Applied Mathematics and Computation 166 (2005) 339–348
www.elsevier.com/locate/amc
Newton CotÕs methods for integration
of fuzzy functions
Tofigh Allahviranloo
Department of Mathematics, Science and Research Branch, Islamic Azad University,
Post code 14778, Hesarak, Poonak, Tehran, Iran
Abstract
In this paper the integration formulas of Newton CotÕs methods with positive coefficient for fuzzy integrations are discussed and then is followed by PeanoÕs error representation theorem and convergence theorem. The proposed algorithms are illustrated by
solving some numerical examples.
Ó 2004 Elsevier Inc. All rights reserved.
Keywords: Newton CotÕs methods; Fuzzy integral
1. Introduction
With consideration of approximation theory, the integration problem plays
major role in various areas such as mathematics, physics, statistics, engineering
and social sciences. Since in many applications at least some of the systemÕs
parameters and measurements are represented by fuzzy rather than crisp numbers, it is important to develop fuzzy integration and solve them. The concept
of fuzzy numbers and arithmetic operations with these numbers were first
E-mail addresses:
[email protected],
[email protected]
0096-3003/$ - see front matter Ó 2004 Elsevier Inc. All rights reserved.
doi:10.1016/j.amc.2004.04.110
340
T. Allahviranloo / Appl. Math. Comput. 166 (2005) 339–348
introduced and investigated by Zadeh [1] and . . . The topic of fuzzy integration
is discussed by [8]. The structure of this paper is organized as follows.
In Section 2, we bring some basic definitions and results on fuzzy numbers
and fuzzy integrations. In Section 3, we introduce the integration formulas of
Newton CotÕs methods for fuzzy integration with PeanoÕs error representation
theorem and convergence theorem. The proposed algorithms are illustrated by
solving some examples in Section 4 and conclusions are drawn in Section 5.
2. Preliminaries
We represent an arbitrary fuzzy number by an ordered pair of functions
ðuðrÞ;
uðrÞÞ, 0 6 r 6 1, which satisfy the following requirements:
1. u(r) is a bounded left continuous non decreasing function over [0, 1].
2. uðrÞ is a bounded left continuous non increasing function over [0, 1].
ðrÞ, 0 6 r 6 1.
3. uðrÞ 6 u
A crisp number a is simply represented by uðrÞ ¼ uðrÞ ¼ a, 0 6 r 6 1. The
set of all the fuzzy numbers is denoted by E1.
Lemma 2.1. Let v, w 2 E1 and s be real number. Then for 0 6 r 6 1
u = v if and only if uðrÞ ¼ vðrÞ and
uðrÞ ¼ vðrÞ,
ðrÞÞ,
v þ w ¼ ðvðrÞ þ wðrÞ; vðrÞ þ w
ðrÞ; vðrÞ wðrÞÞ,
v w ¼ ðvðrÞ w
ðrÞ; vðrÞ wðrÞ; vðrÞ w
ðrÞg;
v w ¼ ðminfvðrÞ wðrÞ; vðrÞ w
ðrÞ; vðrÞ wðrÞ; vðrÞ w
ðrÞgÞ,
maxfvðrÞ wðrÞ; vðrÞ w
sv ¼ sðvðrÞ; vðrÞÞ: See [6].
E1 with addition and multiplication as defined by Lemma 2.1 is a convex cone
which is then embedded isomorphically and isometrically in to a Banach
space.
Definition 2.1. For arbitrary fuzzy numbers u ¼ ðu; uÞ and u ¼ ðv; vÞ the
quantity
uðrÞ vðrÞjg
Dðu; vÞ ¼ sup fmax½juðrÞ vðrÞj; j
06r61
is the distance between u and v.
It is shown [4] that E1, D is a complete metric space.
T. Allahviranloo / Appl. Math. Comput. 166 (2005) 339–348
341
Definition 2.2. A function f : R1 ! E1 is called a fuzzy function. If for arbitrary
fixed t0 2 R1 and > 0, a d > 0 such that
jt t0 j < d ) D½f ðtÞ; f ðt0 Þ <
exists, f is said to be continuous.
Throughout this work we also consider fuzzy functions which are defined
only over a finite interval [a, b]. We now follow Goetschel and Voxman [3]
and define the integral of a fuzzy function using the Rieman integral concept.
Definition 2.3. Let f : [a, b] ! E1. For each partition P = {t0, t1, . . . , tn} of [a, b]
and for arbitrary ni : ti1 6 ni 6 ti, 1 6 i 6 n, let
Rp ¼
n
X
f ðni Þðti ti1 Þ:
i¼1
The definite integral of f(t) over [a, b] is
Z b
f ðtÞ dt ¼ lim Rp ; max jti ti1 j ! 0
16i6n
a
provided that this limit exists in the metric D.
If the fuzzy function f(t) is continuous in the metric D, its definite integral
exists [3]. Further more,
! Z
Z
b
b
f ðt; rÞ dt
a
Z
b
f ðt; rÞ dt
a
¼
!
f ðt; rÞ dt;
a
¼
Z
b
ð2:1Þ
f ðt; rÞ dt:
a
It should be noted that the fuzzy integral can be also defined using the
Lebesgue-type approach [2,5]. More details about properties of the fuzzy integral are given in [3,2].
3. Newton cot’s methods
Let f be a fuzzy function. For any natural number n, the Newton CotÕs
formulas
Z b
n
X
ba
;
ð3:2Þ
fi ai þ E; fi ¼ f ða þ ihÞ; h ¼
f ðxÞ dx ¼ h
n
a
i¼1
342
T. Allahviranloo / Appl. Math. Comput. 166 (2005) 339–348
Rb
provide approximate values for a f ðxÞ dx. The parametric form of (3.2) is as
follows:
Z b
n
X
ai f ðxi ; rÞ þ Eðf ; rÞ;
f ðx; rÞ dx ¼ h
a
Z
i¼1
b
f ðx; rÞ dx ¼ h
a
n
X
ð3:3Þ
ai f ðxi ; rÞ þ Eðf ; rÞ;
0 6 r 6 1:
i¼1
PnThe weights ai, i = 1, . . ., n, are rational numbers with the property
i¼1 ai ¼ n. This follows (3.3) when applied to f ðx; rÞ ¼ f ðx; rÞ ¼ 1. It can be
shown that the approximation error may be expressed as follows:
Eðf ; rÞ ¼ hpþ1 K f ðpÞ ðn; rÞ;
n 2 ða; bÞ;
ðpÞ
Eðf ; rÞ ¼ hpþ1 K f ð
n; rÞ;
n 2 ða; bÞ; 0 6 r 6 1:
ð3:4Þ
Here (a, b) denotes the open interval from a to b. The values of p and K depend only on n but not on the integrand f. For large n, some of the values ai
become negative and the corresponding formulas are unsuitable for numerical
purposes, as cancellations tend to occur in computing the sum (3.4). Let
n
X
ai f ðxi ; rÞ;
Qðf ; rÞ ¼ h
i¼1
Qðf ; rÞ ¼ h
n
X
ð3:5Þ
ai f ðxi ; rÞ;
0 6 r 6 1:
i¼1
Thus from (3.3) we have
Z b
f ðx; rÞ dx ¼ Qðf ; rÞ þ Eðf ; rÞ;
Iðf ; rÞ ¼
a
Z b
f ðx; rÞ dx ¼ Qðf ; rÞ þ Eðf ; rÞ;
Iðf ; rÞ ¼
ð3:6Þ
0 6 r 6 1:
a
The following theorem is proving that Qðf ; rÞ, Qðf ; rÞ converge to Iðf ; rÞ,
Iðf ; rÞ respectively.
Theorem 3.1. If f(t) is continuous (in the metric D). The convergence of
Qðf ; rÞ; Qðf ; rÞ to Iðf ; rÞ; Iðf ; rÞ, respectively is uniform in r.
Proof. The continuity of f(t) guarantees the existence of the definite of f(t), [3].
Thus Rp in Definition 2.3 converges to this integral in the metric D if
lim maxðti ti1 Þ ¼ 0:
ð3:7Þ
n!1
16i6n
T. Allahviranloo / Appl. Math. Comput. 166 (2005) 339–348
343
It is easily seen that the formulas (3.5) can be represented in the form Rp in
(2.3). For arbitrary Rp ¼ ðRp ; Rp Þ and Iðf Þ ¼ ðIðf ; rÞ; Iðf ; rÞÞ we have
n
h
io
DðRp ; f Þ ¼ sup max jRp ðrÞ Iðf ; rÞj; jRp ðrÞ Iðf ; rÞj
06r61
and since
lim DðRp ; Iðf ÞÞ ¼ 0;
n!1
maxðti ti1 Þ ! 0;
16i6n
we obtain that Rp ðrÞ; Rp ðrÞ converge uniformly to Iðf ; rÞ; Iðf ; rÞ, respectively.
Consequently, Qðf ; rÞ and Qðf ; rÞ (which a particular case of Rp ; Rp , since
(ti ti1) :¼ hai, i = 1, . . ., n) converge uniformly to Iðf ; rÞ; Iðf ; rÞ as well. This
concludes the proof of Theorem 3.1. h
3.1. Peano’s error representation
From (3.3) we have
Eðf ; rÞ ¼ Iðf ; rÞ Qðf ; rÞ;
Eðf ; rÞ ¼ Iðf ; rÞ Qðf ; rÞ;
ð3:8Þ
0 6 r 6 1:
The integration error E(f) is a linear operator in parametric form
Eðaf ðrÞ þ gðrÞÞ ¼ aEðf ; rÞ þ Eðg; rÞ;
Eðaf ðrÞ þ gðrÞÞ ¼ aEðf ; rÞ þ Eð
g; rÞ;
for f ; g 2 Ve , a 2 R, 0 6 r 6 1 on some suitable linear fuzzy function space Ve .
The following elegant fuzzy integral representation of the error E(f) is a classical result due to Peano.
Theorem 3.2. Suppose E(p) = 0 holds for all p 2 Õn, that is, every polynomial
whose degree does not exceed n is integrated exactly. Then for all fuzzy functions
in parametric form f ðrÞ; f ðrÞ 2 C nþ1 ½a; b, 0 6 r 6 1,
Z b
Eðf ; rÞ ¼
f nþ1 ðt; rÞKðtÞ dt;
a
Eðf ; rÞ ¼
Z
b
ð3:9Þ
nþ1
f ðt; rÞKðtÞ dt;
0 6 r 6 1;
a
where
1
n
KðtÞ :¼ Ex ½ðx tÞþ ;
n!
n
ðx
n
tÞþ
:¼
n
ðx tÞ ; x P t;
0;
x<t
and Ex ½ðx tÞþ when the latter is considered as a function in x.
344
T. Allahviranloo / Appl. Math. Comput. 166 (2005) 339–348
Proof. Consider the Taylor expansion of f(x), x 2 [a, b] at a, in parametric
form:
f ðnÞ ða; rÞ
ðx aÞn þ M n ðx; rÞ;
n!
ðnÞ
f ða; rÞ
0
f ðx; rÞ ¼ f ða; rÞ þ f ða; rÞðx aÞ þ þ
ðx aÞn þ M n ðx; rÞ;
n!
f ðx; rÞ ¼ f ða; rÞ þ f 0 ða; rÞðx aÞ þ þ
0 6 r 6 1:
ð3:10Þ
Its reminder term can be expressed in the form
Z x
Z
1
1 b nþ1
n
n
f nþ1 ðt; rÞðx tÞ dt ¼
f ðt; rÞðx tÞþ dt;
n! a
n! a
Z x
Z
1
1 b nþ1
nþ1
n
M n ðx; rÞ ¼
f ðt; rÞðx tÞ dt ¼
f ðt; rÞðx tÞnþ dt;
n! a
n! a
M n ðx; rÞ ¼
Applying the linear operator E to (3.10) gives
Z b
1
Eðf ; rÞ ¼ EðM n ; rÞ ¼ Ex
f nþ1 ðt; rÞðx tÞnþ dt ;
n!
a
Z b
1
nþ1
Eðf ; rÞ ¼ EðM n ; rÞ ¼ Ex
f ðt; rÞðx tÞnþ dt ;
n!
a
0 6 r 6 1:
ð3:11Þ
0 6 r 6 1:
ð3:12Þ
Since E(p) = 0 for p 2 Õn. For any 0 6 r 6 1, from [7], the entire operator Ex
commutes with integration and we obtain the desired result (3.9). h
3.2. Trapozedial integration rule
From (3.3) we have:
"
#
n1
X
1
1
Iðf ; rÞ ¼ h f ðx0 ; rÞ þ
f ðxi ; rÞ þ f ðxn ; rÞ þ Eðf ; rÞ;
2
2
i¼1
"
#
n1
X
1
1
Iðf ; rÞ ¼ h f ðx0 ; rÞ þ
f ðxi ; rÞ þ f ðxn ; rÞ þ Eðf ; rÞ;
2
2
i¼1
0 6 r 6 1;
ð3:13Þ
where
h2
ðb aÞf ð2Þ ðn; rÞ;
12
h2
ð2Þ
rÞ;
Eðf ; rÞ ¼ ðb aÞf ðn;
12
Eðf ; rÞ ¼
ð3:14Þ
n;
n 2 ½x0 ; xn ; 0 6 r 6 1:
T. Allahviranloo / Appl. Math. Comput. 166 (2005) 339–348
345
The following variant of the trapozedial sum is already a method of order 3:
"
#
n2
X
5
13
13
5
Iðf ; rÞ ¼ h
f ðx0 ; rÞ þ f ðx1 ; rÞ
f ðxi ; rÞ þ f ðxn1 ; rÞ þ f ðxn ; rÞ;
12
12
12
12
i¼2
"
#
n2
X
5
13
13
5
f ðxi ; rÞ þ f ðxn1 ; rÞ þ f ðxn ; rÞ;
f ðx0 ; rÞ þ f ðx1 ; rÞ
Iðf ; rÞ ¼ h
12
12
12
12
i¼2
0 6 r 6 1:
ð3:15Þ
3.3. Simpson integration rule
From (3.3) we have:
"
#
n1
n
1
4X
2X
1
f ðx0 ; rÞ þ
f ðx2iþ1 ; rÞ þ
f ðx2i ; rÞ f ðxn ; rÞ þ Eðf ; rÞ;
3
3 i¼0
3 i¼1
3
"
#
n1
n
X
X
1
4
2
1
f ðx2iþ1 ; rÞ þ
f ðx2i ; rÞ f ðxn ; rÞ þ Eðf ; rÞ;
Iðf ; rÞ ¼ h f ðx0 ; rÞ þ
3
3 i¼0
3 i¼1
3
Iðf ; rÞ ¼ h
0 6 r 6 1;
ð3:16Þ
where
h4
ðb aÞf ð4Þ ðn; rÞ;
180
h4
ð4Þ
ðb aÞf ð
n; rÞ;
Eðf ; rÞ ¼
180
Eðf ; rÞ ¼
ð3:17Þ
n;
n 2 ½x0 ; xn ; 0 6 r 6 1:
4. Numerical examples
In this section we illustrate the methods in Section 3 by solving some numerical examples.
Example 4.1. Consider the following fuzzy integral:
Z 1
e
k ¼ ðr 1; 1 rÞ;
kx2 dx; e
0
the exact solution is 13 ðr 1; 1 rÞ.
From trapozedial rule with h = 1:
1
Qðf ; rÞ ¼ ðr 1Þ;
2
f 00 ¼ 2ðr 1Þ;
1
Qðf ; rÞ ¼ ð1 rÞ;
2
00
f ¼ 2ð1 rÞ
ð4:18Þ
346
T. Allahviranloo / Appl. Math. Comput. 166 (2005) 339–348
and
1
1
Eðf ; rÞ ¼ ðr 1Þ;
Eðf ; rÞ ¼ ð1 rÞ;
6
6
it is clear that Eq. (3.8) holds. Now with h ¼ 12:
3
Iðf ; rÞ ¼ ðr 1Þ;
8
3
Iðf ; rÞ ¼ ð1 rÞ;
8
1
1
ðr 1Þ;
Eðf ; rÞ ¼ ð1 rÞ:
24
24
Eq. (3.8) holds too. The exact solution and trapozedial solutions with h = 1 and
h ¼ 12 are plotted and compared in Fig. 1.
Eðf ; rÞ ¼
Example 4.2. Consider the following fuzzy integral:
Z 1
e
k ¼ ðr; 2 rÞ;
kx4 dx; e
0
the exact solution is 15 ðr; 2 rÞ.
From Simpson rule with h ¼ 12:
Qðf ; rÞ ¼
5
r;
24
f 00 ¼ 24r;
Qðf ; rÞ ¼
5
ð2 rÞ;
24
00
f ¼ 24ð2 rÞ
and
Eðf ; rÞ ¼
1
r;
120
Eðf ; rÞ ¼
1
ð2 rÞ;
120
Fig. 1.
ð4:19Þ
T. Allahviranloo / Appl. Math. Comput. 166 (2005) 339–348
347
Fig. 2.
it is clear that Eq. (3.8) is hold. Now with h ¼ 14:
Iðf ; rÞ ¼
154
r;
768
Eðf ; rÞ ¼
3
r;
5760
Iðf ; rÞ ¼
154
ð2 rÞ;
768
Eðf ; rÞ ¼
3
ð2 rÞ:
5760
Eq. (3.8) holds too. The exact solution and trapozedial solutions with h ¼ 12 and
h ¼ 14 are plotted and compared in Fig. 2.
Example 4.3. Consider the following fuzzy integral:
Z 2
e
kx dx; e
k ¼ ðr; 2 rÞ;
ð4:20Þ
1
the exact solution is 32 ðr 2; rÞ.
From trapozedial rule with h = 1:
3
Qðf ; rÞ ¼ ðr 2Þ;
2
3
Qðf ; rÞ ¼ ðrÞ;
2
Eðf ; rÞ ¼ Eðf ; rÞ ¼ 0:
5. Conclusion
In this work we applied the Newton CotÕs method with positive coefficients
to solve fuzzy integral over a finite interval [a, b]. Since this integration yields
fuzzy number in parametric form, we used the parametric form of methods.
The integration of triangular fuzzy number is a triangular fuzzy number.
348
T. Allahviranloo / Appl. Math. Comput. 166 (2005) 339–348
References
[1] L.A. Zadeh, The concept of a linguistic variable and its application to approximate reasoning,
Inform. Sci. 8 (1975) 199–249.
[2] O. Kaleva, Fuzzy differential equations, FSS 24 (1987) 301–317.
[3] R. Goetschel, W. Voxman, Elementary calculus, FSS 18 (1986) 31–43.
[4] M.L. Puri, D. Ralescu, Fuzzy random variables, J. Math. Anal. Appl. 114 (1986) 409–422.
[5] M. Matloka, On fuzzy integrals, Proc. 2nd Polish Symp. on Interval and Fuzzy Mathematics,
Polite chnika poznansk, (1987) 167–170.
[6] S. Seikkala, On the fuzzy initial value problem, Fuzzy Sets and Systems 24 (1987) 319–330.
[7] J. Stoer, R. Bulirsch, Introduction to Numerical Analysis, Springer-Verlag, 1980.
[8] H.J. Zimmerman, Fuzzy Set Theory and its Applications, Kluwer Academic, New York, 1996.