GREQAM
Groupement de Recherche en Economie
Quantitative d'Aix-Marseille - UMR-CNRS 6579
Ecole des Hautes Etudes en Sciences Sociales
Universités d'Aix-Marseille II et III
halshs-00443553, version 1 - 30 Dec 2009
RELIABLE INFERENCE FOR THE GINI
INDEX
Russell DAVIDSON
October 2009
Document de Travail
n°2009-37
Reliable Inference for the Gini Index
by
Russell Davidson
halshs-00443553, version 1 - 30 Dec 2009
Department of Economics and CIREQ
GREQAM
McGill University
Centre de la Vieille Charité
Montréal, Québec, Canada
2 Rue de la Charité
H3A 2T7
13236 Marseille cedex 02, France
[email protected]
Abstract
Although attention has been given to obtaining reliable standard errors for the plugin estimator of the Gini index, all standard errors suggested until now are either
complicated or quite unreliable. An approximation is derived for the estimator by
which it is expressed as a sum of IID random variables. This approximation allows us
to develop a reliable standard error that is simple to compute. A simple but effective
bias correction is also derived. The quality of inference based on the approximation is
checked in a number of simulation experiments, and is found to be very good unless the
tail of the underlying distribution is heavy. Bootstrap methods are presented which
alleviate this problem except in cases in which the variance is very large or fails to exist.
Similar methods can be used to find reliable standard errors of other indices which are
not simply linear functionals of the distribution function, such as Sen’s poverty index
and its modification known as the Sen-Shorrocks-Thon index.
Keywords: Gini index, delta method, asymptotic inference, jackknife, bootstrap
JEL codes: C12, C13, C81, D31, I32
This research was supported by the Canada Research Chair program (Chair in Economics,
McGill University) and by grants from the Social Sciences and Humanities Research Council
of Canada, and the Fonds Québécois de Recherche sur la Société et la Culture. I thank my
colleague Michel Lubrano for useful comments, and for having provoked me to write the paper
in the first place. Thanks also go to Jean-Yves Duclos for useful comments.
October 2008
1. Introduction
halshs-00443553, version 1 - 30 Dec 2009
Some attention has been given recently to the standard error of a Gini index estimated
by a plug-in estimator with no distributional assumptions. Quite a number of techniques for computing an asymptotically valid standard error have been proposed, of
varying degrees of complexity or computational intensiveness. Sandström, Wretman,
and Waldén (1988) discuss estimation of the Gini coefficient with arbitrary probability
sampling design, and then propose three ways to compute a standard error. The first
is from a complicated analytic formula, the second is based on the jackknife, and the
third is discarded as “quite useless”.
More recently, Bishop, Formby, and Zheng (1997) have given a discussion of the variance of the Gini index in the context of estimating Sen’s index of poverty; their approach is based on U-statistics, as is also that of Xu (2007). Ogwang (2000) provided
a method for computing the Gini index by an OLS regression, and discussed how to
use this regression to simplify the computation of the jackknife standard error. Then
Giles (2004) claimed that the OLS standard error from this regression could be used
directly in order to compute the standard error of the Gini index itself. See also the
reply by Ogwang (2004).
Subsequently, Modarres and Gastwirth (2006) struck a cautionary note on the use of
Giles’s approach, showing by simulation that the standard errors it produces are quite
inaccurate. They recommended a return to the complex or computationally intensive
methods used previously, and, in their replies, Ogwang (2006) and Giles (2006) did not
fundamentally disagree with the criticism. More recently still, Bhattacharya (2007) has
developed techniques of asymptotic inference for Lorenz curves and the Gini index with
stratified and clustered survey data. These techniques are based on sample empirical
process theory and the functional delta method, and they lead to a formula for the
variance of an estimated Gini index, which is however not at all easy to implement.
This paper shows how to compute an asymptotically correct standard error for an
estimated Gini index, based on a reasonably simple formula that is very easy to compute. The proposed standard error is based on the delta method, but makes no use
of empirical process theory. The approach also provides a simple and effective bias
correction for the estimate of the index. The methods used can be extended to other
commonly used indices, including Sen’s (1976) poverty index, and the modification of
it proposed by Shorrocks (1995), often referred to as the Sen-Shorrocks-Thon (SST)
index.
In section 2, we review some well-known properties of the Gini index, and give an
expression for the Gini index of a sample. This is then related to the regression
proposed by Ogwang (2000). Then, in section 3, an asymptotic approximation for the
usual plug-in estimator of the index is derived. This approximation shows that the
estimator is asymptotically normal, since it takes the form of a sum of IID random
variables. In section 4, inference based on the estimate is investigated. The asymptotic
variance is easily found from the approximation, and it is shown how it can easily be
estimated from the sample. Bias is studied next, and a simple bias correction proposed.
–1–
Section 5 considers the jackknife as an alternative way of doing bias correction and
variance estimation. It is found that the jackknife does not give reliable inference.
The bootstrap is discussed briefly in section 6. Unlike the jackknife, the bootstrap
can yield reasonably reliable inference. Section 7 provides simulation evidence that
bears out the main conclusions of the paper, and reveals their limitations when used
with heavy-tailed distributions. The empirical study given in Giles (2004) is redone in
section 8 so as to make clear how the methods of this paper differ from those used by
Giles. In section 9, the methods of the paper are used to find the asymptotic variance
of Sen’s (1976) poverty index and the SST variant. Section 10 concludes.
halshs-00443553, version 1 - 30 Dec 2009
2. Properties of the Gini index
The classical definition of the Gini index of inequality is twice the area between the
45◦ -line and the Lorenz curve. If we denote by F the cumulative distribution function (CDF) of the incomes under study, the Lorenz curve is defined implicitly by the
equation
Z
¡
¢
1 x
L F (x) =
y dF (y),
(1)
µ 0
R∞
where µ ≡ 0 y dF (y) is expected income. It is assumed that there are no negative
incomes. The function L is increasing and convex, and maps the [0,1] interval into
itself. Twice the area between the graph of L and the 45◦ -line is then
G=1−2
Z
1
L(y) dy.
(2)
0
Using the definition (1) in (2), we find that
G=1−2
Z
∞
0
¡
¢
2
L F (x) dF (x) = 1 −
µ
Z
0
∞
Z
x
y dF (y) dF (x).
0
Then, on interchanging the order of integration and simplifying, we obtain
Z ∞
Z
Z
¢
2 ∞ ¡
2 ∞
y
y 1 − F (y) dF (y)
G=1−
dF (x) dF (y) = 1 −
µ 0
µ 0
y
Z ∞
Z ∞
2
2
=1+
yF (y)dF (y) − 2 =
yF (y)dF (y) − 1.
µ 0
µ 0
(3)
The last expression above corresponds to a result cited in Modarres and Gastwirth
(2006) according to which G is 2/µ times the covariance of Y and F (Y ), where Y denotes the random variable “income” of which the CDF is F . There are of course
numerous other ways of expressing the index G, but (3) is most convenient for present
purposes. See Appendix A for further discussion of this point.
–2–
Suppose now that an IID sample of size n is drawn randomly from the population, and
let its empirical distribution function (EDF) be denoted as F̂ . The natural plug-in
estimator of G is then Ĝ, defined as
2
Ĝ =
µ̂
Z
∞
y F̂ (y) dF̂ (y) − 1.
(4)
0
Evaluating Ĝ using (4) reveals an ambiguity: different answers are obtained if the EDF
is defined to be right- or left-continuous. The ambiguity can be resolved by splitting
the difference, or by noting that we can write
halshs-00443553, version 1 - 30 Dec 2009
1
Ĝ =
µ̂
Z
0
∞
µ³ ´
¶
n
¡
¢2
1X
i 2 ³ i − 1 ´2
y d F̂ (y) − 1 =
−1
y(i)
−
µ̂ i=1
n
n
n
2 X
1
=
y(i) (i − −
) − 1.
2
µ̂n2 i=1
(5)
Here the y(i) , i = 1, . . . , n, are the order statistics. The definition (5) has the advantage
over alternative possibilities that, when y(i) = µ̂ for every i, Ĝ = 0.
In order to compute Ĝ itself, Ogwang (2000) suggested the use of the regression
i = θ + ui ,
i = 1, . . . , n,
(6)
estimated by weighted least squares under the assumption that the variance of ui is
proportional to 1/y(i) . The parameter estimate θ̂ is then
θ̂ =
n
n
´−1 X
³X
iy(i) .
yi
i=1
i=1
It is easy to check that Ĝ, as given by (5), is equal to 2θ̂/n − 1 − 1/n. Giles (2004)
reformulated the weighted regression as
p
p
i y(i) = θ y(i) + vi ,
i = 1, . . . , n,
(7)
now to be estimated by OLS. His proposal was then simply to use the OLS standard
error, multiplied by 2/n, as the standard error of Ĝ. As pointed out by Modarres and
Gastwirth (2006), however, the fact that the order statistics are correlated means that
the OLS standard error may be unreliable.
–3–
3. An asymptotic expression for the Gini index
Standard arguments show that the estimator (4) is consistent under weak regularity conditions. Among these, we require the existence of the second moment of the
distribution characterised by F . This is not quite enough, as the class of admissible
CDFs F must be further restricted so as to avoid the Bahadur-Savage problem; see
Bahadur and Savage (1956). Asymptotic normality calls for a little more regularity,
but not a great deal. In this section, we examine the quantity n1/2 (Ĝ − G) that should
be asymptotically normal under the required regularity, and derive the variance of its
limiting distribution as n → ∞.
Let
Z
I≡
∞
yF (y) dF (y) and Iˆ ≡
0
Z
∞
y F̂ (y) dF̂ (y).
(8)
0
halshs-00443553, version 1 - 30 Dec 2009
Notice that the integral defining I exists if we assume that the first moment of F
exists, since F (y) is bounded above by 1. Then we have
1/2
n
2I ´
2
−
= n1/2 (µIˆ − µ̂I)
(Ĝ − G) = n
µ̂
µ
µµ̂
¡
¢
2
µn1/2 (Iˆ − I) − In1/2 (µ̂ − µ) .
=
µµ̂
1/2
³ 2Iˆ
(9)
Our assumed regularity ensures that both n1/2 (µ̂ − µ) and n1/2 (Iˆ − I) are of order 1
in probability. To leading order, then, we may approximate (9) by replacing µµ̂ in the
denominator by µ2 .
Next, we note that
1/2
n
−1/2
(µ̂ − µ) = n
n
X
(yj − µ).
j=1
Clearly this is an asymptotically normal random variable. For n1/2 (Iˆ−I), we calculate
as follows.
Z ∞
´
³Z ∞
1/2 ˆ
1/2
yF (y) dF (y)
y F̂ (y) dF̂ (y) −
n (I − I) = n
0
0
Z ∞
³Z ∞
¡
¢
1/2
y F̂ (y) − F (y) dF (y)
yF (y) d(F̂ − F )(y) +
=n
0
0
Z ∞
´
¡
¢
y F̂ (y) − F (y) d(F̂ − F )(y) .
(10)
+
0
The last term above is of order n−1/2 as n → ∞, and so will be ignored for the purposes
of our asymptotic approximation.
The first term in the rightmost member of (10) is
Z ∞
n ³
´
X
−1/2
1/2
yF (y) d(F̂ − F )(y) = n
n
yj F (yj ) − I ;
0
j=1
–4–
(11)
¡
¢
note from (8) that I = E Y F (Y ) . Evidently, this is asymptotically normal, since the
terms are IID, the expectation of each term in the sum is 0, and the variance exists.
The second term is
n ³Z ∞
´
X
−1/2
n
y I(yj ≤ y) dF (y) − I ,
(12)
0
j=1
halshs-00443553, version 1 - 30 Dec 2009
where I(·) is an indicator function, equal to
R y 1 if its argument is true, and to 0 if not.
Define the deterministic function m(y) ≡ 0 x dF (x). We see that
Z ∞Z y
Z ∞
¡
¢
x dF (x) dF (y)
m(y) dF (y) =
E m(Y ) =
0
0
0
Z ∞
Z ∞ Z ∞
¡
¢
x 1 − F (x) dF (x)
dF (y) dF (x) =
x
=
0
x
0
¡
¢
= E Y (1 − F (Y )) = µ − I.
Consequently,
Z
∞
y I(yj ≤ y) dF (y) − I =
0
Z
∞
y dF (y) − I
yj
³
¡
¢´
= µ − m(yj ) − I = − m(yj ) − E m(Y ) .
Thus (12) becomes
−n
−1/2
n ³
X
j=1
¡
¢´
m(yj ) − E m(Y ) ,
(13)
which is again asymptotically normal. It follows that n1/2 (Iˆ− I) is also asymptotically
normal, and, from (10), (11), and (13),
n
1/2
(Iˆ − I) = n−1/2
= n−1/2
n ³
X
¡
¢´
yj F (yj ) − m(yj ) − E Y F (Y ) − m(Y )
j=1
n ³
X
j=1
´
yj F (yj ) − m(yj ) − (2I − µ) .
(14)
Finally, we obtain from (9) an approximate expression for n1/2 (Ĝ − G):
n1/2 (Ĝ − G) ≈ −
2
2
I n1/2 (µ̂ − µ) + n1/2 (Iˆ − I)
2
µ
µ
(15)
This expression can of course be regarded as resulting from the application of the delta
method to expression (4). It is useful to express (15) as the sum of contributions from
the individual observations, as follows:
n
1/2
(Ĝ − G) ≈ n
−1/2
n
´
2 X³ I
− (yj − µ) + yj F (yj ) − m(yj ) − (2I − µ)
µ j=1
µ
–5–
In this way, n1/2 (Ĝ − G) is expressed approximately as the normalised sum of a set of
IID random variables of expectation zero, so that asymptotic normality is an immediate
consequence. Since from (3) and (8) we have G = 2I/µ−1, the variance of the limiting
distribution of n1/2 (Ĝ − G) is
n
³
¡
¢´
1 X
Var
−(G
+
1)y
+
2
y
F
(y
)
−
m(y
)
.
j
j
j
j
nµ2 j=1
(16)
¡
¢
The random variable Y (G + 1) − 2 Y F (Y ) − m(Y ) can with some effort be shown
to be same as that used by Bhattacharya (2007) in the influence function he uses to
derive the asymptotic variance of Ĝ.1
halshs-00443553, version 1 - 30 Dec 2009
4. Inference for the Gini index
To estimate the variance (16), one can replace µ by µ̂ and G by Ĝ. But the functions
F and m are normally unknown, and so they, too, must be estimated. The value of
F (y(i) ) at the order statistic y(i) is estimated by F̂ (y(i) ) = (2i − 1)/(2n), where we
continue to evaluate F̂ at its points of discontinuity
by¢ the average of the lower and
¡
upper limits. Since by definition m(y) = E Y I(Y ≤ y) , we can estimate m(yj ) by
n
¡
¢
1X
yi I(yi ≤ yj ).
m̂(yj ) = Ê Y I(Y ≤ yj ) =
n i=1
(17)
Pi
If yj = y(i) , then we see that m̂(y(i) ) = (1/n) j=1 y(j) .
¡
¢
Let Zi ≡ −(G + 1)y(i) + 2 y(i) F (y(i) ) − m(y(i) ) . Clearly, we can estimate Zi by
i
2i − 1
2X
Ẑi ≡ −(Ĝ + 1)y(i) +
y(i) −
y(j) .
n
n j=1
(18)
Pn
Pn
Then Z̄ ≡ n−1 i=1 Ẑi is an estimate of E(Zi ), and n−1 i=1 (Ẑi − Z̄)2 is an estimate
of Var(Zi ). Since the sum in (16) can be rewritten as the sum of the variances of
the Zi , i = 1, . . . , n, the variance of Ĝ can be estimated by
d Ĝ) =
Var(
n
1 X
(Ẑi − Z̄)2 .
(nµ̂)2 i=1
(19)
Having a reasonable estimate of the variance of Ĝ is only one part of getting reasonable
inference, since Ĝ can be quite severely biased. First, we note that, since E(µ̂) = µ,
1
I am grateful to an anonymous referee for suggesting this comparison.
–6–
the expectation of the first term on the right-hand side of (15) vanishes. Therefore we
need consider only E(Iˆ − I) in order to approximate E(Ĝ − G).
Replacing population values by estimates, we see that Iˆ = µ̂(Ĝ + 1)/2, and, from the
expression (5) for Ĝ, it follows that
n
1 X
1
ˆ
I= 2
y(i) (i − −
).
2
n i=1
halshs-00443553, version 1 - 30 Dec 2009
ˆ we need the expectations of the order
In order to compute the expectation of I,
statistics y(i) . It is known that, if the order statistics are those of an IID sample of
size n drawn from the continuous distribution F with density f ≡ F ′ , then the density
of y(i) is
µ ¶
¢i−1 ¡
¢n−i
n ¡
F (x)
1 − F (x)
f (x).
f(i) (x) = i
i
Thus
µ ¶Z ∞
n
¡
¢i−1 ¡
¢n−i
n
1 X
1
ˆ
i(i − −)
x F (x)
1 − F (x)
dF (x).
E(I) = 2
2
n i=1
i
0
(20)
Now it is easy to check that
µ ¶
µ
µ ¶
¶
µ
¶
µ
¶
n
n−1
n−2
n−1
2 n
i
=n
and i
= n(n − 1)
+n
.
i
i−1
i
i−2
i−1
(21)
If i = 1, the first term on the right-hand side of the second equation above is replaced
by 0. We see that
¶
n µ ¶
n µ
X
X
n
n−1
i−1
n−i
i
F (1 − F )
=n
F i−1 (1 − F )n−i
i
i−1
i=1
i=1
n−1
X µn − 1¶
=n
F i (1 − F )n−1−i = n,
i
i=0
(22)
where the last step follows from the binomial theorem. Similarly, from (21) along
with (22), we have
¶
µ ¶
n
n µ
X
X
n−2
2 n
i−1
n−i
F i−1 (1 − F )n−i + n
i
F (1 − F )
= n(n − 1)
i
−
2
i
i=1
i=1
n−2
X µn − 2¶
= n(n − 1)
F i+1 (1 − F )n−2−i + n
i
i=0
= n(n − 1)F + n.
–7–
(23)
Thus, with (22) and (23), (20) becomes
Z ∞
¡
1
1 ¢
ˆ
E(I) = 2
n(n − 1)F (x) + n − −
n x dF (x)
2
n 0
Z
Z ∞
1 ∞ ¡
1¢
dF (x)
x F (x) − −
xF (x) dF (x) −
=
2
n 0
0
1
µ
= I − (I − ).
n
2
From (15) we can now obtain an approximate expression for the bias of Ĝ:
E(Ĝ − G) ≈
2 ˆ
1
E(I − I) = − (2I − µ) = −G/n.
µ
nµ
(24)
halshs-00443553, version 1 - 30 Dec 2009
It follows from this that G̃ ≡ nĜ/(n − 1) is a bias-corrected estimator of G. Although
still biased, its bias is of order smaller than n−1 .
It may be helpful here to summarise the steps needed in the computation of (19)
and (24). After computing µ̂ as the sample mean, the steps are as follows.
• Sort the sample in increasing order, so as to obtain the series of order statistics y(i) .
Pi
• Form the two series wi ≡ (2i − 1)y(i) /(2n) and vi ≡ n−1 j=1 y(j) . Then Iˆ = w̄,
the mean of the wi .
ˆ − 1)/(n − 1).
• Compute the bias-corrected estimate of the Gini index as n(2I/µ̂
• Form the series Ẑi = −(G̃ + 1)y(i) + 2(wi − vi ), and compute the mean Z̄. The
estimated variance of G̃ is the sum of the squares of the Ẑi − Z̄, divided by (nµ̂)2 ,
as in (19). The standard error is the square root of the estimated variance.
It is often of considerable interest to test whether the Gini indices for two populations
are the same. If independent samples are drawn from both populations, one can
compute the two estimated indices, Ĝ1 and Ĝ2 say, or, preferably, the almost unbiased
estimates G̃1 and G̃2 , along with two standard errors σ̂G1 and σ̂G2 . For simplicity, we
will use the notationp
Ĝ for either of the possible estimators. A suitable test statistic is
2 + σ̂ 2 . If correlated samples are available, the covariance of
then τ ≡ (Ĝ1 − Ĝ2 )/ σ̂G1
G2
the two estimated indices should be taken into account. In order to do so, two series,
with elements Ẑ1i and Ẑ2i say, should be formed, using (18), for each sample. Then,
after making sure that the elements of the two series are ordered in the same way, the
covariance of Ĝ1 and Ĝ2 is estimated by
n
X
1
(Ẑ1i − Z̄1 )(Ẑ2i − Z̄2 ),
cov(Ĝ1 , Ĝ2 ) = 2
d
n µ̂1 µ̂2 i=1
(25)
where n is the size of each sample, µ̂k , k = 1, 2, are the sample means, and Z̄k , k = 1, 2,
the means of the Ẑki . The same technique can be used to estimate covariances of a
set of more than two estimated Gini indices.
–8–
5. The jackknife
Among the various “computationally intensive” suggestions for obtaining a standard
error for the Gini index is the jackknife; it is proposed by Modarres and Gastwirth
(2006) among others. However, we will see in this section that the jackknife does
not yield a reliable estimate of the standard error, and further that it is not even
appropriate for its usual main function, namely bias correction.
halshs-00443553, version 1 - 30 Dec 2009
A first remark is called for here. Given the regression (6) proposed by Ogwang (2000)
as modified by Giles (2004) to take the form (7) that can be estimated by OLS,
implementation of the jackknife is by no means computationally intensive. Consider
Giles’s regression modified further as follows:
³ 2i − 1
´p
p
−1
y(i) = θ y(i) + residual,
(26)
n
where the term “residual” is used to emphasise the fact that this regression is a computational tool, and has no direct statistical interpretation. It is straightforward to
check that the OLS estimate θ̂ from this regression is equal to the (biased) estimator Ĝ
given by (5).
If we denote by θ̂(i) the estimate obtained by leaving out observation i, then the
jackknife estimate of G is
n
n−1X
(θ̂ − θ̂(i) ).
ĜJ ≡ θ̂ +
n i=1
(27)
The jackknife bias estimator is thus n−1 times the negative of
bJ ≡ (n − 1)
n
X
(θ̂ − θ̂(i) ).
(28)
i=1
From the result of the previous section, this should be an estimate of G for the jackknife
to correct properly for bias.
For the general linear regression
yi = Xi θ + residual,
i = 1, . . . , n,
estimated by OLS, with Xi a 1 × k vector of regressors and θ a k × 1 vector of
parameters, the vector θ (i) of OLS estimates found by omitting observation i is related
to the full-sample estimate θ̂ by the equation
θ̂ − θ̂ (i) =
1
(X⊤X)−1 Xi⊤ûi ,
1 − hi
(29)
where X is the n × k matrix with i th row Xi , ûi is the OLS residual for observation i, and hi = (PX )ii , the i th diagonal element of the orthogonal projection matrix
PX ≡ X(X⊤X)−1 X⊤. See Davidson and MacKinnon (2004), section 2.6, for details.
–9–
In order to specialise (29) for p
use with regression (26), we note that X becomes a
vector with typical component y(i) , and hi = y(i) /(nµ̂). The residual is
´
p ³ 2i − 1
ûi = y(i)
− 1 − θ̂ .
n
Thus, noting that θ̂ = Ĝ, we see that
θ̂ − θ̂
(i)
¡
¢
y(i) 2i − 1 − n(1 + Ĝ)
.
=
n(nµ̂ − y(i) )
(30)
Since this is trivially easy to compute after computing Ĝ, by running regression (26)
or otherwise, implementing the formula (27) is also very simple.
halshs-00443553, version 1 - 30 Dec 2009
Let us take a closer look at expression (28). From (30), we find that
bJ =
Since n−2
that
P
i
n
¢¡
y(i) ¢−1 ´
n − 1 X³ ¡
2i
−
1
−
n(1
+
Ĝ)
1
−
y
.
(i)
n2 µ̂ i=1
nµ̂
y(i) (2i − 1) = µ̂(1 + Ĝ) (equation (5)), and n−1
n
X
i=1
¡
¢
y(i) 2i − 1 − n(1 + Ĝ) = 0.
P
i
(31)
y(i) = µ̂, it follows
Thus we have
n
¢
1 X 2 ¡
y(i) 2i − 1 − n(1 + Ĝ) + Op (n−1 ).
bJ = 2 2
n µ̂ i=1
Now n−1
P
i
(32)
2
y(i)
= σ̂ 2 + µ̂2 , where σ̂ 2 is the sample variance, while
Z ∞
n
1 X 2
y 2 F̂ (y) dF̂ (y) ≡ 2ê2 ,
y (2i − 1) = 2
n2 i=1 (i)
0
¡
¢
where we define e2 = E Y 2 F (Y ) . Substituting these results into (32), we find that
bJ =
³
σ̂ 2 ´
2ê2
−
(1
+
Ĝ)
1
+
+ Op (n−1 ),
µ̂2
µ̂2
(33)
which is a consistent estimator of the rather complicated functional defined by the same
expression without the hats. In general, bJ is not, therefore, a consistent estimator
of G,2 as would be needed if the jackknife estimator ĜJ were to be unbiased to an order
2
Exceptionally, bJ is consistent for G if the underlying distribution is the exponential
distribution. This is noted here because many of the simulations reported in section 7
use the exponential distribution to generate simulated samples.
– 10 –
smaller than n−1 . It may well be that ĜJ is less biased than Ĝ, but its bias converges
to 0 as n → ∞ no faster. Since the properly bias-corrected estimator nĜ/(n − 1) is
even easier to compute than the jackknife estimator ĜJ , there is no need to bother
with the latter.
The jackknife estimator of the variance of Ĝ is
X³
1 X (j) ´2
d J (Ĝ) = n − 1
θ̂(i) −
,
Var
θ̂
n i=1
n j=1
n
n
(34)
halshs-00443553, version 1 - 30 Dec 2009
with the θ̂(i) given by (30). The calculations needed to analyse (34) are similar in spirit
to those above for the jackknife estimator itself, but a good deal more complicated, and
so we omit them here. They show that it is not a consistent estimator of the asymptotic
variance of Ĝ. This fact also emerges very clearly from some of the simulations reported
in section 7.
6. The bootstrap
Unlike the jackknife, the bootstrap can reasonably be expected to yield fairly reliable
inference about the Gini index. Indeed, if used in combination with the asymptotic
standard error derived from (19), it should give rise to asymptotic refinements relative
to inference based on the variance estimate (19); see Beran (1988). This fact means
that the bootstrap method described in this section has an asymptotic refinement
relative to that proposed in Mills and Zandvakili (1997), who, in the absence of a
convenient analytical expression for the standard error, made use of the percentile
bootstrap rather than the percentile-t bootstrap now described.
Specifically, in order to test the hypothesis that the population value of the Gini index
is G0 , one first computes the statistic τ ≡ (Ĝ − G0 )/σ̂G , where here Ĝ is the almost
ˆ − 1)/(n − 1), and the standard error σ̂G is the square root
unbiased estimate n(2I/µ̂
of the variance estimate (19). Then one generates B bootstrap samples of size n by
resampling with replacement from the observed sample (assumed to be also of size n).
For bootstrap sample j, one computes a bootstrap statistic τj∗ , in exactly the same way
as τ was computed from the original data, but with G0 replaced by Ĝ, in order that
the hypothesis tested should be true of the bootstrap data-generating process. The
bootstrap P value is then the proportion of the τj∗ that are more extreme than τ . For
a test at significance level α, rejection occurs if the bootstrap P value is less than α.
For such a test, it is also desirable to choose B such that α(B + 1) is an integer; see,
among other references, Davidson and MacKinnon (2000).
Bootstrap confidence intervals can also be based on the empirical distribution of the
bootstrap statistics τj∗ . For an interval at nominal confidence level 1−α, one estimates
the α/2 and 1 − α/2 quantiles of the empirical distribution, normally as the ⌈αB/2⌉
and ⌈(1−α/2)B⌉ order statistics of the τj∗ . Here ⌈·⌉ denotes the ceiling function: ⌈x⌉ is
the smallest integer not smaller than x. Let these estimated quantiles be denoted as
– 11 –
qα/2 and q1−α/2 respectively. Then the bootstrap confidence interval is constructed as
[Ĝ− σ̂G q1−α/2 , Ĝ−σG qα/2 ]. It is of the sort referred to as a percentile-t, or bootstrap-t,
confidence interval; see for instance Hall (1992).
In order to test a hypothesis that the Gini indices are the same for two populations
from which p
two independent samples have been observed, a suitable test statistic is
2 + σ̂ 2 . For each bootstrap repetition, a bootstrap sample is gen(Ĝ1 − Ĝ2 )/ σ̂G1
G2
erated by resampling with replacement from each of the two
and then the
p samples,
∗ )2 + (σ ∗ )2 in what
bootstrap statistic is computed as (G∗1 − G∗2 − Ĝ1 + Ĝ2 )/ (σG1
G2
should be obvious notation. If the samples are correlated, the denominator of the
statistic should take account of the covariance, which can be estimated using the formula (25). Bootstrap samples are then generated by resampling pairs of observations.
halshs-00443553, version 1 - 30 Dec 2009
7. Simulation evidence
In this section, we study by simulation to what extent the methods proposed here give
reliable inference, and we compare them with methods previously proposed.
First, in order to see whether the asymptotic normality assumption yields a good
approximation, simulations were undertaken with drawings from the exponential distribution, with CDF F (x) = 1 − e−x , x ≥ 0. The true value G0 of the Gini index for
this distribution is easily shown to be one half. In Figure 1, graphs are shown of the
EDF of 10,000 realisations of the statistic τ = (Ĝ − G0 )/σ̂G , using the bias-corrected
version of Ĝ and the standard error σ̂G derived from (19), for sample sizes n = 10 and
100. The graph of the standard normal CDF is also given as a benchmark.
..........
...............................
..................
..........................
................
...........................................
..............................................
.
.
.
.
.
.
.
.
.. ...
................... n = 10
...................
0.9
.......................
.
.
.
.......
.............
........ n = 100
................
.
.
..........
..............
.
..................................... N(0,1)
.
.
.
0.7
............
..........
.
.
.
.
.
.
......
..........
.
....
.
.
.
.
.
......
0.5 ...................
....
............
.
....
.
.
.
.
.
....
..............
.
.
....
.
.
.
.
.
.
........... 0.3
.............
.
.
.
.
.
.
.
...
............
....................
.
.
.
.
.
.
... ..
................
.............................
.
0.1
.
.
.
.
.
.
.
.
.
.
.
.... . ...
.................................................................................
........
.................
..............................
.....
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...
−2.5
−1.5
−0.5
0.5
1.5
2.5
Figure 1. Distribution of standardised statistic as a function of sample size
– 12 –
It can be seen that, even for a very small sample size, the asymptotic standard normal
approximation is good. The estimated bias of Ĝ was −0.000444 for n = 10, and
−0.000717 for n = 100. Thus the promise of an approximately unbiased estimator is
borne out in these examples. The means of the realised τ were −0.1262 and −0.0478
for n = 10 and n = 100, and the variances were 1.3709 and 1.0879. The greatest
absolute differences between the empirical distributions of the τ and the standard
normal CDF were 0.0331 and 0.0208.
halshs-00443553, version 1 - 30 Dec 2009
In contrast, Figure 2 shows the empirical distributions for n = 100 of the statistics
τG ≡ (Ĝ − G0 )/σ̂OLS and τJ ≡ (ĜJ − G0 )/σ̂J . Here σ̂OLS is the standard error from
regression (7), σ̂J is the square root of the variance (34), and ĜJ is given by (27).
...............................................................................................
........
..............................
.........................................................................................................................
.
.
.
.
. ... ....
.....................................
0.9
Giles
.................... ......................
.
.
.
.
.
.. ..... ............
........ jackknife
............. ................
.. .
..................................... N(0,1)
0.7 ........................
.
.... ......
.......................
.........
0.5 .....................
..
.......
.......
... ...
........
.
.
.... ....
.... ....
... ......
... 0.3
..
.
.
... ....
..... .. .
..... ........
.
.
.
.
..... ........
......
.
... ..
......
..... .
......
.
.
.
.
.
........ 0.1
..
.
.
.
.
.
.
.
.
.
.
.
.
..... .
...........
..............
............
......
......
.....................
...........
...............................................................................................................................................
.......................
−2.5
−1.5
−0.5
0.5
1.5
2.5
Figure 2. Distribution of Giles’s statistic and jackknife statistic
It is clear that both of these statistics have distributions that are far from the standard
normal distribution. The jackknife estimator does a good job of removing bias, but this
is an accidental property of the exponential distribution, whereby the jackknife bias
estimator (33) happens to be consistent for G. The mean of the jackknife estimates ĜJ
was −0.0057, not quite so good as with true bias correction. The mean of the τJ was
−0.0308, that of τG was −0.0012, and the variances of τJ and τG were 0.2693 and
0.4275 respectively.
The exponential distribution may well be fairly characteristic of distributions encountered in practice, but its tail is not heavy. Heavy-tailed distributions are notorious
for causing problems for both asymptotic and bootstrap inference, and so in Figure 3
we show empirical distributions for our preferred statistic τ with data generated by
the Pareto distribution, of which the CDF is FPareto (x) = 1 − x−λ , x ≥ 1, λ > 1.
The second moment of the distribution is λ/(λ − 2), provided that λ > 2, so that, if
λ ≤ 2, no reasonable inference about the Gini index is possible. If λ > 1, the true Gini
index is 1/(2λ − 1). Plots of the distribution of τ are shown in Figure 3 for n = 100
and λ = 100, 5, 3, 2. For values of λ greater than about 50, the distribution does not
– 13 –
change much, which implies that there is a distortion of the standard error with the
heavy tail even if the tail index is large. The actual index estimate Ĝ, however, is not
significantly biased for any value of λ considered.
.........................................................
................................................................... ..
..............................................
....................................................
.
.
.
.
.
.
.
.
. . ..
.....................................
................... .......
................... ......
...........................
...........................................
.
.
.
.
. .. .
..........................
.....................................
...... ..................
..... .................
..............................
.
.
.... ..........
.....................................
..... ............
..... ................
..... ..........................
.
.
.
.
..... ..............
..... ..................
.....................................
..... ............
...... ...........................
.
.
.
.
..... ...............
..... ..................
.....................................
...... ...............
..... ..........................
.
.
.
.
... ... ... ...
....
...... .........................
......
.. . .
...... ......... ......................
.
.
.
.
.
.
.... .... .. ...
.......
..... ..... ..... ...
......
...... ...... ..... ...
......
..... .........................
.
......
.
.
.
.
.
.
.
.
.
.
.
...... ..... ..... ....
...........
....... ...... ..... .....
........
....... ...... ..... ....
........
....... ......................... .........
............
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.....
.......... ...... ...... .....
............
............ .......... ........ .....
...............
....................................................... ...........
.
.
.
.
.
.
...............
.
.
.
.
.
.
.
.
.
..
..
...
...
.......
.................. ................ ..............
........................................................................................................ .......................
.
.
.
..................................................
.
.
.
.
.
.
.
.
.
............
...................................................................
λ = 100
λ=5
λ=3
λ=2
N(0,1)
0.9
0.7
0.5
0.3
halshs-00443553, version 1 - 30 Dec 2009
0.1
−2.5
−1.5
−0.5
0.5
1.5
2.5
Figure 3. Distribution of τ for the Pareto distribution
Table 1 shows how the bias of τ , its variance, and the greatest absolute deviation of
its distribution from standard normal vary with λ.
λ
100
20
10
5
4
3
2
Bias
-0.1940
-0.2170
-0.2503
-0.3362
-0.3910
-0.5046
-0.8477
Variance
1.3579
1.4067
1.4798
1.6777
1.8104
2.1011
3.1216
Divergence from N(0,1)
0.0586
0.0647
0.0742
0.0965
0.1121
0.1435
0.2345
Table 1. Summary statistics for Pareto distribution
It is plain that the usual difficulties with heavy-tailed distributions are just as present
here as in other circumstances.
The lognormal distribution is not usually considered as heavy-tailed, since it has all its
moments. It is nonetheless often used in the modelling of income distributions. Since
the Gini index is scale invariant, we consider only lognormal variables of the form eσW ,
where W is standard normal. In Figure 4 the distribution of τ is shown for n = 100
and σ = 0, 5, 1.0, 1.5. We can see that, as σ increases, distortion is about as bad as
with the genuinely heavy-tailed Pareto distribution. The comparison is perhaps not
entirely fair, since, even for the worst case with λ = 2 for the Pareto distribution,
– 14 –
.. .. ..
...............................................................................................................
..................... ..............................
................ ..................
......................................
.
.
.
.
.
.
.
.
.....................................
...................
....................
..............
.............
.
.
.
.
.
.
.
.....................................
............
................
..............
....................
.
.
.
.
.
.
.
...... .......
.....................................
..... ........
..... .......
..... ...............
.
.
.
.
..... .......
..... .........
..... .......
..... ..............
.
.
.
.
..... .... ....
.....................................
..... ..... .....
..... ... .....
..... ....................
.
.
.
.
.
......
..... ........
..... ....... ............
.
.....
..... ......... ............
.
.
.
.
... .....
.....
..... ..........
......
...... .......
......
...... ..................
......
.
.
.
.
.
.
.
.
.
.
......
...... ..... .....
.......
...... ..... .....
.......
..... ...........
.........
...... .....................
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
..
......... ....... ......
.........
...........
........... ..........................
...............
.
..........
.............. ............................. ........................................
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
...
... ................... ...............
.
.
..................
.......................................................................................................................................................
............................
σ = 0.5
σ = 1.0
σ = 1.5
0.9
N(0,1)
0.5
0.7
0.3
0.1
−2.5
−1.5
−0.5
0.5
1.5
2.5
halshs-00443553, version 1 - 30 Dec 2009
Figure 4. Distribution of τ for the lognormal distribution
G = 1/3. However, for σ = 1, the index for the lognormal distribution is 0.521, and
for σ = 1.5 there is a great deal of inequality, with G = 0.711.
We end this section with some evidence about the behaviour of the bootstrap. In
Table 2, coverage rates of percentile-t bootstrap confidence intervals are given for
n = 100 and for nominal confidence levels from 90% to 99%. The successive rows of the
table correspond, first, to the exponential distribution, then to the Pareto distribution
for λ = 10, 5, 2, and finally to the lognormal distribution for σ = 0.5, 1.0, 1.5. The
numbers are based on 10,000 replications with 399 bootstrap repetitions each.
Level
90%
92%
95%
97%
99%
Exponential
λ = 10
λ=5
λ=2
σ = 0.5
σ = 1.0
σ = 1.5
0.889
0.890
0.880
0.831
0.895
0.876
0.829
0.912
0.910
0.905
0.855
0.918
0.898
0.851
0.943
0.942
0.937
0.891
0.949
0.932
0.888
0.965
0.964
0.957
0.918
0.969
0.956
0.914
0.989
0.984
0.982
0.954
0.989
0.981
0.951
Table 2. Coverage of percentile-t confidence intervals
Apart from the expected serious distortions when λ = 2, and when σ = 1.5, the
coverage rate of these confidence intervals is remarkably close to nominal. It seems
that, unless the tails are very heavy indeed, or the Gini index itself large, the bootstrap can yield acceptably reliable inference in circumstances in which the asymptotic
distribution does not.
– 15 –
8. Empirical illustration
halshs-00443553, version 1 - 30 Dec 2009
Giles (2004) uses his proposed methods, including the jackknife, in order to estimate
the Gini index and associated standard error for consumption data for 133 countries,
data extracted from the Penn World Tables; see Summers and Heston (1995). The
tables in this section compare Giles’s results with those obtained using the methods
of this paper.
The data are measures of real consumption per capita, in constant dollars, expressed
in international prices, base year 1985, for four years, 1970, 1975, 1980, and 1985.
The Gini index is therefore a measure of dispersion of consumption across the 133
countries for which data are available. Table 3 shows the estimated index for each
of the four years, first as computed using formula (5) (or equivalently, by Giles’s
regression (7) or (26)), second with the simple bias correction proposed here, and
third using the jackknife formula (27). The standard errors associated with these
estimates are, respectively, the standard error from regression (26), the square root of
the variance estimate (19), and the jackknife standard error, given by the square root
of (34).
Year
Ĝ from (5)
Bias corrected
Jackknife
1970
0.4649
(0.0418)
0.4767
(0.0406)
0.4795
(0.0397)
0.4940
(0.0391)
0.4684
(0.0173)
0.4803
(0.0169)
0.4831
(0.0177)
0.4978
(0.0176)
0.4685
(0.0478)
0.4802
(0.0457)
0.4827
(0.0445)
0.4974
(0.0438)
1975
1980
1985
Table 3. Estimates and standard errors of G
It can be seen that the jackknife does a very good job of bias correction with these
data, at least according to the theory-based bias correction. On the other hand, the
jackknife standard errors are similar to those produced by regression (26), and are
quite different from those given by (19).
There are slight numerical discrepancies between the results given here and those given
by Giles. They affect only the last two decimal places. I think that the numbers here
are correct.
Table 4 gives three 95%-nominal confidence intervals for each year of data. The first
is based on the standard errors from (19), along with critical values from the standard
normal distribution; the second uses the jackknife standard errors with N(0,1) critical
– 16 –
values; the third is the percentile-t bootstrap confidence interval. The asymptotic
intervals with the best standard error are very similar indeed to the bootstrap intervals,
and both are very much narrower than those computed with the jackknife standard
errors.
Year
1970
1975
1980
1985
Std error from (19)
[0.4345,0.5022]
[0.4470,0.5135]
[0.4482,0.5179]
[0.4632,0.5323]
Jackknife std error
[0.3746,0.5621]
[0.3906,0.5699]
[0.3959,0.5702]
[0.4119,0.5836]
bootstrap
[0.4393,0.5074]
[0.4477,0.5140]
[0.4531,0.5219]
[0.4647,0.5329]
halshs-00443553, version 1 - 30 Dec 2009
Table 4. Confidence intervals for G
Whatever confidence intervals are used, they all overlap, and so it is not possible
to reject the hypothesis that the indices are the same for all four years, unless one
takes into account the fact that the series are strongly correlated. By estimating
the covariance of the estimated indices for 1970 and 1985 by (25), an asymptotically
standard normal statistic can be computed for the hypothesis that the indices are the
same for both years. Its value is 2.462, which allows us to reject the hypothesis at
conventional significance levels.
9. Extensions: Sen’s poverty index and the SST index
In this section, we sketch briefly how the methods of this paper can be used to obtain
an asymptotically valid standard error of Sen’s poverty index; see Sen (1976). This
index makes use of the Gini index of the poor in the population, that is, those whose
income is less than a specified poverty line, which we here treat as exogenously given.
For a poverty line z, Sen justifies the use of the following index as a reasonable measure
of poverty:
¢
¡
(35)
S(z) ≡ H I + (1 − I)Gp .
Sen’s definition is for a discrete population. His notation is as follows. H is the
headcount ratio, which can generally be expressed as F (z), where F is the population
CDF, discrete or continuous. His I – not the same as our I defined in (8) – is given
by
Z z³
n
³
yj ´
yj ´
1
m(z)
1X
1−
,
(36)
I(yj ≤ z) 1 −
=
dF (y) = 1 −
q j=1
z
F (z) 0
z
zF (z)
q = nF (z) is the number of the poor. Here we have used the function m(y) =
Rwhere
y
x dF (x) defined in section 3. The last two expressions in (36) can apply to either a
0
discrete or continuous population. Sen’s I is interpreted as the income-gap ratio. The
Gini index of the poor, Gp , is defined by Sen as
q
1
2 X
Gp = 1 + − 2
y(i) (q + 1 − i),
q
q µp i=1
– 17 –
where µp is the average income of the poor. The above expression can also be written
as
q
2 X
1
y(i) (i − −
) − 1,
(37)
Gp = 2
2
q µp i=1
which corresponds exactly with our definition (5) for the Gini index of everyone in a
discrete sample or population. In terms of the CDF F , we have
Z z
1
m(z)
µp =
y dF (y) =
.
F (z) 0
F (z)
It follows that (37) can be expressed as
halshs-00443553, version 1 - 30 Dec 2009
2
Gp =
F (z)m(z)
Z
z
yF (y) dF (y) − 1,
(38)
0
and so, from (35) along with (36) and (38), we find that
Z z
¡
¢
2
S(z) = F (z) −
y F (z) − F (y) dF (y)
zF (z) 0
Z z
¡
¢
2
(z − y) F (z) − F (y) dF (y).
=
zF (z) 0
(39)
We use (39) as our definition of Sen’s index for both continuous and discrete populations, in the latter case resolving the ambiguity of a left- or right-continuous CDF by
splitting the difference, as in (5) and (37).
We now consider the problem of estimating S(z) on the basis of a sample of size n
drawn from a population characterised by the CDF F . As usual, we denote by F̂ the
empirical distribution function of the sample. The natural plug-in estimator is
Z z
¡
¢
2
Ŝ(z) =
(40)
(z − y) F̂ (z) − F̂ (y) dF̂ (y).
z F̂ (z) 0
Let q̂ be the number of individuals in the sample whose incomes are below the poverty
line z; we have q̂ = nF̂ (z). Then a short calculation shows that
q̂
¡
2 X
1¢
(z − y(i) ) q̂ − i + −
.
Ŝ(z) =
2
nq̂z i=1
(41)
It is of interest to observe that the estimate (41) does not coincide exactly with Sen’s
own definition for a discrete population, which can be written as
q
X
¡
2
SSen (z) =
(z − y(i) ) q − i + 1).
n(q + 1)z i=1
(42)
This point is discussed further in Appendix A.
The algorithm for computing Ŝ(z) along with its standard error from a sample of size n
can be summarised as follows.
– 18 –
• Sort the sample in increasing order, so as to obtain the series of order statistics y(i) .
• Determine the number q̂ of individuals with income less than the poverty line z.
1
• For i = 1, . . . , q̂, form the series si ≡ (z − y(i) )(q̂ − i + −
). Then Ŝ(z) is the sum
2
of the si , i = 1, . . . , q̂, times 2/(nq̂z).
Pi
• For i = 1, . . . , q̂, form the series pi = (2q̂ − 2i + 1)y(i) /(2n) + n−1 j=1 y(j) .
• Form a¡ series Ẑi with
Ẑi = 0 for i = q̂ + 1, . . . , n, and, for i = 1, . . . , q̂,
¢
Ẑi = z 2q̂/n − Ŝ(z) /2 − pi , and compute the mean Z̄. The estimated variance
of Ŝ(z) is the sum of the squares of the Ẑi − Z̄, times 4/(z q̂)2 .
The calculations that lead to this algorithm are found in Appendix B. Simulations
show clearly that Ŝ(z) is downward biased. Unfortunately, estimating the bias is not
as straightforward as for Ĝ.
halshs-00443553, version 1 - 30 Dec 2009
The SST index is defined by Shorrocks (1995) as
q
1 X
SSST (z) = 2
(2n − 2i + 1)(z − y(i) ).
n z i=1
(43)
Arguments like those leading to (39) show that this formula can be extended to deal
with both continuous discrete distributions by using the definition
Z
¡
¢
2 z
SSST (z) =
(z − y) 1 − F (y) dF (y).
(44)
z 0
The plug-in estimator obtained by replacing F by F̂ in (44) does in this case coincide
exactly with (43). The algorithm for computing ŜSST (z) using a sample of size n is
much like that for Ŝ(z). The last three steps are replaced by
1
• For i = 1, . . . , q̂, form the series si = (z − y(i) )(n − i + −
). Then ŜSST (z) is the
2
2
sum of the si , i = 1, . . . , q̂, times 2/(n z).
Pi
• For i = 1, . . . , q̂, form the series pi = (2n − 2i + 1)y(i) /(2n) + n−1 j=1 y(j) .
• Form a series Ẑi withPẐi = 0 for i = q̂ + 1, . . . , n, and, for i = 1, . . . q̂,
q̂
Ẑi = z(1 − q̂/n) + n−1 j=1 y(j) − pi , and compute the mean Z̄. The estimated
variance of ŜSST (z) is the sum of the squares of the Ẑi − Z̄, times 4/(zn)2 .
Estimating the bias of ŜSST (z) is quite feasible. Thus, for a bias-corrected estimator,
we may add the step
• The bias-corrected estimator is
q̂
´
1 X
1 ³ q̂
n
y(j) .
−
ŜSST (z) −
n−1
n − 1 n nz j=1
Again, details are found in Appendix B.
– 19 –
10. Conclusion
An expression for the asymptotic distribution of the plug-in estimator of the Gini
index has been found that behaves at least as well as other proposed distributions.
It is based on an approximation of the estimator as a sum of IID random variables.
This approximation allows us to derive a reliable formula for the asymptotic variance.
A somewhat more complicated argument leads to an expression for the bias of the
estimator. Both bias and variance are easy to estimate in a distribution-free manner.
halshs-00443553, version 1 - 30 Dec 2009
Similar methods can be used to estimate the variance of Sen’s (1976) index of poverty,
for arbitrary poverty line z. Unfortunately, it does not seem to be easy to find an
expression for the bias of the estimator. This is not the case for the Sen-ShorrocksThon modification of the index, for which the standard error and bias are easy to
estimate.
Simulations demonstrate that the asymptotic distribution derived for the Gini index is
good even for quite small sample sizes, and, unless the tails of the underlying distribution are heavy, is thoroughly reliable for sample sizes greater than around 100. With
heavy tails, or with a lognormal distribution with a large variance, the asymptotic
distribution is a less good approximation. Use of the bootstrap, however, allows us to
obtain reliable inference unless the tails are so heavy that the variance is huge or fails
to exist.
Appendix A
As mentioned just before the derivation of formula (5) for Ĝ, equation (4) does not
define the Gini index of a discrete distribution unambiguously, since adopting right- or
left-continuous forms of the CDF lead to different expressions. In this paper, we have
used the average of the two different expressions, that is, the Ĝ of expression (5), for
estimation purposes, although we saw that yet another expression, namely nĜ/(n−1),
is less biased.
In much of the literature on the Gini index, it is assumed that there is a finite population for which the index is to be computed. There has been some discussion of just
how to do so, caused by disagreement over the desirable and undesirable features of
different definitions. The issues are very clearly set out in a pair of comments that
appeared in the American Sociological Review, Jasso (1979), and the reply by Allison
(1979). Gini’s original idea was that the index measured the mean difference between
any pair of incomes. Allison and Jasso disagreed over whether the “pair” formed by an
income and itself should be counted as a pair for calculating the mean. Allison, who
felt that it should, arrived at a formula numerically identical to the Ĝ of (5). Jasso,
who felt that it should not, preferred the formula
n
X
n+1
2
,
y(i) i −
Ĝ2 ≡
µ̂n(n − 1) i=1
n−1
– 20 –
(45)
halshs-00443553, version 1 - 30 Dec 2009
which is readily shown to be equal to nĜ/(n − 1), the expression we have used here
as a less biased estimator. More than a few subsequent authors have shared Jasso’s
preference for (45), for instance Deaton (1997). However, as pointed out by Allison,
(45) does not satisfy the population symmetry axiom of Sen (1973), which requires
that, if a finite population is exactly replicated, the new double-size population should
have the same Gini index as the old. Sen himself, in Sen (1976), as might be expected,
uses the definition (5). Many economists have sided with Sen and Allison. A notable
example is a paper by Donaldson and Weymark (1980), in which various generalisations
of the Gini index are presented. A more recent contribution is Deltas (2003), where
the source of the bias of Ĝ is given a geometric interpretation, and its link to the two
definitions of the finite-sample index.3
In view of all this, it is a little strange that the definition (42) given by Sen (1976)
of his poverty index does not satisfy the population symmetry axiom. On the other
hand, the estimator (41) that we use does so if treated as the actual index for a discrete
population. To see this, let every individual be duplicated, letting the individual whose
income has rank i reappear as two individuals, each with income y(i) but with ranks
2i − 1 and 2i. Then, when the population is duplicated, since q and n become 2q
and 2n respectively, (41) becomes
q
q
¡
¡
2 X
2 X
3
1¢
1¢
(z − y(i) ) 2q − 2i + − + 2q − 2i + − =
(z − y(i) ) q − i + −
,
2
2
2
4nqz i=1
nqz i=1
as for the original population. A similar calculation shows that (42) does not share
this property.
What no one seems to dispute is that, for a continuous distribution, the appropriate
definition of the Gini index is (3) or one of its many equivalents. The approach
adopted in this paper is that the finite sample is drawn from an underlying continuous
distribution, and our task is to estimate the population index (3) as well as possible.
The plug-in estimator (4), as realised by the formula (5), takes the form of one of the
possible versions of the index for a discrete distribution, the one that has the support
of Sen, Allison, and others. On the other hand, the other version (45), favoured by
Jasso and many applied econometricians like Deaton, is a better, because less biased,
estimator of the population index.
Appendix B
We use the delta method to express (40) approximately as a sum of IID random
variables. The approximation is as follows:
Z z
¡
¢
2
Ŝ(z) − S(z) = − ¡
(z − y) F (z) − F (y) dF (y)
¢2
0
z F (z)
3
I am grateful to an anonymous referee for drawing my attention to this paper.
– 21 –
Z
z
¡
¢
(z − y) F̂ (z) − F̂ (y) − F (z) + F (y) dF (y)
0
Z z
¡
¢
2
(z − y) F (z) − F (y) d(F̂ − F )(y).
+
zF (z) 0
2
+
zF (z)
(46)
The first term on the right-hand side above is
n
¢
S X¡
−
I(yj ≤ z) − F (z) .
nF (z) j=1
(47)
The third term can be written as
n ³
X
¡
¢
¡
¢´
2
I(yj ≤ z)(z − yj ) F (z) − F (yj ) − E I(Y ≤ z)(z − Y )(F (z) − F (Y )) ,
nzF (z) j=1
halshs-00443553, version 1 - 30 Dec 2009
(48)
and the second term as
n Z z
X
¡
¢
2
(z − y) I(yj ≤ z) − I(yj ≤ y) − F (z) + F (y) dF (y)
nzF (z) j=1 0
Here,
Z
0
and
Z
z
¡
¢
(z − y)I(yj ≤ z) dF (y) = I(yj ≤ z) zF (z) − m(z) ,
z
(z − y)I(yj ≤ y) dF (y) = I(yj ≤ z)
Z
z
(z − y) dF (y)
yj
0
³ ¡
´
¢
= I(yj ≤ z) z F (z) − F (yj ) − m(z) + m(yj ) ,
Thus, on collecting terms, we see that the second term of (46) is
n ³
X
¡
¢
¡
¢´
2
I(yj ≤ z) zF (yj ) − m(yj ) − E I(Y ≤ z)(z − Y )(F (z) − F (Y )) . (49)
nzF (z) j=1
The terms (48) and (49) can be combined to give
n
³
X
2
I(yj ≤ z) zF (z) − yj F (z) + yj F (yj ) − m(yj )
nzF (z) j=1
¡
¢´
− 2E I(Y ≤ z)(z − Y )(F (z) − F (Y )) ,
and so, with (47), we find that
n
X
¡
¢
2
Ŝ(z) − S(z) ≈
I(yj ≤ z)Zj − E(I(Y ≤ z)Z) ,
nzF (z) j=1
– 22 –
(50)
where
1
Zj = zF (z) − −
zS − yj F (z) + yj F (yj ) − m(yj ),
2
(51)
and Z is the random variable formed by replacing yj in (51) by Y . If yj = y(i) , the i th
order statistic, for i ≤ q̂ we estimate Zj , as in (18), by
Ẑi =
¢
1 ¡
−
z 2q̂/n − Ŝ(z) − (q̂
2
1
1
−i+−
)y /n − −
n
2 (i)
i
X
y(j)
j=1
¢
1 ¡
=−
z 2q̂/n − Ŝ(z) − pi ,
2
halshs-00443553, version 1 - 30 Dec 2009
where pi = (2q̂ − 2i + 1)y(i) /(2n) + n−1
thus estimate (50) by the expression
Pi
j=1
y(j) . For i > q̂, we set Ẑi = 0. We can
n
¡
¢´
2 X³
Ẑi − E I(Y ≤ z)Z .
z q̂ i=1
¡
¢
Clearly we can estimate E I(Y ≤ z)Z by Z̄, the mean of the Ẑi , i = 1, . . . , n, and so
can estimate the variance of Ŝ(z) by
n
4 X
(Ẑi − Z̄)2 ,
2
(z q̂) i=1
as claimed in the algorithm for Ŝ(z) in section 9.
For ŜSST (z), the analysis is similar, and so we can be brief. The delta method tells us
that ŜSST (z) − SSST (z) is approximately
Z
Z
¡
¢
¡
¢
2 z
2 z
(z − y) 1 − F (y) d(F̂ − F )(y) −
(z − y) F̂ (y) − F (y) dF (y).
(52)
z 0
z 0
Making the same substitutions as for Ŝ(z) leads to the result that
n
¢
2 X¡
ŜSST (z) − SSST (z) =
I(yj ≤ z)Zj − E(I(Y ≤ z)Z) ,
nz j=1
with
¡
¢
¡
¢
Zj = z 1 − F (z) − yj 1 − F (yj ) + m(z) − m(yj ).
For yj = y(i) with i ≤ q̂, the estimate of Zj for i = 1, . . . , q̂ is
1
Ẑi = z(1 − q̂/n) − (n − i + −
)y(i) /n + m̂(z) − m̂(yj ),
2
with m̂(y) given by (17). This leads to the variance estimator of the algorithm for
ŜSST (z) in section 9.
– 23 –
The difference between ŜSST (z) − SSST (z) and the delta-method approximation (52)
is
Z
¡
¢
2 z
(z − y) F̂ (y) − F (y) d(F̂ − F )(y).
(53)
−
z 0
Since the expectation of (52) is manifestly zero, the bias of ŜSST (z) is the expectation
of (53). Indeed, since the integral with respect to F (y) is also manifestly zero, the
bias is the expectation of
halshs-00443553, version 1 - 30 Dec 2009
2
−
z
Z
0
z
q̂
´
³ 2i − 1
¡
¢
2X
(z − y) F̂ (y) − F (y) dF̂ (y) = −
− F (y(i) ) .
(z − y(i) )
z i=1
2n
The methods used in section 4 to find the bias of Ĝ can be used again to compute the
expectation of this expression. The computation is slightly complicated by the fact
¡
¢2
that q̂ is random. We see that E(q̂) = nF (z), and E(q̂ 2 )¡= n(n − 1) F (z) + nF (z).
¢
After some calculation, we find that the bias is −n−1 SSST (z) − F (z) + m(z)/z .
Therefore
´
³ nŜ
1 ³
m(z) ´
SST (z)
= SSST (z) +
F (z) −
,
E
n−1
n−1
z
and so a suitable bias-corrected estimator is
n
m̂(z) ´
1 ³q
−
ŜSST (z) −
,
n−1
n−1 n
z
as claimed in the algorithm.
References
Allison, P. D. (1979). “Reply to Jasso”, American Sociological Review, Vol. 44,
pp. 870–72.
Bahadur, R. R. and L. J. Savage (1956). “The nonexistence of certain statistical procedures in nonparametric problems”, Annals of Statistics, Vol. 27, pp. 1115–22.
Beran, R., 1988. “Prepivoting test statistics: A bootstrap view of asymptotic refinements”, Journal of the American Statistical Association, Vol. 83, pp. 687–697.
Bhattacharya, D. (2007). “Inference on inequality from household survey data”, Journal of Econometrics, Vol. 137, pp. 674–707.
Bishop, J. A., J. P. Formby, and B. Zheng (1997). “Statistical inference and the Sen
index of poverty”, International Economic Review, Vol. 38, pp. 381–87.
Davidson, R. and J. G. MacKinnon (2000). “Bootstrap tests: how many bootstraps?”,
Econometric Reviews Vol. 19, pp. 55–68.
– 24 –
Davidson, R. and J. G. MacKinnon (2004). Econometric Theory and Methods, Oxford
University Press, New York.
Deaton, A. S. (1997). The Analysis of Household Surveys: A Microeconometric Approach to Development Policy, Baltimore, Johns Hopkins University Press for the
World Bank.
Deltas, G. (2003). “The small-sample bias of the Gini coefficient: results and implications for empirical research”, The Review of Economics and Statistics, Vol. 85,
226–234.
Donaldson, D. and J. A. Weymark (1980). “A single-parameter generalization of the
Gini indices of inequality”, Journal of Economic Theory, Vol. 22, pp. 67–86.
halshs-00443553, version 1 - 30 Dec 2009
Giles, D. E. A. (2004). “Calculating a standard error for the Gini coefficient: some
further results”, Oxford Bulletin of Economics and Statistics, Vol. 66, pp. 425–33.
Giles, D. E. A. (2006). “A cautionary note on estimating the standard error of the
Gini index of inequality: comment”, Oxford Bulletin of Economics and Statistics,
Vol. 68, pp. 395–96.
Hall, P. (1992). The Bootstrap and Edgeworth Expansion, Springer-Verlag, New York.
Jasso, G. (1979). “On Gini’s mean difference and Gini’s index of concentration”, American Sociological Review, Vol. 44, pp. 867–70.
Mills, J. A. and S. Zandvakili (1997). “Statistical inference via bootstrapping for measures of inequality”, Journal of Applied Econometrics, Vol. 12, 133–150.
Modarres, R. and J. L. Gastwirth (2006). “A cautionary note on estimating the standard error of the Gini index of inequality”, Oxford Bulletin of Economics and Statistics, Vol. 68, pp. 385–90.
Ogwang, T. (2000). “A convenient method of computing the Gini index and its standard error”, Oxford Bulletin of Economics and Statistics, Vol. 62, pp. 123–29.
Ogwang, T. (2004). “Calculating a standard error for the Gini coefficient: some further
results: reply”, Oxford Bulletin of Economics and Statistics, Vol. 66, pp. 435–37.
Ogwang, T. (2006). “A cautionary note on estimating the standard error of the Gini
Index of inequality: comment”, Oxford Bulletin of Economics and Statistics, Vol. 68,
pp. 391–93.
Sandström, A., J. H. Wretman, and B. Waldén (1988). “Variance estimators of the
Gini coefficient: probability sampling”, Journal of Business and Economic Statistics,
Vol. 6, pp. 113–19.
Sen, A. (1973). On Economic Inequality, New York, Norton
– 25 –
Sen A. (1976). “Poverty: an ordinal approach to measurement”, Econometrica, Vol. 44,
pp. 219–231.
Shorrocks, A. F. (1995). “Revisiting the Sen poverty index”, Econometrica, Vol. 63,
pp. 1225–30.
Summers, R. and A. Heston (1995). The Penn World Tables, Version 5.6, NBER,
Cambridge, MA. (http://www.nber.org/pub/pwt56/).
halshs-00443553, version 1 - 30 Dec 2009
Xu, K. (2007). “U-Statistics and their asymptotic results for some inequality and
poverty measures”, Econometric Reviews, Vol. 26, pp. 567–77.
– 26 –
View publication stats