigation. Proactive IDSs are required to tackle ever-growing threats in cyberspace. Machine learning (ML) and deep learning (DL) models have been deployed recently to detect the various types of cyber-attacks. However, current IDSs struggle to attain both a high detection rate and a low false alarm rate. To address these issues, we first develop a Center for Cyber Defense (CCD)-IDSv1 labeled flow-based dataset in an OpenStack environment. Five different attacks with normal usage imitating real-life usage are implemented. The number of network features is increased to overcome...
Journal of Information Security and Applications , 2020
In this paper, we present a survey of deep learning approaches for cyber security intrusion detection, the datasets used, and a comparative study. Specifically, we provide a review of intrusion detection systems based on deep learning approaches. The dataset plays an important role in intrusion detection, therefore we describe 35 well-known cyber datasets and provide a classification of these datasets into seven categories; namely, network traffic-based dataset, electrical network-based dataset, internet traffic-based dataset, virtual private network-based dataset, android apps-based dataset, IoT traffic-based dataset, and internet-connected devices-based dataset. We analyze seven deep learning models including recurrent neural networks, deep neural networks, restricted Boltzmann machines, deep belief networks, convolutional neural networks, deep Boltzmann machines , and deep autoencoders. For each model, we study the performance in two categories of classification (binary and multiclass) under two new real traffic datasets, namely, the CSE-CIC-IDS2018 dataset and the Bot-IoT dataset. In addition, we use the most important performance indicators, namely, accuracy, false alarm rate, and detection rate for evaluating the efficiency of several methods.
Periodicals of Engineering and Natural Sciences (PEN)
Intrusion Detection Systems (IDSs) have a significant role in all networks and information systems in the world to earn the required security guarantee. IDS is one of the solutions used to reduce malicious attacks. As attackers always changing their techniques of attack and find alternative attack methods, IDS must also evolve in response by adopting more sophisticated methods of detection. The huge growth in the data and the significant advances in computer hardware technologies resulted in the new studies existence in the deep learning field, including intrusion detection. Deep learning is sub-field of Machine Learning (ML) methods that are based on learning data representations. In this paper, a detailed survey of various deep learning methods applied in IDSs is given first. Then, a deep learning classification scheme is presented and the main works that have been reported in the deep learning works is summarized. Utilizing this approach, we have provided a taxonomy survey on the available deep architectures and algorithms in these works and classify those algorithms to three classes, which are: discriminative, hybrid and generative. After that, chosen deep learning applications are reviewed in a wide range of fields of intrusion detection. Finally, popular types of datasets and frameworks are discussed.
SMART MOVES JOURNAL IJOSCIENCE, 2020
As network applications grow rapidly, network security mechanisms require more attention to improve speed and accuracy. The evolving nature of new types of intrusion poses a serious threat to network security: although many network securities tools have been developed, the rapid growth of intrusive activities is still a serious problem. Intrusion detection systems (IDS) are used to detect intrusive network activity. In order to prevent and detect the unauthorized access of any computer is a concern of Computer security. Hence computer security provides a measure of the level associated with Prevention and Detection which facilitate to avoid suspicious users. Deep learning have been widely used in recent years to improve intrusion detection in networks. These techniques allow the automatic detection of network traffic anomalies. This paper presents literature review on intrusion detection techniques.
Procedia Computer Science, 2021
The widespread use of interconnectivity and interoperability of computing systems have become an indispensable necessity to enhance our daily activities. Simultaneously, it opens a path to exploitable vulnerabilities that go well beyond human control capability. The vulnerabilities deem cyber-security mechanisms essential to assume communication exchange. Secure communication requires security measures to combat the threats and needs advancements to security measures that counter evolving security threats. This paper proposes the use of deep learning architectures to develop an adaptive and resilient network intrusion detection system (IDS) to detect and classify network attacks. The emphasis is how deep learning or deep neural networks (DNNs) can facilitate flexible IDS with learning capability to detect recognized and new or zero-day network behavioral features, consequently ejecting the systems intruder and reducing the risk of compromise. To demonstrate the model's effectiveness, we used the UNSW-NB15 dataset, reflecting real modern network communication behavior with synthetically generated attack activities.
Louvain médical, 143, 449., 2024
Evolutionary Psychiatry: Current Perspectives on Evolution and Mental Health - Book edited by Riadh Abed & Paul St John-Smith (Published by Cambridge University Press), 2022
Information Management and Business Review, 2023
International Journal of Engineering Research and Technology (IJERT), 2020
Archives of Gerontology and Geriatrics, 1994
DESALINATION AND WATER TREATMENT, 2017
Ciências e Políticas Públicas / Public Sciences & Policies
Applied Thermal Engineering, 2010
International Journal of Engineering & Technology, 2012
Apuntes: Revista de Ciencias Sociales, 2006
Revue de Chirurgie Orthopédique et Réparatrice de l'Appareil Moteur, 2006