Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
…
34 pages
1 file
Study of non-classical logics in Novosibirsk started in 60-th due to initiative and by supervision of A.I.Maltsev. His interest to this area was stimulated by the existence of an adequate algebraic semantics for the most known non-classical logics.
We give a proof-theoretic as well as a semantic characterization of a logic in the signature with conjunction, disjunction, negation, and the universal and existential quantifiers that we suggest has a certain fundamental status. We present a Fitch-style natural deduction system for the logic that contains only the introduction and elimination rules for the logical constants. From this starting point, if one adds the rule that Fitch called Reiteration, one obtains a proof system for intuitionistic logic in the given signature; if instead of adding Reiteration, one adds the rule of Reductio ad Absurdum, one obtains a proof system for orthologic; by adding both Reiteration and Reductio, one obtains a proof system for classical logic. Arguably neither Reiteration nor Reductio is as intimately related to the meaning of the connectives as the introduction and elimination rules are, so the base logic we identify serves as a more fundamental starting point and common ground between proponents of intuitionistic logic, orthologic, and classical logic. The algebraic semantics for the logic we motivate proof-theoretically is based on bounded lattices equipped with what has been called a weak pseudocomplementation. We show that such lattice expansions are representable using a set together with a reflexive binary relation satisfying a simple first-order condition, which yields an elegant relational semantics for the logic. This builds on our previous study of representations of lattices with negations, which we extend and specialize for several types of negation in addition to weak pseudocomplementation; in an appendix, we further extend this representation to lattices with implications. Finally, we discuss adding to our logic a conditional obeying only introduction and elimination rules, interpreted as a modality using a family of accessibility relations.
2009
In this chapter we determine the classes of S-algebras and of full models for several logics, especially for some which do not fit into the classical approaches to the algebraization of logic. We classify them according to several of the criteria we have been considering, i.e., the properties of the Leibniz, Tarski and Frege operators, which determine the classes of selfextensional logics, Fregean logics, strongly selfextensional logics, protoalgebraic logics, etc. We also study the counterexamples promised in the preceding chapters of this monograph. It goes without saying that the number of cases we have examined is limited, and that many more are waiting to be studied 32. In our view this is an interesting program, especially for non-algebraizable logics. Among those already proven in Blok and Pigozzi [1989a] not to be algebraizable we find many quasi-normal and other modal logics like Lewis' S1, S2 and S3, entailment system E, several purely implicational logics like BCI, the system R → of relevant implication, the "pure entailment" system E → , the implicative fragment S5 → of the Wajsbergstyle version of S5, etc. Other non-algebraizable logics not treated in the present monograph are Da Costa's paraconsistent logics C n (see Lewin, Mikenberg, and Schwarze [1991]), and the "logic of paradox" of Priest [1979] (see Pynko [1995]). This program is also interesting for some algebraizable logics whose class of Salgebras is already known, but whose full models have not yet been investigated; this includes Łukasiewicz many-valued logics (see Rodríguez, Torrens, and Verdú [1990]), BCK logic and some of its neighbours (see Blok and Pigozzi [1989a] Theorem 5.10), the equivalential fragments of classical and intuitionistic logics 32 The full models of several subintuitionistic logics have been determined in Bou [2001]; those of
Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 1974
Studia Logica, 1977
Logic Journal of The Igpl / Bulletin of The Igpl, 1999
In the study of Positive Modal Logic (PML) is initiated using standard Kripke semantics and the positive modal algebras (a class of bounded distributive lattices with modal operators) are introduced. The minimum system of Positive Modal Logic is the (∧, ∨, 2, 3, ⊥, )-fragment of the local consequence relation defined by the class of all Kripke models. It can be axiomatized by a sequent calculus and extensions of it can be obtained by adding sequents as new axioms. In [6] a new semantics for PML is proposed to overcome some frame incompleteness problems discussed in . The frames of this semantics consists of a set of indexes, a quasi-order on them and an accessibility relation. The models are obtained by using increasing valuations relatively to the quasiorder of the frame. This semantics is coherent with the dual structures obtained by developing the Priestley duality for positive modal algebras, one of the topics or the present paper, and can be seen also as arising from the Kripke semantics for a suitable intuitionistic modal logic. The present paper is devoted to the study of the mentioned duality as well as to proving some d-persistency results as well as a Sahlqvist Theorem for sequents and the semantics proposed in . Also a Goldblatt-Thomason theorem that characterizes the elementary classes of frames of that semantics that are definable by sets of sequents is proved.
Metascience, 2014
The volume under review contains work dedicated to the memory of Leo Esakia, who died in 2010, after having worked for over 40 years towards developing duality theory for modal and intuitionistic logics. The collection comprises ten technical contributions that follow the first chapter, in which the reader can find information on Esakia's studies and career, as well as a complete list of his research publications. In the sequel, we will refer briefly to each of these ten chapters, following the order in the list of contents. B. Jónsson and A. Tarski, in two papers they published in the early 1950s in the American Journal of Mathematics, initiated the study of duality for Boolean algebras with additional operations, via the theory of canonical extensions. Esakia was among the first researchers who studied duality for lattices with additional operations [Topological Kripke models. Soviet Math. Dokl. 15 (1974), 147-151], in particular for Heyting algebras and S4 modal algebras. M. Gehrke, author of the second chapter, shows how distributive lattices, Heyting algebras and S4 modal algebras can be viewed as certain maps between distributive lattices and Boolean algebras. Furthermore, he shows how Stone duality follows from the canonical extension results and how both Priestley and Esakia duality can be derived from Stone duality. In the third chapter, N. Bezhanishvili, S. Ghilardi and M. Jibladze discuss the step-by-step method, i.e. how duality theory can be used to arrive at descriptions of finitely generated free algebras, thus shedding light on issues concerning modal propositional logics. The authors begin by recalling how this method works for free rank one modal logics and then, exploiting the method developed by D. Coumans and S. Van Gool [On generalizing free algebras for a functor. J. Logic Comput. 23 (2012), 645-672], show how it can be extended to work for logics of rank greater than one, such as T, K4 and S4. The paper ends with
2018
The major concern in the study of categories of logics is to describe condition for preservation, under the a method of combination of logics, of meta-logical properties. Our complementary approach to this field is study the ”global” aspects of categories of logics in the vein of the categories Ss,Ls,As studied in [AFLM3]. All these categories have good properties however the category of logics L does not allow a good treatment of the ”identity problem” for logics ([Bez]): for instance, the presentations of ”classical logics” (e.g., in the signature {¬,∨} and {¬,→}) are not Ls-isomorphic. In this work, we sketch a possible way to overcome this ”defect” (and anothers) by a mathematical device: a representation theory of logics obtained from category theoretic aspects on (Blok-Pigozzi) algebraizable logics. In this setting we propose the study of (left and right) ”Morita equivalence” of logics and variants. We introduce the concepts of logics (left/right)-(stably) -Morita-equivalent a...
Studia Logica, 2012
This paper presents an algebraic approach of some many-valued generalizations of modal logic. The starting point is the denition of the [0, 1]-valued Kripke models, where [0, 1] denotes the well known MV-algebra. Two types of structures are used to dene validity of formulas: the class of frames and the class of n-valued frames. The latter structures are frames in which we specify in each world u the set (a subalgebra of n) of the allowed truth values of the formulas in u. We apply and develop algebraic tools (namely, canonical and strong canonical extensions) to generate complete modal n + 1-valued logics and we obtain many-valued counterparts of Shalqvist canonicity result.
2013
In this paper we introduce non-normal modal extensions of the sub-classical logics CLoN, CluN and CLaN, in the same way that S0.5 0 extends classical logic. The first modal system is both paraconsistent and paracomplete, while the second one is paraconsistent and the third is paracomplete. Despite being non-normal, these systems are sound and complete for a suitable Kripke semantics. We also show that these systems are appropriate for interpreting as "is provable in classical logic". This allows us to recover the theorems of propositional classical logic within three sub-classical modal systems.
Publications of the Research Institute for Mathematical Sciences, 1972
Courier of Kutafin Moscow State Law University (MSAL), 2022
Научный результат. Педагогика и психология образования. Т. 8, № 2. С. 122-133, 2022
GLOBALMED, 2022
Journal of the Society of Automotive Engineers Malaysia
Zeitschrift für Pädagogik und Theologie
Jagiellonian University Press eBooks, 2023
Kentlerde Kültür Sanat Yönetimi Yerel Yönetimler Araştırması, 2023
Indian Journal of Public Health Research & Development, 2020
DergiPark (Istanbul University), 2004
Diplomatic History, 1990
Journal of the Faculty of Foreign Studies, Aichi Prefectural University: Area Studies and International Relations , 2017
Journal of Food Science, 1990
Proceedings of the Estonian Academy of Sciences. Biology. Ecology, 2003
Population Economics, 2004
Water Resources Management, 2013
International Journal of Chemical Reactor Engineering, 2011