Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2005, Chemical Engineering & Technology
…
4 pages
1 file
Three sorbents were compared in order to determine their potential for oil spill cleanup. Polypropylene nonwoven web, rice hull, and bagasse with two different particle sizes were evaluated in terms of oil sorption capacities and oil recovery efficiencies. Polypropylene can sorb almost 7 to 9 times its weight from different oils. Bagasse, 18 to 45 mesh size, follows polypropylene as the second sorbent in oil spill cleanup. Bagasse, 14 to 18 mesh size, and rice hull have comparable oil sorption capacities, which are lower than those of the two former sorbents. It was found that oil viscosity plays an important role in oil sorption by sorbents. All adsorbents used in this work could remove the oil from the surface of the water preferentially.
The 1st International Conference on Renewable and Sustainable Energy in Elbieda, Libya, 2021
Nowadays, oil spill is one of the most serious pollutants that have negative effects on the ecosystem and marine life. Environmentalists face major challenges in the treatment of spills and in developing an alternative product with low cost. So proper planning and necessary actions should be done to remove these pollutants and prevent subsequent environmental side effects. Adsorption is a rapid and cost effective process to minimize the environmental impacts of oil spills and cleanup these pollutants. Presently natural sorbents are used more than the others due to their biodegradability and high sorption capacity. Among all different sorbents, agriculture and animals wastes is preferred as an oil cleanup technology due to its biodegradation and buoyancy. The usage of this organic waste has not been widely discovered here in Libya. This paper will be investigate the effectiveness of sugarcane bagasse and chicken feathers as a material to adsorb oil.
The following indicators were used to compare sorption efficiency of the test objects: oil capacity (OC), buoyancy, solubility of hydrocarbons in water, and water absorption (WA). Hereby, it was determined that the peat moss carbonized at the temperature of 200-250°С and modified by acetic acid has high sorption capacity. The sorbents introduced can increase the efficiency of water surface cleaning up until the water is almost clean and the residual oil content in water is less than 0.03 g/l.
The Scientific World Journal, 2014
Oil spill constitutes a major source of fresh and seawater pollution as a result of accidental discharge from tankers, marine engines, and underwater pipes. Therefore, the need for cost-effective and environmental friendly sorbent materials for oil spill cleanup cannot be overemphasized. The present work focuses on the preliminary study of empty palm fruit bunch fibre as a promising sorbent material. The morphology of the unmodified empty palm fruit bunch, EPFB fibre, was examined using an optical microcopy, scanning electron microcopy coupled with EDX and X-ray diffraction. The effects of oil volume, fibre weight, and time on oil absorption of EPFB fibre were evaluated with new engine oil from the model oil. The results show that EPFB fibre consists of numerous micro pores, hydrophobic, and partially crystalline and amorphous with approximately 13.5% carbon. The oil absorbency of the fibre increased with the increase in oil volume, immersion time, and fibre weight. However, sorption capacity decreased beyond 3 g in 100 mL. Additionally unmodified EPFB fibre showed optimum oil sorption efficiency of approximately 2.8 g/g within three days of immersion time.
Scientific Reports
Oil spills are a significant threat to the marine ecosystem that requires immediate removal from the oceanic environment. Many technologies have been employed to clean up oil spills. Of these, adsorption has scored a prominent success due to the high efficiency, economic viability, environmental friendship, and ease of application. The utilization of agricultural waste to produce biosorbents have been considered as an ecofriendly and efficient approach for removing oil. Thus, a new low-cost oil adsorbent was prepared via esterification of the wheat straw (Str) with a hydrophobic benzoyl group, the resulting copolymer (Str-co-Benz) was characterized by FTIR, TGA, DSC, and SEM and used at laboratory scale. The oil spill cleanup process was conducted using a crude oil-natural seawater system under different adsorption conditions such as oil concentration, adsorbent dose, agitation time and speed. Equilibrium studies were performed to determine the capacity of the prepared materials for...
Molecules
Conventional synthetic sorbents for oil spill removal are the most widely applied materials, although they are not the optimal choices from an economic and environmental point of view. The use of inexpensive, abundant, non-toxic, biodegradable, and reusable lignocellulosic materials might be an alternative to conventional sorbents, with obvious positive impact on sustainability and circular economy. The objective of this paper was to review reports on the use of natural-based adsorbing materials for the restoration of water bodies threatened by oil spills. The use of raw and modified natural sorbents as a restoration tool, their sorption capacity, along with the individual results in conditions that have been implemented, were examined in detail. Modification methods for improving the hydrophobicity of natural sorbents were also extensively highlighted. Furthermore, an attempt was made to assess the advantages and limitations of each natural sorbent since one material is unlikely to...
Environmental Pollution, 2018
Multiple research areas have emerged in view of the deleterious impacts of oil-spills on the environment and the relative intractability of the problem per se. The dimensions mostly explored thus far, relate to the prediction of the fate of oil-spill and development of effective countermeasures. Among the counter measures, development of effective sorbents for oil-spill remediation has sustained interest for quite long, in spite of the numerous challenges associated with it. Most importantly, the sorbent materials need to be assembled in such a structure or form that they can survive the oceanic currents and other prevailing environmental conditions without themselves becoming a source of secondary pollution. This review paper focuses on the chronological development of such assemblies or devices over the past century and a critical appraisal of the same. Relevant major factors affecting the performance of sorbent assemblies can be identified as: structural features and modes of sorption, effect of weathering on oil-sorption capacity, mode of distribution and harvesting of such absorbent units, and the final disposal after feasible cycles of sorption and release. This review paper incorporates a detailed discussion on the major inventions and the extant open literature in this field.
2016
In last decades, oil spill pollution has become an important issue of concern due to its serious environmental impacts; therefore, necessary actions should be taken to prevent or reduce these types of pollution and their environmental consequences. Natural organic sorbents are emerging as proper choices for oil spill cleanup due to their availability, eco-friendliness, and low cost. In this study, phragmites australis, sugarcane leaves straw, and sugarcane bagasse were used for crude oil sorption in dry (only oil) systems. The results indicated that sugarcane bagasse had a higher oil sorption capacity compared to the others. Therefore, sugarcane bagasse was selected as the preferred sorbent and the effects of sorbent contact time and its particle size on oil adsorption capacity were evaluated for the systems of dry and crude oil layer on water. The results showed that the maximum adsorption capacity of raw sugarcane bagasse for dry system and crude oil layer system was about 8 and 6...
Bioresources, 2019
The spill of crude oil products into the environment has a negative impact on the ecosystem. Sorption materials are utilized as the means of their elimination. The sorption capacity of selected organic and inorganic natural sorbents, such as needles (Larix decidua, Abies alba, and Pinus sylvestris), sawdust from logging (Fagus sylvatica, Picea abies), leaf residues (Fagus sylvatica), moss (Ceratodon purpureus), soil, and synthetic sorbents Absodan Plus, expanded perlite, Eco-dry plus, and Reo Amos were all tested according to the standard ASTM F726 (2012). The natural sorbents were tested at various moisture contents (wet, air-dry, and dry) ranging from 0 to 82%. The pollutant used in the experiment was the low-viscosity engine oil 10W 40. The best sorption capacity among the wet sorbents was achieved with larch needles (11.1 g/g). Moss exhibited the best sorption capacity (25.2 g/g) among the air-dry sorbents. Regarding air-dry sorbents, larch needles, spruce sawdust, and beech sawdust showed the best results. When further dried, their sorption capacity decreased. Soil was the least efficient natural sorbent with a sorption capacity that ranged from 0.45 to 3.82 g/g. The best sorption capacity of 11.5 g/g among the synthetic sorbents was in Reo Amos. The sorption capacity of natural and synthetic substances was comparable.
Journal of Labor and Society, 2024
Journal of Ancient Philosophy, 2019
The Journal of Philosophy
Advances in Engineering and Intelligence Systems, 2022
Scientific Reports
Droit et genre, 2022
Poincare Journal of Analysis and Applications, 2020
Türklük Bilimi Araştırmaları, 2015
Architecture, Civil Engineering, Environment, 2016
Journal of Fisheries & Livestock Production, 2016
ICOM CECA, 2024
American journal of hypertension, 2009