Academia.eduAcademia.edu

A Theory for System Engineering Management

1 1 2 2 S C∈S DROC DLCF ⊂ D D E C DOS DROC ⊂ DOS ESEM ∈ E ELCM ∈ E S A hl Phl Mhl s Mhl s∗ Mhl s hl Rhl Rl Ml−1 s∗ Ml Ml Mls∗ Mls∗ Rl Pl Mcs∗ Mss∗ Mss s∗ Msc s∗ Mps∗ [o1 , · · · , ok ] = sembase(i1 , · · · , in ) sembase : I1 × · · · × In $−→ O1 × · · · × Ok sembase(i1 , · · · , in ) = [o1 , · · · , ok ] [y] = f (x) o 1 , · · · , ok sembase f : X $−→ Y sembase i1 , · · · , in i 1 , · · · , in I1 , · · · , I n f (x) = y o 1 , · · · , ok O1 , · · · , O k sembase sembase|S,E,A : I1 × · · · × In $−→ O1 × · · · × Ok S sembase|S,E,A : 2D $−→ MS∗ A E S, E, A D F (g) PLC Intf ⇐⇒ = ⊆ MS∗ g = )PLC , Intf * {f1 , f2 , · · · , fn } n PLC × PLC , n ∈ {0, 1, 2, ...} PLC Intf f f1 = f1 ◦ f2 ◦ · · · ◦ fn f2 n−1 fn n sembase = development ◦ implementation ◦ commissioning ◦ operations ◦ decommissioning development implementation commissioning decommissioning operations development : 2D $−→ MS implementation : MS $−→ MS∗ commissioning : MS∗ $−→ MS∗ operations : MS∗ $−→ MS∗ decommissioning : MS∗ $−→ ∅ SEM BASE(x) sembase ⇐⇒ = x = )D, MS , MS∗ , sembase*|S,E,A development ◦ implementation ◦ commissioning ◦ operations ◦ decommissioning S, E, A sembase development := requirements ◦ design requirements : design : ⇐⇒ SEM BASE(x) sembase = 2D $−→ MR MR $−→ MS x = )D, MR , MS , MS∗ , sembase*|S,E,A requirements ◦ design ◦ implementation ◦ commissioning ◦ operations ◦ decommissioning MS P P MR 2D mri ∈ MR M# M, M # MR <Compl M <Compl M # <Compl mdj ∈ MS mik ∈ MS∗ MS M <Compl mdi {mdi+1,1 , mdi+1,2 , · · · , mdi+1,m } {md0 , (md0 , md1,1 ), (md0 , md1,2 ), · · · , (md0 , md1,m )} {mdi , (mdi , mdi+1,1 ), (mdi , mdi+1,2 ), · · · , (mdi , mdi+1,m )} level(gdmr ) dmgr ∈ DM G dmgr MR MR IN T FU gi ∈ Γ IN T FE IN T FS ai ∈ ACT gi DIG(g) Z Tr ⇐⇒ ⊆ ⊆ g = )Z, T r* 2P ROP ×V AL Z × Z n , n ∈ {0, 1, 2, ...} Z n≥2 Tr P ROP V AL zi , zj ∈ Z (pi , vj ) ∈ P ROP ×V AL (pi , vj ) vj igi ∈ DIG vk /= vj MR IN T F |U,EN V,SY S IN T FSY S IN T FU uact : IN T FU $−→ IN T FSY S × IN T FEN V sysact : IN T FSY S $−→ IN T FU × IN T FEN V envact : IN T FEN V $−→ IN T FSY S × IN T FU zU.i IN T FSY S IN T FU uacti = (zU,i , )(zSY S,j , )zSY S,j+1,1 , zSY S,j+1,2 **) trSY S,i = ()z(U,i) , z(SY S,j) *, )z(SY S,j+1,1) , z(SY S,j+1,2) ** IN T FU IN T FEN V IN T FSY S MR Γ IN T FU gi ∈ Γ gi IN T FSY S View publication stats