Volume 36B, number 1
A STUDY
PHYSICS
OF
LETTERS
DENSITY
AND MOMENTUM
DELTA
FUNCTION
FORCES*
9 August 1971
DEPENDENT
K. R. LASSEY
Department of Physics, McMasler University, Hamillon 16, Ontario, Canada
and
A. B. V O L K O V * *
Department of Physics, State Uni~,ersity of Neu, York, Stony Brook, N.Y. 11790, USA
Received 18 June 1971
The suitability of density and momentum dependent delta function forces in nuclear calculations
is studied using H a r t r e e - F o c k calculations in the 2 s - l d shell. The effect of the compressibility upon
deformation and rms radius is investigated.
The t e c h n i c a l d i f f i c u l t i e s a s s o c i a t e d w i t h c a l c u l a t i o n s of the p r o p e r t i e s of h e a v y n u c l e i , e s p e c i a l l y d e f o r m a t i o n e n e r g i e s , s h e l l e f f e c t s in the
f i s s i o n p r o c e s s , e t c . , u s i n g two body f o r c e s , r e q u i r e s the u s e of a s i m p l e p h e n o m e n o l o g i c a l but
n e v e r - t h e - l e s s " r e a l i s t i c " two body i n t e r a c t i o n .
In f a c t t h e r e i s r e a s o n to b e l i e v e [1,2] that the
m o s t hopeful p o s s i b i l i t y i s s o m e v a r i a n t of the
S k y r m e [2] i n t e r a c t i o n w h i c h i s a m o m e n t u m and
d e n s i t y d e p e n d e n t d e l t a f u n c t i o n i n t e r a c t i o n , and
in p a r t i c u l a r s o m e f o r m of the M o s z k o w s k i [4]
m o d i f i e d d e l t a i n t e r a c t i o n (MDI).
The MDI a s p r o p o s e d by M o s z k o w s k i h a s the
form
V(p, R , r) = - a S ( r ) * ½¢3[p2 5(r) + 5( r)p 21 +
+ ~Tfi(R) 5(r)
(1)
w h e r e p , R and r a r e the r e l a t i v e m o m e n t u m ,
c e n t r e of m a s s c o o r d i n a t e , and r e l a t i v e s e p a r a =
tion f o r the i n t e r a c t i n g p a r t i c l e s . The 152 t e r m s ,
w h i c h s i m u l a t e in p a r t the f i n i t e r a n g e and the
r e p u l s i v e c o r e of the f o r c e , and the k 2 ( R ) t e r m ,
w h i c h s i m u l a t e s m a n y body " d e n s i t y d e p e n d e n t "
e f f e c t s , i n c l u d ! n g the r e p l a c e m e n t of the t e n s o r
i n t e r a c t i o n by a c e n t r a l i n t e r a c t i o n [5,6]. a r e
j o i n t l y r e s p o n s i b l e for the s a t u r a t i o n of n u c l e a r
s y s t e m s . The p a r a m e t e r s a , ~ and ), a r e fixed by
f i t t i n g n u c l e a r m a t t e r at s a t u r a t i o n , and 160
Work supported in part by the National Research
Council of Canada and the United States Atomic
Energy Commission.
** Permanent address. Department of Physics,
McMaster University, Hamilton 16, Ontario, Canada.
binding e n e r g y in a s i m p l e v a r i a t i o n a l c a l c u l a t i o n .
T h e s a t u r a t i o n p r o p e r t y of the i n t e r a c t i o n r e p r e s e n t s one of i t s m o s t i m p o r t a n t " r e a l i s t i c "
features. Moszkowski has obtained reasonable
e s t i m a t e s for the s u r f a c e e n e r g i e s and for l s
s i n g l e p a r t i c l e e n e r g i e s for 160 and 2 0 8 P b , etc.
H o w e v e r , it i s i m p o r t a n t to e x a m i n e the i n t e r action more critically, especially its propensity
to inhibit or e n h a n c e d e f o r m a t i o n of n u c l e i .
F o r light n u c l e i it h a s b e e n shown [7] that d e f o r m a t i o n i s s e n s i t i v e to the s a t u r a t i o n m e c h a n i s m of the i n t e r a c t i o n a s e x e m p l i f i e d by the e x change m i x t u r e u s e d and i s p r o b a b l y d o m i n a t e d
by k i n e t i c e n e r g y m i n i m i z a t i o n w h i l e m a i n t a i n i n g
a s m u c h s p a c i a l s y m m e t r y in the w a v e f u n c t i o n
a s p o s s i b l e . The i m p o r t a n c e of the r e p u l s i v e
p 2 5 ( r ) + 5(r)p 2 t e r m in the MDI, which w i l l h a v e
a k i n e t i c e n e r g y like b e h a v i o u r , s u g g e s t s that
the MDI wiI1 tend to e x a g e r a t e d e f o r m a t i o n s ,
though the p u r e S e r b e r e x c h a n g e c h a r a c t e r ( e v e n
s t a t e i n t e r a c t i o n only) w i l l tend to c o m p e n s a t e
t h i s e x a g e r a t i o n s o m e w h a t when c o m p a r e d to the
e x c h a n g e m i x t u r e s u s e d in finite r a n g e d e n s i t y
dependent forces.
F u r t h e r m o r e , an e x t e n s i v e study of the p r o p e r t i e s of light n u c l e i u s i n g f i n i t e r a n g e d e n s i t y d e p e n d e n t f o r c e s , i n c l u d i n g the s p e c t r u m of
4He [8,9], the s p e c t r a of the l p s h e l l n u c l e i [9],
the l p - l h e x c i t a t i o n s of 1 6 0 [ 9 ] , and H a r t r e e F o c k c a l c u l a t i o n s in the 2 s - l d s h e l l [11,12], p e r f o r m e d in a v a r i a t i o n a l m a n n e r , i n c l u d i n g nuc l e a r s i z e , s e e m s to f a v o u r f o r c e s w h o s e n u c l e a r
m a t t e r c o m p r e s s i b i l i t y f a i l s in the 2 0 0 - 2 5 0 MeV
r a n g e . H i g h e r c o m p r e s s i b i l i t y f o r c e s with the
Volume 36B, number 1
PIIYSICS
s a m e e x c h a n g e m i x t u r e s and n u c l e a r m a t t e r s a t u r a t i o n p r o p e r t i e s g e n e r a l l y lead to s m a l l e r
r a d i i [8-10] and s m a l l e r binding e n e r g i e s . T h i s
i s a c o n s e q u e n c e of the h i g h e r c o m p r e s s i b i l i t y
f o r c e i n c r e a s i n g the a v e r a g e d e n s i t y of the finite
s y s t e m away f r o m the e x p e r i m e n t a l v a l u e and
c l o s e r to the n u c l e a r m a t t e r v a l u e w h i c h both r e d u c e s the r m s r a d i u s of the s y s t e m and o v e r e s t i m a t e s the k i n e t i c e n e r g y . The M D I h a s a c o m p r e s s i b i l i t y K = 306 MeV which is p a r t i a l l y r e s p o n s i b l e for the s m a l l e r r a d i i which a r e found
f o r this i n t e r a c t i o n . F o r this r e a s o n we s h a l l
a l s o c o n s i d e r a m o d i f i c a t i o n of the MDI which a l l o w s d i f f e r e n t v a l u e s of K (we s h a l l r e f e r to this
m o d i f i e d v e r s i o n a s MDIK).
In this i n v e s t i g a t i o n H a r t r e e - F o c k c a l c u l a t i o n s
a r e p e r f o r m e d for all " a l p h a p a r t i c l e " n u c l e i
f r o m 160 to 4 0 C a u s i n g for c o m p a r i s o n p u r p o s e s
a f i n i t e - r a n g e d e n s i t y and m o m e n t u m d e p e n d e n t
f o r c e , the MDI, and the MDIK which i s c h o s e n to
h a v e the s a m e c o m p r e s s i b i l i t y K = 225.6 MeV as
the f i n i t e r a n g e f o r c e .
T h e f i n i t e r a n g e f o r c e i s of the f o r m
9 August 1971
LETTERS
t i o n a l c a l c u l a t i o n of the s p e c t r u m (no s h e l l m o d e l
a s s u m p t i o n s ) i s the m o s t i m p o r t a n t of the d) c r i t e r i a . In any e v e n t it is found that i n t e r a c t i o n s of
the f o r m of eq. (2) s a t i s f y i n g the b a s i c c r i t e r i a
a) - c) and h a v i n g a p p r o x i m a t e l y the s a m e K all
lead to c o m p a r a b l e r e s u l t s f o r the d) c r i t e r i a .
M o s z k o w s k i ' s MDI can be w r i t t e n a s
VMDI( p, l~, r) = -1160 5(r) +227.2(p 2 5(r) + 5( r )p2)
+ 980.4 02, '3(R)6(r)
(3)
in u n i t s MeV and fm. The MDIK i n t r o d u c e s an
additional density dependent term proportional
to p-l/'3 which is s u g g e s t e d by the w o r k of B h a d u r i and W a r k e [6] and which a l l o w s K to have
v a l u e s in the r a n g e d e s i r e d . O t h e r than d e m a n d ing that K = 225.6 MeV (the s a m e a s VA) the p a r a m e t e r s of the MDIK a r e d e t e r m i n e d in e x a c t l y
the s a m e way a s f o r the MDI (E/'A = -15.7 MeV
in n u c l e a r m a t t e r which d i f f e r s s l i g h t l y f r o m
the -16 MeV c r i t e r i o n u s e d f o r VA). T h i s then
gives
VMDIK( P, R , r )
= - 5 3 8 . 3 5 ( r ) + 315.5(p 26( r ) + 5 ( r )p2:
VA( r 1 , r 2 , R , te) = [ ( l + c 3 P 1/3 ( r l , r 2 ) ) V a ( r ) +
_ 2 2 8 . 6 p - 1 / ' 3 ( R ) 5 ( r ) _ 20.74p2 '3 ( R ) 5 ( r )
(4)
+ (l+c4p2/3(rl, r 2 ) ) Y ( r , k)] ×
× (1-m+~nPX+ b P ~ + h p T)
(27
w h e r e r = r l - r 2, Px, Pv, PT are the s p a c e , spin
and i s o s p i n e x c h a n g e o p e r a t o r s and m , b and h
a r e the a p p r o p r i a t e e x c h a n g e p a r a m e t e r s . V a ( r )
is a s i m p l e a t t r a c t i v e g a u s s i a n p o t e n t i a l w h i l e
V(r, k) i s a r e p u l s i v e g a u s s i a n pQtentential w h o s e
r a n g e d e p e n d s on the a v e r a g e r e l a t i v e m o m e n t u m
of the i n t e r a c t i n g p a r t i c l e s . T h i s f o r c e is f o r c e
A of Ho and Volkov [8] which i s b a s e d on the r a d i a l p a r a m e t e r s of f o r c e 4 of Manning and V o l k o v
[13]. The f o r c e p a r a m e t e r s h a v e been c h o s e n to
s a t i s f y the f o l l o w i n g c r i t e r i a a) a fit to the
w e i g h t e d a v e r a g e of the 1S and 3S s c a t t e r i n g
p h a s e s h i f t s up to 250 MeV in the z e r o d e n s i t y
l i m i t , b) an a p p r o p r i a t e fit to n u c l e a r m a t t e r at
s a t u r a t i o n (k F = 1 . 3 6 fm -1, E / A = - 1 6 MeV), c)
a r e a s o n a b l y c l o s e fit to the binding e n e r g y (inc l u d i n g the two body C o u l o m b i n t e r a c t i o n e n e r g y )
and r m s r a d i u s of 1 6 0 and d) a r e a s o n a b l e fit by
an a p p r o p r i a t e v a r i a t i o n a l ( n o n - m o d e l ) c a l c u l a tion of the 4He s p e c t r u m , lp s h e l l s p e c t r a ,
l p - l h 1 6 0 s p e c t r u m and the H a r t r e e - F o c k p r o p e r t i e s of 2 s - l d s h e l l n u c l e i . The l a s t (d) c r i t e r i a a r e q u a l i t a t i v e f i t s which l e a d to VA a s one
of the b e t t e r i n t e r a c t i o n s a m o n g a l a r g e f a m i l y
of p o s s i b i l i t i e s s a t i s f y i n g a) - c). The 1 6 0 l p - l h
e x c i t a t i o n s i n c l u d i n g all 16 p a r t i c l e s in a v a r i a -
for the MDIK i n t e r a c t i o n (in u n i t s MeV and fro).
The a t t r a c t i v e n a t u r e of the d e n s i t y d e p e n d e n t
t e r m s i s not i n c o n s i s t e n t with the r e s u l t s of B h a d u r i and W a r k e , and the a t t r a c t i o n d e c r e a s e s
with i n c r e a s i n g d e n s i t y a s it d o e s with the MDI.
S a t u r a t i o n r e s u l t s f r o m the r e l a t i v e S s t a t e n a t u r e
of the i n t e r a c t i o n and the s i m u l a t i o n of (a) the
r e p u l s i v e c o r e by the p2 t e r m s , and (b) the t e n s o r t e r m by d e n s i t y - d e p e n d e n t t e r m s .
The H a r t r e e - F o c k c a l c u l a t i o n s a r e p e r f o r m e d
in the f o l l o w i n g m a n n e r . All p a r t i c l e s in the s y s t e m a r e a c t i v e and only the i n t r i n s i c e n e r g y of
the s y s t e m is c o n s i d e r e d by s u b t r a c t i n g out the
c e n t r e - o f - m a s s k i n e t i c e n e r g y . The H a r t r e e Fock program employs a cylindrical harmonic
o s c i l l a t o r b a s i s i n c l u d i n g all s t a t e s for N =
2n+ I n t ] + n z < 3, i . e . , a f o u r s h e l l p r o g r a m including all s t a t e s t h r o u g h the 2 p - l f s h e l l in the
s p h e r i c a l l i m i t . B e f o r e p e r f o r m i n g the H a r t r e e F o c k v a r i a t i o n an a t t e m p t i s m a d e to find the opt i m u m set of o s c i l l a t o r p a r a m e t e r s for e v e r y
p o s s i b l e s i n g l e p a r t i c l e s t a t e (each c y l i n d r i c a l
b a s i s s t a t e h a s two o s c i l l a t o r c o n s t a n t s ) c o m p a t i b l e with o r t h o g o n a l i t y c o n s t r a i n t s , by p e r f o r m ing a v a r i a t i o n a l c a l c u l a t i o n on the d o m i n a n t h a r m o n i c o s c i l l a t o r d e t e r m i n a n t of the s y s t e m . The
m a x i m u m n u m b e r of o s c i l l a t o r c o n s t a n t s o b tained in t h i s m a n n e r is 11 for 32S and 36Ar.
We l a b e l the r e s u l t s of t h i s v a r i a t i o n a s M I N D E T .
Volume 36B, n u m b e r 1
PHYSICS
LETTERS
9 August 1971
Table 1
The binding e n e r g i e s and shapes of nuclei for different interactions. R 2 = ~d ~ i (x2"+v2+z~ ~
O = I <Ei(2z2i_x2_.,2,\
i Yi ~/ and ASYM :: ( E (x/2-y2)} / ( , E (x/2 y/2)}. MINDET values arc given in p a r e n t h e s e s .
Q/R 2
Rms radius R (fro)
ASYIvI
Binding energy (MeV)
Interaction
VA
MDI MDIK
VA
MDI
MDIK
VA
MDI
MDIK
0.0
O.O
0.0
160
Ground state
125.6 123.5 129.7
(120.4) (119.2) (126.7)
2.76 2.44 2.56
(2.85) (2.55) (2.63)
160
4p-4h state
109.1 116.7 122.4
(93.3) (83.5) (96.6)
3.25 2.89 3.16
(3.34) (3.02) (3.15)
0.846 0.881 0.80
(0.924) (0.965) (0.961)
3.09 2.77 2.90
(3.21) (2.91) (3.00)
0.532 0.601 0.587
(0.591) (0.640) (0.627)
20Ne
153.3
150.0
158.6
t 188.7
184.8
191.6
(146.6) (140.0) (150.9)
24Mg
3.25
2.92
3,09
0.538
0.58
MD]
MDIK
0.0
0.0
0.0
-0.71 -0.78
(3.35) (3.04) (3.13)
(0.579) (0.624) (0.615)
28Si
Oblate state
229.2 219.0 230.9
(215.6) (197.0) (215.2)
3.38 3.06 3.16
(3.48) (3.18) (3.26)
-0.416 -0.445 -0.457
(-0.484) (-0.513) (-0.508)
28Si
Prolate state
226.2 212.3 227.8
(222.5) (205.8) (222.6)
3.38 3.06 3.18
(3.47) (3.15) (3.25)
32S
Oblate state
270.3 252.4 267.3
(253.5) (223.6) (247.1)
3.45 3.14 3.23
(3.56) (3.22) (3.28)
32S
Prolate state
268.9 253.3 266.3
(256.8) (228.2) (248.7)
3.43 3.11 3.20
(3.49) (3.17) (3.26)
36Ar
312.9 281.3 304,4
(306.1) (269.5) (296.0)
3.52 3.22 3.29
(3.56) (3.26) (3.32)
0.635 0.623
(0.623) (0.615)
-0°292 -0.302 -0.339
(-0.354) (-0.386) (-0.381)
0.0
0.0
-0.24
-0.1
to
-0.4
-0.29
0.0
0.0
0.0
0.0
0.0
0.0
-0.26
-0.23
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
-0.21
0.310
0.339 0.345
(0.324) (0.346) (0.354) |
-0.239 -0.246 -0.264
(-0.252) (-0.269) (-0.272)
-0.91
0.0
0.60
((176.5) (162.1) {177.1)
0.573
(0.578)
VA
i
40Ca
3.60 3.32 3.35
358.1 308.5 3 4 3 . 1 ~
(353.4) (302.8) (339.1)~ (3.60) (3.31) (3.35)
On the basis of extensive investigation an appropriate interpolation procedure is used to obtain
a near optimum set of oscillator constants for
the full Hartree-Fock variational procedure.
The Hartree-Fock program includes the possibility of both axially symmetric and non-axially
symmetric deformations. A two-body Coulomb
interaction is included in all the calculations. A
suitable one body density dependent spin-orbit
interaction [14,15] for deformed nuclei of the
form
VSO(R) = 8 v F s • (Vp ( R ) × k ) ,
(5a)
w h e r e s i s tile s p i n and k i s i v , h a s b e e n u s e d
in t h e s e c a l c u l a t i o n s . In t h e l i m i t of s p h e r i c a l
s y m m e t r y eq. (5a) r e d u c e s to
Vso(R)
do
= 8 v F 1 d ~ 1. s
(5b)
c o n s i s t e n t w i t h N e g e l e [16] and V a u t h e r i n . T h e
v a l u e of F = 6.0 MeV. fro5, d e d u c e d by N e g e l e
f o r t h e c a l c i u m r e g i o n , h a s b e e n u s e d (in p r i n ciple the strength should be valid for all nuclei).
C a l c u l a t i o n s u s i n g t h e u s u a l s h e l l m o d e l /. s
f o r m h a v e a l s o b e e n p e r f o r m e d but g e n e r a l l y (5)
seems superior. The results for single particle
0.0
0.0
0.0
l
s p l i t t i n g s u s i n g (5) d e p e n d r a t h e r s e n s i t i v e l y on
t h e e q u i l i b r i u m r m s r a d i u s of t h e n u c l e u s a n d
t h u s s p i n - o r b i t s p l i t t i n g s a r e e x a g e r a t e d f o r the
MDI. T h i s s h o u l d be r e m e m b e r e d w h e n c o m p a r ing the splitting between occupied and non-occupied levels for the different interactions.
T h e m a i n a p p r o x i m a t i o n m a d e in the c a l c u l a t i o n s i s to r e p l a c e t h e t r u e d e n s i t y f o r t h e s y s t e m at a n y p a r t of t h e c a l c u l a t i o n by a s i n g l e
c y l i n d r i c a l g a u s s i a n r e p r e s e n t a t i o n of the d e n sity which has the same z 2 and r2 as the true
d e n s i t y a n d w h i c h i s n o r m a l i z e d to g i v e the d e s i r e d n u m b e r of p a r t i c l e s . O t h e r w i s e t h e d e n s i t y
is treated self-consistently until density convergence is obtained. Previous investigations
have shown that this is a fairly reliable approxim a t i o n f o r a l l but the a s y m m e t r i c ( o r t r i a x i a l )
s t a t e s , e.g. the 4 p - 4 h 1 6 0 e x c i t e d s t a t e , 2 4 M g
a n d 32S, w h o s e a s y m m e t r y m a y b e g r e a t l y e x a g gerated. However, there is some compensating
cancellation even for these cases since the app r o x i m a t i o n l e a d s to too h i g h a d e n s i t y i n s o m e
p a r t s of t h e n u c l e u s a n d too low i n o t h e r p a r t s .
In any e v e n t t h e u s e of t h e s a m e a p p r o x i m a t i o n
f o r a l l i n t e r a c t i o n s i s s u f f i e n t l y c o n s i s t e n t to
a l l o w q u a l i t a t i v e s t a t e m e n t s to be m a d e w i t h
some confidence.
V o l u m e 36B, n u m b e r 1
PHYSICS
LETTERS
9 A u g u s t 1971
Table 2
Some s i n g l e p a r t i c l e e n e r g i e s of n u c l e i f o r d i f f e r e n t i n t e r a c t i o n s . T h e f i r s t e n e r g y is the p r o t o n s i n g l e p a r t i c l e st'~te
and the s e c o n d e n e r g y is the n e u t r o n s i n g l e p a r t i c l e s t a t e . F o r the s p h e r i c a l 1 6 0 g r o u n d s t a t e the s i n g l e p a r t i c l e
st:ires a r e the l S l / 2 , l p l / 2 and l d 5 / 2 s t a t e s . F o r 40Ca the s t a t e s a r e the l s l / 2 , 2 S l / 2 and l f 7 / 2 s t a t e s .
] Lowest single particle energy
(MeV)
E n e r g y of l a s t o c c u p i e d s t a t e
]
E n e r g y of f i r s t u n o c c u p i e d s t a t e
(MeV)
(MeV)
VA
MDI
MDIK
VA
MDI
MDIK
VA
MDI
MD]K
-39.9
-43.0
-45.8
-49.4
-46.7
-50.2
-17.3
-20.3
-15.2
-1~.6
-16.6
-19.8
- 2.1
- 5.5
- 3.1
7.0
+ 0.4
- 3.5
-35.1
-37.9
-40.6
-43.9
-36.9
-39.9
-14.8
-17.5
-17.3
-20.3
-17.6
-20.4
- 5.7
- 8.3
- 4.8
8.3
- 5.9
- 9.2
20Ne
-41.0
-44.8
-46.9
-51.2
-47.7
-51.9
-15.6
-19.1
-17.3
-21.2
-16.9
-20.6
- 6.8
-10.6
7.3
-11.6
- 7.7
-11.8
2-tMg
-43.4
-47.8
-48.6
-53.6
-49.9
-54.8
-14.9
-19.J
-15.0
-19.6
-15.4
-19,7
- '7.3
-11.7
7.2
-12.3
- 7,1
-11,8
2~3Si
Oblate s t a t e
-45.2
-50.3
-49.8
-55.6
-52.1
-57.8
-16.2
-20.8
-15.9
-21.1
-16.5
-21,6
- ~.6
-12.7
5.6
-11.3
- 6.8
-12.3
2SSi
Prolate state
32 S
Oblate s t a t e
32 s
Prolate state
-45.5
-50.6
-50.7
-56.5
-52.6
-58.3
-14.1
-12.2
-1 3 .4
- 8.5
- 8.2
-
-18.9
-17.5
-18.5
-13.6
-I3,8
-13.2
-47.6
-53,3
-51.5
-58.0
-54.'7
-61.1
-15.2
-20.6
-13.6
-19.5
-1,t.5
-2003
- 8.7
-14,3
6.2
-12,5
- 7.5
-13.6
-47.4
-53.1
-51.6
-58.1
-54.4
-6o.8
-15.2
-20.5
-13.6
-19.6
-14.4
-20.2
- 8.7
-1-i.4
- 5.9
-12,3
- 6.9
-13.2
36Ar
-49.3
-55.7
-52.6
-59.8
-57.0
-64.2
-15.3
-21.3
-11.9
-1~.4
-14.0
-20.4
- 7.5
-13.8
- 7.5
- 14.3
- 6.5
-13.1
40Ca
-58.1
-50.9
-54.3
-59.1
i -15.8
-22.6
-11.5
-18.8
-15.0
-22.1
- 5.8
-12.7
- 6.1
-13.6
- 4.0
-11.5
Interaction
160
Ground s t a t e
10 O
4p-4h state
-62.3
-67.1 j
T h e r e s u l t s o f t h e s e c a l c u l a t i o n s a r e s h o w n in
two tables. Table 1 gives the Hartree-Fock
binding energies and nuclear shapes of the nuclei
studied for the different forces. The charge radii,
corrected for finite proton size, are consistently
about 0.1 fm larger than the nuclear radii, and
Q JR 2 i s v e r y s i m i l a r to t h e n u c l e a r v a l u e . T h e
numbers in parenthesis
are the corresponding
MINDET, single determinant,
values. Table 2
lists some of the single particle properties
of
the different nuclei.
The main conclusions are that the MDI gives
systematically
smaller values for the rms radii
a n d i n t h e c a s e of 1 6 0 a n d 4 0 C a , w i t h e x p e r i m e n t a l v a l u e s of 2 . 7 0 f m a n d 3 . 4 9 f m r e s p e c t i v e l y , t h e s e r a d i i a r e t o o s m a l l by 5 - 10%. T h e
finite-range
V A g i v e s r a d i i w h i c h a r e a t m o s t 4%
too large. The MDIK radii are larger than for
t h e M D I a n d i n f a c t s o m e w h a t b e t t e r t h a n f o r V A.
T h e b i n d i n g e n e r g i e s f o r VA a n d M D I K a r e b e t t e r
than for the MDI which are too small.
(Q/R 2 and
The MDI and MDIK deformations
ASYM) are systematically
l a r g e r t h a n f o r VA,
whose value for 20Ne compares well with other
calculations [17-20]. Despite many recent innovations including the reorientation
effect in
7.8
coulomb excitation [21], experimental
data does
not pin down this quadrupole moment very accurately. Recent work, summarized
in ref. [22],
i n d i c a t e s a q u a d r u p o l e m o m e n t of b e t w e e n 0 . 4 0
and 0.84 barn*, which, assuming R = 2.8 fm
corresponds
to Q+R 2 i n t h e r a n g e 0 . 2 6 to 0 . 5 4 .
In a d d i t i o n , S t a m p ' s e s t i m a t e of Q R 2 b a s e d o n
experimental
d a t a i s 0 . 8 9 [17]. H e n c e a l t h o u g h
MDI and MDIK do have somewhat larger deform a t i o n s t h a n VA t h e y a r e n o t i n s e r i o u s c o n f l i c t
with experiment.
The asymmetry
of (4p-4h) 160
and 24Mg do conflict with other calculations using
a cartesian basis [18], but we do not take our
values seriously for these cases.
The MDI and MDIK single particle energies
are systematically
d e e p e r t h a n VA b u t t h e v a l u e s
are not unreasonable.
The gap between occupied
a n d u n o c c u p i e d l e v e l s in 1 6 0 a n d 4 0 C a i s s m a l l e r
for the MDI than for the MDIK but this is mainly
a t t r i b u t a b l e to t h e s m a l l e r r a d i i a n d c o n s e q u e n t l y
stronger resulting spin-orbit interaction.
It i s i n t e r e s t i n g to o b s e r v e t h a t a l l t h r e e
* The quadrupole m o m e n t s quoted h e r e a r e
< ~ i ( 3z2 - r ~ ) ) . and d i f f e r by a f a c t o r of A with
t h o s e in table 1,
Volume 36B, n u m b e r 1
PHYSICS
f o r c e s p r o d u c e m o r e b i n d i n g in t h e o b l a t e s t a t e
of 28Si t h a n i n t h e p r o l a t e s t a t e . T h e e n e r g y d i f f e r e n c e b e t w e e n the two i s a v e r y s e n s i t i v e f u n c t i o n of t h e s p i n - o r b i t s t r e n g t h , a n d t h e o b l a t e
state in particular has both energy and deformat i o n w h i c h i s m o s t s e n s i t i v e to t h e s p i n - o r b i t
s t r e n g t h . ( T h i s p o i n t h a s a l s o b e e n n o t e d by
R i p k a [23]. ) In f a c t i n t h e a b s e n c e of s p i n - o r b i t ,
o r w i t h j u s t a p u r e / . s w i t h the s t r e n g t h to s p l i t
t h e p - s t a t e s i n 1 6 0 c o r r e c t l y , the p r o l a t e s t a t e
c o n t a i n s m o r e b i n d i n g [13].
A s i m i l a r f e a t u r e i s e v i d e n t in 32S w h e r e a
slightly triaxial, but predominantly oblate configuration has energy nearly degenerate with an
axially-symmetric prolate solution. The singlep a r t i c l e e n e r g i e s of e a c h s o l u t i o n a r e v e r y s i m i l a r , but t h e y a p p e a r n o t to be t h e s a m e i n t r i n s i c
s t a t e b e c a u s e of t h e i r v e r y d i f f e r e n t d e f o r m a t i o n s .
H o w e v e r , o t h e r a u t h o r s [18] c o n s i d e r , w i t h o u t
e x p l a n a t i o n , t h e t r i a x i a l s o l u t i o n to b e s t d e s c r i b e
t h e g r o u n d s t a t e of 32S. R i p k a [23] h a s s t u d i e d
t h e e f f e c t of s p i n o r b i t ( s i m p l e / . s ) s t r e n g t h on
t h e e n e r g i e s of v a r i o u s i n t r i n s i c c o n f i g u r a t i o n s .
T h e m a i n c o n c l u s i o n to be d r a w n f r o m t h i s
w o r k i s t h a t t h e MDI i s p r o b a b l y u n s u i t a b l e f o r
variational calculations in heavy nuclei since it
w o u l d l e a d to too s m a l l n u c l e i a n d too l a r g e d e formations. Smaller deformations can probably
be a c h i e v e d by r e d u c i n g t h e i m p o r t a n c e of t h e
p2 t e r m s a n d a t t r i b u t i n g m o r e of t h e s a t u r a t i o n
to d e n s i t y - d e p e n d e n t t e r m s . H o w e v e r , t h e i m p r o v e d r e s u l t s f o r t h e MDIK, w h i c h i s by no
means the optimum delta function interaction,
i n d i c a t e s t h a t a f o r c e of t h i s t y p e w i t h a p r o p e r
compressibility K should be suitable for calculat i o n s of the p r o p e r t i e s of h e a v y n u c l e i , if i n a d dition the force contains spin and isospin exchange mixtures which will allow for correct
symmetry energies. The symmetry energy does
n o t i n f l u e n c e t h e p r o p e r t i e s of t h e N = Z n u c l e i
considered in this work, but would play an ext r e m e l y i m p o r t a n t r o l e i n t h e p r o p e r t i e s of h e a v y
nuclei with large neutron excess.
LETTERS
9 August 1971
T h e a u t h o r s w o u l d l i k e to t h a n k M r . R o b i n
Griffin, who determined the parameters for the
MDIK a n d D r . H. C. P a u l i f o r m a n y s t i m u l a t i n g
discussions.
References
[1] R. Griffin, C. Ko, It. C. Pauli and A. B. Voikov.
work in p r o c e s s .
[2] D. Vautherin and D. M. Brink. Phys. L e t t e r s 32B
(1970) 149;
D. Vautherin, M. V6n6roni and D. M. Brink, Phys.
L e t t e r s 33B (1970) 381.
[3] T . H . R . Skyrme, Phil. Mag. 1 (1956) 1043. Nucl.
Phys. 6 (1959) 615.
]4] S. A. Moszkowski, Phys. Rev. C 2 (1970) 402.
[5] T . T . S . Kuo and G . E . B r o w n , Phys. L e t t e r s 18
(1965) 54.
[6] R. K. Bhaduri and C. S. Warke, Phys. Rev. L e t t e r s
20 (1968) 1379.
[7] A.B. Vo[kov, Nucl. Phys. A141 (1970) 337.
[8] T. H. Ho and A. B. VoIkov, Phys. L e t t e r s 31B (1970)
259.
[9] A. B. Volkov, unpublished.
[10] D.J, Hughes, Ph.D. Thesis. McMaster University
(1970), unpublished.
[11] M. R. Manning, Ph.D. Thesis, McMaster University (1967), unpublished.
[12] K. H. Lassey, unpublished.
[13] M. R. Manning and A.B. Volkov. Phys. L e t t e r s
26B (1967) 60.
[14] W.I. van Hij and C . T . H e s s , Nucl. Phys. A142
(1970) 72.
[15] R. R. Scheerbaum, Ph. D. Thesis, Cornell University (1969), unpublished.
[16] J . W . Negele, Phys. Rev. C 1 (1970) 1260.
[17] A . P . Stamp, Phys. L e t t e r s 33B (1970) 257.
[18] J. Zofka and G. Ripka, Phys. L e t t e r s 34B (1971) 10;
G. Ripka, p r e p r i n t (from "International Centre
for T h e o r e t i c a l P h y s i c s " . to be published in the
Proe. "Nuclear Structure Symposium of the
Thousand Lakes", Jyvaskyia. Finland, 1970).
[19] D. G. Vautherin, private communication.
[20J S . J . K r e i g e r , Phys. Rev. C 1 (1970) 76.
[21] K. Nakai, F.S. Stephens and R. M. Diamond, Nucl.
Phys. A 1 5 0 (1970) 114.
[22] H. Rebel, G.W. Schweiner, J. Specht, G. Schatz,
R. LBhken, D. Habs, G. Hauser and H. KleweNebenius, Phys. Rev. L e t t e r s 26 (1971) 1190.
[23] G. Ripka, Advances in Nuclear Physics, Vol. I
(Plenum P r e s s , New York, 1968).