940
Acta Cryst. (1977). B 3 3 , 9 4 0 - 9 4 2
syn- 1,6 : 8,13- Bismethano[ 14]annulene
BY RICCARDO DESTRO, TULLIO PILATI AND MASSlMO SIMONETTA
lstituto di Chimica Fisica e Centro CNR, Universitgt, Via Golgi 19, 20133 Milano, Italy
(Received 8 October 1976: accepted 10 October 1976)
Abstract. C16H14 , Mr=-206.3, monoclinic, C2/c, a =
18.779(4), b = 6.246(1), c = 19.399(4) A, /3 =
100-27 (2) ° , V = 2239 A3; Do = 1.22 (1) (flotation in
dilute K2HgI 4 solution), D,. = 1.224 g c m -3, Z = 8.
Computer-controlled four-circle diffractometer data
(Mo K a radiation, /l = 0.71069 ,~, graphite monochromator), F(000) = 880, p(Mo Ka) = 0.75 cm -~,
t = 18 + 2°C. F i n a l R = 0 . 0 4 2 for 1390 reflexionswith
I > 2o(1) (counting statistics). The aromatic character
o f the molecule is achieved at the expense o f a relevant
steric compression o f the two inner bridge H atoms, the
distance between them amounting to 1.78 (2) A.
Introduction. The title compound (here onwards SBM)
is the first bridged annulene with two methano groups
in the syn position to be synthetized (Vogel, Sombroek
& Wagemann, 1975). Spectral data have stressed the
necessity o f an accurate molecular-geometry determination to evaluate the degree o f steric compression
of the two inner bridge H atoms and the consequence
of this interference on the conformation o f the annulene ring. In order to answer this problem the study
of the crystal structure o f this compound was undertaken.
Accurate cell dimensions were obtained by the fitting
of sin 2 0 values o f 58 reflexions. Systematic absences
hkl, h + k 4:2n and hOl, 14: 2n indicate the space
groups C2/c or Cc; intensity statistics and successful
structure determination confirm C2/c. Intensities were
collected on a Syntex P]- diffractometer to a maximum
20 value o f 50 ° using a variable rate 0 - 2 0 scan technique. Background measurements were taken at both
ends o f the scan range, each for a time equal to onehalf o f the scan time. Three standard reflexions were
checked after each 40 intensity measurements; they
showed no appreciable trend.
Intensity measurements were obtained for 1991
unique reflexions of which 1390 were treated as observed with I > 2 o ( / ) ( c o u n t i n g statistics). Each reflexion
was assigned a variance o f o2(/) = o2(/)c.s. + (0.03S) 2,
where S is the scan count. Lorentz and polarization effects were corrected for, but no correction for absorption was deemed necessary.
The structure was solved by direct methods; the
positions of all C atoms were recovered from an E
map and those o f the H atoms from a difference syn-
thesis. Refinement was by full-matrix least-squares
minimization o f the quantity E w(lFo[ - I F c l ) 2, with
weights w equal to 4F2/o2(F2o). In the final cycles, 201
parameters were simultaneously adjusted: coordinates
and anisotropic temperature coefficients b~i for the 16 C
atoms, coordinates and isotropic B's for the 14 H
atoms, and a scale factor. The resulting atomic
parameters are given in Table 1.* The final R, r, I1Fo I IFcll/Z [Fo[, was 0.042; the weighted R {R,,. = [E w( [Fol
- [F~[)2/E wF~2,]12} was 0.035: and the goodness-of-fit.
based on 1390 weighted reflexions and 201 parameters, was 1.27. Atomic form factors for C were from
Cromer & Waber (1965), and for H from Stewart,
Davidson & Simpson (1965).
Discussion. The atom numbering is shown in Fig. 1.
Bond distances and angles are reported in Tables 2 and
* A list of structure factors has been deposited with the British
Library Lending Division as Supplementary Publication No. SUP
32324 (10 pp.). Copies may be obtained through The Executive
Secretary, International Union of Crystallography, 13 White Friars,
Chester CH 1 INZ, England.
H{9}
~H(7)
H(5)
H(2)
(a)
',~.- 26 6---./
(b)
Fig. 1. The molecule of SBM viewed along two principal axes of
inertia. (a) Numbering scheme, torsional angles along the annulene perimeter, and the distance H(15').-H(16"). (b) Dihedral angles.
syn- 1,6 : 8,13-BISMETHANO [ 14]ANNULENE
941
Table 1. Final atomic parameters and standard deviations (in parentheses)
The anisotropic temperature coefficients are in the form: T = exp[-(bl~h 2 + b22k2 + b33/2 + 2b12hk + 2blshl + 2b23kl)]. Fractional
coordinates are x 105 for C, x 104 for H. Anisotropic temperature coefficients are x 104, isotropic B's × 10.
c(1)
c(2)
c(3)
c(4)
c(5)
c(6)
c(7)
c(8)
c(9)
c(!o)
c(i l)
c(12)
C(13)
C(14)
c(~5)
c(16)
H(2)
H(3)
H(4)
H(5)
H(7)
H(9)
H(10)
x
14705(12)
9052 (15)
3069 (14)
2144(13)
7000 (11)
13085(11)
19484(11)
26430(10)
32612(11)
38903(12)
39916 (13)
34845 (13)
28086(12)
21885 (13)
12379(14)
28005(13)
y
46804(30)
32035(41)
36143 (44)
52580(44)
67989 (39)
74208(27)
80445(28)
79847(26)
78599(32)
68160(37)
52382 (38)
43303 (39)
52718(28)
40389 (33)
69671 (33)
76533(31)
z
6071 (8)
6456 (11)
9333 (12)
14057(13)
16828(13)
14018(9)
18351(10)
16785(9)
22117(11)
21438(12)
16590(12)
11473(1 I)
8748(8)
6648 (9)
6292(10)
9580(10)
bll
43(1)
52 (1)
37 (1)
31 (1)
31 (1)
33(1)
39(I)
36(1)
38(1)
32(1)
34 (1)
46 (1)
44(1)
53 (1)
37(1)
39(1)
x
y
z
B
984 (I 1)
-52(12)
-206 (12)
651 (10)
1908 (9)
3223 (10)
4285 (I 1)
1856(34)
2531 (34)
5068 (35)
7443(28)
8205 (25)
8443(29)
6996 (33)
494 (10)
874(11)
1634(11)
2138 (10)
2339 (9)
2661 (10)
2543 (11)
70 (5)
80(6)
81 (6)
64 (5)
50 (4)
67 (5)
77 (6)
C(2)-H(2)
C(3)-H(3)
C(4)---H(4)
C(5)-H(5)
C(7)--H(7)
C(9)-H(9)
C(10)-H(10)
•418 (3)
•365 (4)
•407 (4)
•368 (4)
•406 (3)
.394 (3)
•392 (3)
•413 (3)
•376 (3)
0.91 (2)
0.95 (2)
0.98 (2)
0.99 (2)
1.00(2)
0.96 (2)
0.98 (2)
bss
20(1)
32 (1)
39 (1)
44(1)
38 (1)
32(1)
26(1)
27(1)
29(1)
37(1)
42 (1)
36 (1)
21 (1)
22 (1)
30(1)
27(1)
H(I 1)
H(12)
H(14)
H(15')
H(I 5")
H(16')
H(16")
Table 2. Bond lengths (A)
c(~)-c(2)
c(2)-c(3)
c(3)-c(4)
c(4)-c(5)
c(5)-c(6)
c(6)-c(7)
C(7)-C(8)
C(8)-C(9)
C(9)-C(~0)
b22
251 (6)
283 (7)
422 (9)
463(9)
394 (8)
223(5)
213(5)
181 (5)
290(6)
391 (8)
384 (8)
295 (7)
234(6)
199 (6)
274(6)
238(6)
b12
1 (2)
-12 (3)
-25 (3)
8(3)
25 (2)
23(2)
14(2)
-1 (2)
-22(2)
-15(2)
17 (2)
28 (2)
14(2)
10 (2)
9(2)
3(2)
bl3
0(1)
-3 (1)
-5 (1)
3(1)
4 (1)
4(1)
7(1)
7(1)
6(1)
5(1)
14 (1)
19 (1)
13(1)
10 (1)
-1 (1)
8(1)
b2s
-4(1)
- 3 (2)
19 (2)
19(2)
- 3 (2)
0(1)
-12(1)
-8(1)
-12(2)
13(2)
26 (2)
9 (2)
1(1)
- 6 (1)
17(2)
14(1)
x
y
z
B
4463 (12)
3582(11)
2257 (10)
1516 (10)
739 (11)
3277 (10)
2463 (9)
4460(33)
2964(33)
2540 (30)
7959 (29)
7089(29)
8240 (27)
8387 (25)
1754(10)
974(10)
657 (9)
376 (9)
430 (I0)
943 (9)
611 (8)
80 (6)
69(5)
57 (5)
57 (4)
64 (5)
53 (4)
46 (4)
Table 3. Bond angles (o)
C(IO)-C(11)
C(11)-C(12)
C(12)-C(13)
C(13)-C(14)
C(14)-C(1)
C(I)-C(15)
C(15)-C(6)
C(8)-C(16)
C(16)-C(13)
1.398
1-370
1.413
1-395
1.392
1.496
1.508
1.494
1.497
(3)
(3)
(3)
(3)
(3)
(3)
(3)
(3)
(3)
C(l I)-H(11)
C(12)-H(12)
C(14)-H(14)
C(15)-H(15')
C(I 5)-H(I 5")
C(16)-H(16')
C(16)-H(16")
1-00 (2)
0.95 (2)
0.95 (2)
1.00 (2)
0.95 (2)
0.97 (2)
0-95 (2)
3 respectively. As already found in other syn-bridged
annulene derivatives (Ganis & Dunitz, 1967; Casalone,
Gavezzotti, Mugnoli & Simonetta, 1970), the symmetry of the molecule is nearly mm2. In contrast to
its anti-isomer, which is a cyclopolyolefin (Barrow &
Mills, 1971; Gramaccioli, Mimun, Mugnoli & Simonetta, 1973), SBM has aromatic character, as demonstrated by the values of the bond lengths along the annulene perimeter.
Bond distances and angles of SBM along the ring, as
well as dihedral and torsional angles, are virtually identical with the corresponding ones in 1,6:8,13-butane-
C(1)-C(2)-C(3)
C(2)--C(3)-C(4)
C(3)--C(4)-C(5)
C(4)-C(5)-C(6)
C(6)-C(7)--C(8)
C(8)--C(9)-C(10)
C(9)-C(IO)-C(II)
C(IO)-C(ll)-C(12)
C(11)-C(12)-C(13)
C(13)-C(14)-C(1)
C(I)-C(I 5)-C(6)
C(8)-C(16)-C(13)
125.3 (2)
127.6 (2)
128.2 (2)
125;0(2)
127.0 (2)
124.3 (2)
128.3 (2)
128.2 (2)
124.1 (2)
127.7 (2)
103.5 (2)
104.3 (2)
C(14)--C(1)-C(2)
C(14)-C(1)-C(15)
C(2)-C(1)-C(15)
C(5)-C(6)-C(7)
C(7)-C(6)-C(15)
C(5)-C(6)-C(15)
C(7)-C(8)-C(9)
C(7)-C(8)-C(16)
C(9)-C(8)-C(16)
122.1
123.8
113.2
121.1
124.5
113.6
121.4
123.9
113-8
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
(2)
C(12)-C(13)-C(14) 121.8 (2)
C(14)-C(13)-C(16) 123.8 (2)
C(12)-C(13)-C(16) 113-5 (2)
C(1)-C(2)-H(2)
C(3)-C(2)--H(2)
C(2)-C(3)-H(3)
C(4)-C(3)-H(3)
C(3)--C(4)-H(4)
C(5)-C(4)-H(4)
C(4)--C(5)-H(5)
C(6)--C(5)-H(5)
C(6)--C(7)-H(7)
C(8)--C(7)-H(7)
C(8)-C(9)-H(9)
C(10)-C(9)-H(9)
C(9)-C(10)-H(10)
C(11)~C(10)-H(10)
C(10)--C(11)-H(I 1)
115 (1)
120(1)
116 (1)
116(1)
114 (1)
116 (1)
118(1)
116 (1)
114 (1)
117 (1)
117(1)
118 (1)
114 (1)
116(1)
116(1)
C(12)-C(I l)-H(1 I)
114(1)
C(I l)-C(12)-H(12)
118(1)
C(13)-C(12)-H(12)
117 (1)
C(I 3)-C(14)-H(14)
116(1)
C(1)-C(14)-H(14)
115 (1)
C(1)--C(15)--H(15')
113 (I)
C(I)-C(15)-H(I 5")
110(1)
C(6)-C(15)-H(15')
114 (1)
C(6)-C(15)-H(I 5")
107 (1)
C(8)-C(16)-H(16')
108 (1)
C(8)-C(16)--H(16")
112(1)
C(13)-C(16)--H(16') 110(1)
C(13)-C(16)-H(16") 115 (1)
H(15')--C(15)-H(15") 108 (2)
H(I 6')-C(16)-H(16")107(1)
1,4-diylidene[14]annulene (here onwards BUT) (Gramaccioli, Mugnoli, Pilati, Raimondi & Simonetta,
1972), the greatest differences being 0.015 A, 1-4, 1.3
942
syn- 1,6 : 8,13-BISMETHANO[ 14]ANNULENE
and 1.5 ° respectively. The four H atoms of the
methano groups and the two C atoms to which they are
bonded are coplanar within experimental uncertainty
[maximum deviation 0.03 (2) A]. The contact between
the two inner bridge H atoms [ H ( 1 5 ' ) . . . H(16") distance = ! .78 ,A,] is partly relieved by slight rotation and
deformation of the - C H 2 - groups: the bisectors of the
Ht~H angles deviate by about 5 o from the bisectors of
the related bridgehead Ct~C angles, and the Ht~H
angles are both less than the tetrahedral angle, notwithstanding the small values of the Ct~C bridgehead
angles (104°). The dihedral angle between the two
bridges is increased from the 0.6 ° value found in
1,6 : 8,13-propane- 1,3-diylidenel 14]annulene
(Gavezzotti et al., 1972) to 26.6 ° (to be compared with 26-0 °
in the butane analogue BUT).
The mm2-averaged C - C bond distance involving the
bridge C atoms is 1.498 A in SBM, only slightly less
than the corresponding length in BUT (1.505 ]k); the
C(~C angles at the bridge C atoms are 103.9 o (average
value) in SBM and 102.9 ° in BUT; and the distances
between these two C atoms are 2.921 and 2.914 /~,
respectively. It can therefore be stated that the two internal H atoms affect the position of the bridge C
atoms, and hence the conformation of the annulene
perimeter, in much the same way as the --CH2--CH 2 group does in BUT.
We wish to thank Professor E. Vogel for the sample
of the crystals.
References
BARROW, M. J. • MILLS, O. S. (1971). Chem. Commun. p.
220.
CASALONE,
G.,
GAVEZZOTrI, A.,
MUGNOLI, A.
&
SIMONETrA,M. (1970). Angew. Chem. Int. Ed. 9, 519.
CROMER, D. Z. & WABER, J. T. (1965). Acta Cryst. 18, 104109.
GANIS, P. & DUNITZ, J. D. (1967). Helv. Chim. dcta, 50,
2369-2378.
GAVEZZO'VrI,
A.,
MUGNOLI, A.,
RAIMONDI, M.
&
SIMONE'rrA, M. (1972). J. Chem. Soc. Perkin II, pp. 425431.
GRAMACCIOLI, C. M., MIMUN, A., MUGNOL1, A. &
SIMONETTA, M. (1973). J. Amer. Chem. Soc. 95, 31493154.
GRAMACCIOLI, C. M., MUGNOLI, A., PILATI, T., RAIMONDI,
M. & SIMONETTA, M. (1972). Acta Cryst. B28, 23652370.
STEWART, R. F., DAVIDSON,E. R. & SIMPSON,W. T. (1965).
J. Chem. Phys. 42, 3175-3187.
VOGEL, E., SOMBROEK, J. ~L WAGEMANN, W. (1975). Angew.
Chem. Int. Ed. 14, 564-565.
Acta Cryst. (1977). B33,942-944
4-(p-Chlorophenyl)-4-hydroxy-N,N-dimethyl-a,a-diphenylpipeddine-l-butyramide
(Loperamide) Hydrate
By G. GERMAIN, J. P. DECLERCQ* AND M. VAN MEERSSCHE
Laboratoire de Chimie Physique et de Cristallographie, Universitd de Louvain, 1 place Louis Pasteur,
B- 1348 Louvain-la-Neuve, Belgium
AND M. H. J. KOCH
Research Laboratories, Janssen Pharmaceutica, B-2340 Beerse, Belgium
(Received 12 November 1976; accepted 27 November 1976)
Abstract. C29H33N202C1.H20, F.W. 495-0; orthorhombic, Pbca; a = 15.160(3), b = 20.715 (5), c =
16.803 (3)/~; t = 2 5 ° C ; Z = 8. The molecules are
connected by direct hydrogen bonds and through the
water molecules.
Introduction. Loperamide is a specific, long-acting anti-
diarrhoeal drug. Slow evaporation of a solution in etha* Supported by Fonds National de la Recherche Scientifique.
nol yielded transparent colourless crystals. The space
group was determined from Weissenberg photographs;
final cell dimensions and intensities were measured on a
Picker four-circle diffractometer. The experimental
conditions are given in Table 1. The structure was
solved with M U L T A N (Germain, Main & Woolfson,
1971) and refined by block-diagonal least squares
(Ahmed, Hall, Pippy & Huber, 1966). The final R =
X [IFol - IFcll/r- IFol is 0.09 for all observed reflexions.
The scattering factors used are those given in