Applied Mathematics and Computation 168 (2005) 866–876
www.elsevier.com/locate/amc
Romberg integration for fuzzy functions
Tofigh Allahviranloo
Department of Mathematics, Science and Research Branch, Islamic Azad University,
Post code 14778, Tehran, Hesarak, Poonak, Iran
Abstract
In this paper the integration formulas of Newton CotÕs methods with positive coefficient for fuzzy integrations in [T. Allahviranloo, Newton CotÕs methods for integration
of fuzzy functions, in press] are considered and then are followed by Romberg integration to obtain improvements of the approximations of fuzzy integrations. The proposed
algorithm is illustrated by solving some numerical examples.
Ó 2004 Elsevier Inc. All rights reserved.
Keywords: Romberg integration; Newton CotÕs methods; Fuzzy integral
1. Introduction
With consideration of approximation theory, the integration problem plays
major role in various areas such as mathematics, physics, statistics, engineering
and social sciences. Since in many applications at least some of the systemÕs
parameters and measurements are represented by fuzzy rather than crisp
numbers, it is important to develop fuzzy integration and solve them. The
concept of fuzzy numbers and arithmetic operations with these numbers
were first introduced and investigated by Zadeh [3] and others. The topic of
E-mail address:
[email protected]
0096-3003/$ - see front matter Ó 2004 Elsevier Inc. All rights reserved.
doi:10.1016/j.amc.2004.09.036
T. Allahviranloo / Appl. Math. Comput. 168 (2005) 866–876
867
the Richardson extrapolation method for improving of the approximations
of fuzzy differential equations is first introduced by Abbasbandy and Allahviranloo [2]. The topic of fuzzy integration is discussed by [9] and then is
followed by numerical methods (Newton CotÕs) in [1]. The structure of this
paper is organized as follows:
In Section 2, we bring some basic definitions and results on fuzzy numbers and fuzzy integrations and the integration formulas of Newton CotÕs
methods for fuzzy integration with PeanoÕs error representation theorem and
convergence theorem. In Section 3, we introduce the Romberg method for
improving of the solutions of fuzzy integrations. The proposed algorithm is
illustrated by solving some examples in Section 4 and conclusions are drawn
in Section 5.
2. Preliminaries
We represent an arbitrary fuzzy number by an ordered pair of functions
ðuðrÞ; uðrÞÞ; 0 6 r 6 1; which satisfy the following requirements:
1. u(r) is a bounded left continuous non decreasing function over [0,1].
2. uðrÞ is a bounded left continuous non increasing function over [0,1].
3. uðrÞ 6 uðrÞ; 0 6 r 6 1.
A crisp number a is simply represented by uðrÞ ¼ uðrÞ ¼ a; 0 6 r 6 1: The
set of all the fuzzy numbers is denoted by E1.
Lemma 2.1. Let v, w 2 E1 and s be real number. Then for 0 6 r 6 1
u = v if and only if u(r) = v(r) and uðrÞ ¼ vðrÞ,
v þ w ¼ ðvðrÞ þ wðrÞ; vðrÞ þ wðrÞÞ,
v w ¼ ðvðrÞ wðrÞ; vðrÞ wðrÞÞ,
v:w ¼ ðminfvðrÞ wðrÞ; vðrÞ wðrÞ; vðrÞ wðrÞ; vðrÞ wðrÞg,
maxfvðrÞ wðrÞ; vðrÞ wðrÞ; vðrÞ wðrÞ; vðrÞ wðrÞgÞ,
sv ¼ sðvðrÞ; vðrÞÞ: See [8].
E1 with addition and multiplication as defined by Lemma 2.1 is a convex
cone which is then embedded isomorphically and isometrically into a Banach
space.
Definition 2.1. For arbitrary fuzzy numbers u ¼ ðu; uÞ and u ¼ ðv; vÞ the
quantity
868
T. Allahviranloo / Appl. Math. Comput. 168 (2005) 866–876
Dðu; vÞ ¼ sup fmax½juðrÞ vðrÞj; juðrÞ vðrÞj g
06r61
is the distance between u and v.
It is shown [6] that E1, D is a complete metric space.
Definition 2.2. A function f : R1 ! E1 is called a fuzzy function. If for arbitrary
fixed t0 2 R1 and > 0, a d > 0 such that
jt t0 j < d ) D½f ðtÞ; f ðt0 Þ <
exists, f is said to be continuous.
Throughout this work we also consider fuzzy functions which are defined
only over a finite interval [a, b]. We now follow Goetschel and Voxman [5]
and define the integral of a fuzzy function using the Rieman integral concept.
Definition 2.3. Let f : [a, b] ! E1. For each partition P = {t0, t1, . . . , tn} of [a, b]
and for arbitrary ni : ti1 6 ni 6 ti, 1 6 i 6 n, let
n
X
f ðni Þðti ti1 Þ:
Rp ¼
i¼1
The definite integral of f(t) over [a, b] is
Z b
f ðtÞ dt ¼ lim Rp ; max jti ti1 j ! 0
16i6n
a
provided that this limit exists in the metric D.
If the fuzzy function f(t) is continuous in the metric D, its definite integral
exists [5]. Furthermore,
! Z
Z b
b
f ðt; rÞ dt;
f ðt; rÞ dt ¼
a
Z
b
f ðt; rÞ dt
a
!
a
¼
Z
ð2:1Þ
b
f ðt; rÞ dt:
a
It should be noted that the fuzzy integral can be also defined using the Lebesgue-type approach [4,7]. More details about properties of the fuzzy integral are
given in [5,4]. From [1], let f be a fuzzy function. For any natural number n, the
Newton CotÕs formulas
Z b
n
X
ba
;
ð2:2Þ
fi ai þ E; f i ¼ f ða þ ihÞ; h ¼
f ðxÞ dx ¼ h
n
a
i¼1
T. Allahviranloo / Appl. Math. Comput. 168 (2005) 866–876
provide approximate values for
follows:
Z
b
f ðx; rÞ dx ¼ h
a
Z
n
X
Rb
a
f ðxÞ dx. The parametric form of (2.2) is as
ai f ðxi ; rÞ þ Eðf ; rÞ;
i¼1
b
f ðx; rÞ dx ¼ h
a
n
X
869
ð2:3Þ
ai f ðxi ; rÞ þ Eðf ; rÞ; 0 6 r 6 1:
i¼1
P
The weights ai, i = 1, . . . , n, are rational numbers with the property ni¼1 ai ¼ n:
This follows (2.3) when applied to f ðx; rÞ ¼ f ðx; rÞ ¼ 1: It can be shown that
the approximation error may be expressed as follows:
Eðf ; rÞ ¼ hpþ1 K f ðpÞ ðn; rÞ;
Eðf ; rÞ ¼ hpþ1 K f
ðpÞ
n 2 ða; bÞ;
ð2:4Þ
ðn; rÞ;
n 2 ða; bÞ; 0 6 r 6 1:
Here (a, b) denotes the open interval from a to b. The values of p and K depend
only on n but not on the integrand f. For large n, some of the values ai become
negative and the corresponding formulas are unsuitable for numerical purposes, as cancellations tend to occur in computing the sum (2.4). Let
Qðf ; rÞ ¼ h
n
X
ai f ðxi ; rÞ;
i¼1
Qðf ; rÞ ¼ h
n
X
ð2:5Þ
ai f ðxi ; rÞ;
0 6 r 6 1:
i¼1
Thus from (2.3) we have
Iðf ; rÞ ¼
Z
b
f ðx; rÞdx ¼ Qðf ; rÞ þ Eðf ; rÞ;
a
Iðf ; rÞ ¼
Z
ð2:6Þ
b
f ðx; rÞdx ¼ Qðf ; rÞ þ Eðf ; rÞ;
0 6 r 6 1:
a
The following theorem is proving that Qðf ; rÞ; Qðf ; rÞ converge to
Iðf ; rÞ; Iðf ; rÞ respectively.
Theorem 2.1. If f(t) is continuous (in the metric D). The convergence of
Qðf ; rÞ; Qðf ; rÞ to Iðf ; rÞ; Iðf ; rÞ, respectively is uniform in r.
Proof. See [1]. h
870
T. Allahviranloo / Appl. Math. Comput. 168 (2005) 866–876
2.1. PeanoÕs error representation
From (2.3) we have
Eðf ; rÞ ¼ Iðf ; rÞ Qðf ; rÞ;
Eðf ; rÞ ¼ Iðf ; rÞ Qðf ; rÞ;
ð2:7Þ
0 6 r 6 1:
The integration error E(f) is a linear operator in parametric form
Eðaf ðrÞ þ gðrÞÞ ¼ aEðf ; rÞ þ Eðg; rÞ;
Eðaf ðrÞ þ gðrÞÞ ¼ aEðf ; rÞ þ Eðg; rÞ;
for f ; g 2 Ve ; a 2 R; 0 6 r 6 1 on some suitable linear fuzzy function space Ve .
The following elegant fuzzy integral representation of the error E(f) is a classical result due to Peano.
Theorem 2.2. Suppose E(p) = 0 holds for all p 2 Pn, that is, every polynomial
whose degree does not exceed n is integrated exactly. Them for all fuzzy functions
in parametric form f ðrÞ; f ðrÞ 2 C nþ1 ½a; b ; 0 6 r 6 1,
Z b
Eðf ; rÞ ¼
f nþ1 ðt; rÞKðtÞ dt;
a
ð2:8Þ
Z b
nþ1
f ðt; rÞKðtÞ dt; 0 6 r 6 1;
Eðf ; rÞ ¼
a
where
1
n
KðtÞ :¼ Ex ½ðx tÞþ ;
n!
ðx
n
tÞþ
:¼
n
ðx tÞ ; x P t;
0;
x < t;
n
and Ex ½ðx tÞþ when the latter is considered as a function in x.
Proof. See [1]. h
3. Romberg integration
Romberg integration uses the Composite Trapezoidal rule to give preliminary approximations and then applies the Richardson extrapolation process to
obtain improvements of the approximations. Recall from [2] that Richardson
extrapolation can be performed on any approximation procedure of the form
M N ðhÞ ¼ K 1 h þ K 2 h2 þ þ K n hn ;
where the K1, K2, . . . , Kn are constants and N(h) is an approximation to the unknown value M. The truncation error in this formula is dominated by K1h
871
T. Allahviranloo / Appl. Math. Comput. 168 (2005) 866–876
when h is small, so this formula gives O(h) approximations. RichardsonÕs
extrapolation uses an averaging technique to produce formulas with higherorder truncation error. In this section we will use extrapolation to approximate
definite fuzzy integral. To begin the presentation of the Romberg integration
scheme, recall that the Composite Trapezoidal rule for approximate definite
integral of a fuzzy function f on interval [x0, xm] = [a, b] using m subintervals is
"
#
m1
X
h
Iðf ; rÞ ¼
f ðx0 ; rÞ þ 2
f ðxi ; rÞ þ f ðxm ; rÞ þ Eðf ; rÞ;
2
i¼1
"
#
m1
X
h
f ðx0 ; rÞ þ 2
f ðxi ; rÞ þ f ðxm ; rÞ þ Eðf ; rÞ; 0 6 r 6 1:
Iðf ; rÞ ¼
2
i¼1
ð3:1Þ
where
h2
ðb aÞf ð2Þ ðn; rÞ;
12
h2
ð2Þ
Eðf ; rÞ ¼ ðb aÞf ðn; rÞ;
12
Eðf ; rÞ ¼
ð3:2Þ
n; n 2 ½x0 ; xn ; 0 6 r 6 1 [1]:
We first obtain Composite Trapezoidal rule approximations with m1 = 1,
m2 = 2, m3 = 4, . . . , and mn = 2n1, where n is positive integer. The values of
the step size hk corresponding to mk are hk = (ba)/mk = (ba)/2k1. With this
notion the Trapezoidal rule rule becomes
"
#
k1
2X
1
hk
Iðf ; rÞ ¼
f ðx0 ; rÞ þ 2
f ðxi ; rÞ þ f ðxm ; rÞ þ Eðf ; rÞ;
2
i¼1
"
#
k1
2X
1
hk
f ðx0 ; rÞ þ 2
f ðxi ; rÞ þ f ðxm ; rÞ þ Eðf ; rÞ; 0 6 r 6 1;
Iðf ; rÞ ¼
2
i¼1
ð3:3Þ
where
h2k
ðb aÞf ð2Þ ðn; rÞ;
12
h2
ð2Þ
Eðf ; rÞ ¼ k ðb aÞf ðn; rÞ;
12
Eðf ; rÞ ¼
ð3:4Þ
n; n 2 ½x0 ; xn ; 0 6 r 6 1:
If the notions Qk,1(f;r) and Qk,1(f;r) are introduced to denote the portion of
Eqs. (3.3) and (3.4) used for the Trapezoidal approximation, then:
Q1;1 ðf ; rÞ ¼
h1
½f ðx0 ; rÞ þ f ðxn ; rÞ ;
2
Q1;1 ðf ; rÞ ¼
h1
½f ðx0 ; rÞ þ f ðxn ; rÞ ;
2
872
T. Allahviranloo / Appl. Math. Comput. 168 (2005) 866–876
h2
½f ðx0 ; rÞ þ 2f ðx0 þ h2 Þ þ f ðxn ; rÞ
2
i
xn x0 h
xn x0
¼
;r
f ðx0 ; rÞ þ f ðxn ; rÞ þ 2f x0 þ
4
2
1
¼ ½Q1;1 ðf ; rÞ þ h1 f ðx0 þ h2 Þ ;
2
Q2;1 ðf ; rÞ ¼
h2
f ðx0 ; rÞ þ 2f ðx0 þ h2 Þ þ f ðxn ; rÞ
2
i
xn x0 h
xn x0
;r
f ðx0 ; rÞ þ f ðxn ; rÞ þ 2f x0 þ
¼
4
2
1
¼ Q1;1 ðf ; rÞ þ h1 f ðx0 þ h2 Þ ;
2
Q2;1 ðf ; rÞ ¼
1
Q3;1 ðf ; rÞ ¼ fQ2;1 ðf ; rÞ þ h2 ½f ðx0 þ h3 Þ þ f ðx0 þ 3h3 Þ g;
2
1
Q3;1 ðf ; rÞ ¼ fQ2;1 ðf ; rÞ þ h2 f ðx0 þ h3 Þ þ f ðx0 þ 3h3 Þ g;
2
and, in general
(
)
2k2
X
1
Qk1;1 ðf ; rÞ þ hk1
Qk;1 ðf ; rÞ ¼
f ðx0 þ ð2j 1Þhk Þ ;
2
j¼1
(
)
2k2
X
1
Qk1;1 ðf ; rÞ þ hk1
Qk;1 ðf ; rÞ ¼
f ðx0 þ ð2j 1Þhk Þ ; k ¼ 2; 3; . . . ; n:
2
j¼1
Richardson extrapolation will be used to speed the convergence. If f 2 C1[a, b],
the Composite Trapezoidal rule can be written with an alternative error term in
the form
Iðf ; rÞ Qk;1 ðf ; rÞ ¼
1
X
K i hk2i ¼ K 1 h2k þ
Iðf ; rÞ Qk;1 ðf ; rÞ ¼
K i h2i
k ;
i¼2
i¼1
1
X
1
X
K 0i hk2i
¼
K 01 h2k
þ
1
X
ð3:5Þ
K 0i h2i
k ;
i¼2
i¼1
where K i ; K 0i for each i are independent of hk and depends only on
ð2i1Þ
ð2i1Þ
f ð2i1Þ ðaÞ; f
ðaÞ and f ð2i1Þ ðbÞ; f
ðbÞ. With the Composite Trapezoidal
rule in this form, we can eliminate the term involving h2k by combining this
equation with its counterpart with hk replaced by hkþ1 ¼ h2k
873
T. Allahviranloo / Appl. Math. Comput. 168 (2005) 866–876
Iðf ; rÞ Qkþ1;1 ðf ; rÞ ¼
1
X
K i h2i
k
;
4i
2i
K 0i hkþ1
K 0i h2i
k
:
4i
i¼1
Iðf ; rÞ Qkþ1;1 ðf ; rÞ ¼
1
X
1
1
X
K i h2i
K 1 h2k X
k
þ
¼
4
22i
i¼2
i¼1
1
1
0 2i
0 2
X
X
K i hk
K h
¼
¼ 1 kþ
2i
4
2
i¼1
i¼2
2i
K i hkþ1
¼
i¼1
ð3:6Þ
Subtracting Eq. (3.5) from 4 times (3.6) and simplifying gives the Oðh4k Þ
formula
"
#
1
X
Qkþ1;1 ðf ; rÞ Qk;1 ðf ; rÞ
K i h2i
2i
k
hk
Iðf ; rÞ Qkþ1;1 ðf ; rÞ þ
¼
3 4i1
3
i¼2
1
X
K i 1 4i1 2i
¼
hk ;
3
4i1
i¼2
"
#
1
X
Qkþ1;1 ðf ; rÞ Qk;1 ðf ; rÞ
K 0i h2i
2i
k
Iðf ; rÞ Qkþ1;1 ðf ; rÞ þ
hk
¼
3
3 4i1
i¼2
1
X
K 0i 1 4i1 2i
¼
hk :
3
4i1
i¼2
Extrapolation can now be applied to this formula to obtain an Oðh6k Þ result,
and so on. To simplify the notion we define
Qk;1 ðf ; rÞ Qk1;1 ðf ; rÞ
;
3
Qk;1 ðf ; rÞ Qk1;1 ðf ; rÞ
Qk;2 ðf ; rÞ ¼ Qk;1 ðf ; rÞ þ
3
Qk;2 ðf ; rÞ ¼ Qk;1 ðf ; rÞ þ
for each k = 2, 3, . . . , n, and apply the Richardson extrapolation procedure to
these values. Continuing this notion, we have, for each k = 2, 3, . . . , n and
j = 2, . . . , k, an Oðh2j
k Þ approximation formula defined by
Qk;j ðf ; rÞ ¼ Qk;j1 ðf ; rÞ þ
Qk;j ðf ; rÞ ¼ Qk;j1 ðf ; rÞ þ
Qk;j1 ðf ; rÞ Qk1;j1 ðf ; rÞ
4j1 1
Qk;j1 ðf ; rÞ Qk1;j1 ðf ; rÞ
4j1 1
;
:
We generate approximations until not only
jQn1;n1 ðf ; rÞ Qn;n ðf ; rÞj;
jQn1;n1 ðf ; rÞ Qn;n ðf ; rÞj
are within the tolerance, but also
jQn2;n2 ðf ; rÞ Qn1;n1 ðf ; rÞj;
jQn2;n2 ðf ; rÞ Qn1;n1 ðf ; rÞj:
874
T. Allahviranloo / Appl. Math. Comput. 168 (2005) 866–876
Although not a universal safeguard, this will ensure that two differently generated sets of approximations agree within the specified tolerance before
Qn;n ðf ; rÞ; Qn;n ðf ; rÞ, are accepted as sufficiently accurate.
4. Numerical examples
In this section we illustrate and compared the methods in Sections 2 and 3
by solving some numerical examples.
Example 4.1 [1]. Consider the following fuzzy integral:
Z
1
0
e
kx2 dx;
e
k ¼ ðr 1; 1 rÞ;
the exact solution is 13 ðr 1; 1 rÞ.
h ¼ 1;
1
h¼ ;
2
1
Q1;1 ðf ; rÞ ¼ ðr 1Þ;
2
3
Q2;1 ðf ; rÞ ¼ ðr 1Þ;
8
Q1;2 ðf ; rÞ ¼
4Q2;1 ðf ; rÞ Q1;1 ðf ; rÞ 1
¼ ðr 1Þ;
3
3
Fig. 1.
ð4:1Þ
875
T. Allahviranloo / Appl. Math. Comput. 168 (2005) 866–876
and
1
Q1;1 ðf ; rÞ ¼ ðr 1Þ;
2
1
3
h ¼ ; Q2;1 ðf ; rÞ ¼ ðr 1Þ;
2
8
4Q2;1 ðf ; rÞ Q1;1 ðf ; rÞ 1
Q1;2 ðf ; rÞ ¼
¼ ðr 1Þ:
3
3
h ¼ 1;
It is clear that Q1,2 is the exact solution. The exact solution and Trapezoidal
solutions with h = 1 and Romberg method are plotted and compared in Fig. 1.
Example 4.2 [1]. Consider the following fuzzy integral:
Z
1
0
e
kx4 dx;
e
k ¼ ðr; 2 rÞ;
ð4:2Þ
the exact solution is 15 ðr; 2 rÞ.
h ¼ 1;
Q1;1 ðf ; rÞ ¼ 0:5r;
1
h ¼ ; Q2;1 ðf ; rÞ ¼ 0:28125r; Q1;2 ðf ; rÞ ¼ 0:208333r;
2
1
h ¼ ; Q3;1 ðf ; rÞ ¼ 0:220703r; Q2;2 ðf ; rÞ ¼ 0:200521r;
4
Q1;3 ðf ; rÞ ¼ 0:2r;
and
h ¼ 1; Q1;1 ðf ; rÞ ¼ 0:5ð2 rÞ;
1
h ¼ ; Q2;1 ðf ; rÞ ¼ 0:28125ð2 rÞ; Q1;2 ðf ; rÞ ¼ 0:208333ð2 rÞ;
2
1
h ¼ ; Q3;1 ðf ; rÞ ¼ 0:220703ð2 rÞ; Q2;2 ðf ; rÞ ¼ 0:200521ð2 rÞ;
4
Q1;3 ðf ; rÞ ¼ 0:2ð2 rÞ:
Q1,3 is the exact solution.
5. Conclusion
In this work first we applied the Newton CotÕs method with positive coefficients to solve fuzzy integral over a finite interval [a, b] and then improved
solutions by using Romberg method with arbitrary tolerance. Since coefficients
of Newton CotÕs are positive so we have two crisp equations and we can use
Romberg method for two crisp equations.
876
T. Allahviranloo / Appl. Math. Comput. 168 (2005) 866–876
References
[1] T. Allahviranloo, Newton CotÕs methods for integration of fuzzy functions, in press.
[2] S. Abbasbandy, T. Allahviranloo, Extrapolation methods for improving solution of fuzzy
differential equations, Math. Comput. Appl. 9 (2) (2004) 205–214.
[3] L.A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning,
Inform. Sci. 8 (1975) 199–249.
[4] O. Kaleva, Fuzzy differential equations, FSS 24 (1987) 301–317.
[5] R. Goetschel, W. Voxman, Elementary calculus, FSS 18 (1986) 31–43.
[6] M.L. Puri, D. Ralescu, Fuzzy random variables, J. Math. Anal. Appl. 114 (1986) 409–422.
[7] M. Matloka, On fuzzy integrals, In: Proc. 2nd Polish Symp. on Interval and Fuzzy Math., Polite
chnika poznansk, (1987) 167–170.
[8] S. Seikkala, On the fuzzy initial value problem, Fuzzy Sets and Systems 24 (1987) 319–330.
[9] H.J. Zimmerman, Fuzzy Set Theory and its applications, Kluwer Academic, New York, 1996.