NUCLEAR – 2009
████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████
NUCLEAR DATA IMPACT ON THE CORE NEUTRON DESIGN
G. GLINATSIS, D. GUGIU*, G. GRASSO** and C. PETROVICH
ENEA, Bologna, Italy,
[email protected] &
[email protected]
* INR, Institute for Nuclear Research, Piteşti, Romania,
[email protected]
** Nuclear Engineering Laboratory, University of Bologna, Bologna, Italy,
giacomo.grasso@ mail.ing.unibo.it
ABSTRACT
The impact of the different sets of nuclear data on the criticality level and reactivity
coefficients of critical and sub-critical LMFR cores is discussed. A sensitivity analysis, by
direct substitution of the nuclear data of different origin (JEFF, ENDF/B, JENDL families),
was performed. Large discrepancies on the neutron parameters, among the different nuclear
data sets, are observed. Such an investigation, in stochastic approach by single isotope or
group of isotopes substitution, highlights the isotopes and/or the reaction events that are
mainly responsible for the most significant discrepancies. Both radiotoxicity and residual
risk reduction require high accuracy of the nuclear data, mainly for the Minor Actinides.
Finally, the impact of these uncertainties could be an important issue also for the economic
aspects of dedicated cores.
Key words: (Core Design, Minor Actinides, Transmutation, Monte Carlo, Nuclear
Data)
Background
The use of the nuclear energy, able to substitute fossil fuels at acceptable costs, is strongly related to
two critical aspects of nuclear power production:
∑
potential catastrophic risks, and
∑
the amount of radioactive wastes.
The latter solution can be offered by engaging nuclear reactors, preferably of fast neutrons spectrum.
The minimization of the potential catastrophic risks requires enhanced safety performances, while the
reduction of the high-level radioactive wastes (HLW) imply Partitioning & Transmutation (P&T)
techniques for both minor actinides (MA) and long-lived fission products (LLFP). To meet both
enhanced safety behaviour and improved environmental impact, the worldwide scientific community
efforts are addressed to innovative concepts and materials. The Generation-IV initiative aims mainly
to
8████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████
01
████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████
NUCLEAR – 2009
████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████
∑
generate sustainable energy and promote long-term availability of nuclear fuel;
∑
minimize the nuclear waste and reduce its long term management.
These goals are integrated by some elements of the EU energy policy, such as:
∑
Generation-IV systems with closed fuel cycles to substantially minimize the volume, the
radiotoxic content and the thermal load of the residual high-level waste requiring geological
disposal;
∑
the development of new applications of nuclear energy in Europe, and preliminary roadmaps
for nuclear energy related technologies.
All these objectives constitute the tentative to provide a global solution of the energy demand in a
sustainable manner, meeting also the public acceptability.
The Generation-IV innovative nuclear systems present new characteristics and requirements
concerning both the reactor cores (in terms of: “exotic” and/or U-free fuels, ceramic materials for
cladding, LHM for coolants, core architectures to optimise neutron performances, etc.) and the
associated fuel cycles (in terms of: new fuels fabrication, reprocessing, waste minimization, etc.). This
introduces the general issue of the accuracy and reliability of the “results”, related to both data
uncertainties and applied methods [1], [2]. Nuclear data uncertainties and their impact must be
assessed in order to validate the core design studies of some innovative solutions. The observed large
discrepancies among the different neutron parameters, mainly in “dedicated” core solutions, are
attributed to the nuclear data (and their uncertainties).
Boundary conditions of the core configurations
Two innovative core solutions have been investigated: the sub-critical ADS core of the EFIT reactor
(within the 5th and 6th EU Framework Programs, [3]) and the critical core of the ELSY reactor (within
the 6th EU Framework Programs, [4]). The first one is fuelled by (Pu, MA)O2-x + MgO innovative Ufree Cer-Cer type fuel with high content of MA and sized at about 380 MWth, while the second one is
fuelled by “classical” MOX of type (U, Pu)O2-x and sized at 1500 MWth. The structural materials
ferritic-martensitic steel T91 and the coolant material Pb are common materials for both the subcritical and critical cores. The fuel assembly (FA) pin arrangement of the first one follows the classical
hexagonal lattice layout inside an hexagonal wrapper tube, while the wrapperless FA pins of the
second one are disposed following a square lattice layout. Both the investigated solutions are
optimised to flatten the radial power distribution, with specific design requirements, beyond the
energy production, that is:
∑
maximum MA transmutation rate (theoretical value: ~ 42 kg MA/TWthhr) with zero Pu net
balance for the equilibrium EFIT core, and
∑
equilibrium cycles loading only natural (or depleted) Uranium and discharging only fission
products at (about) constant MA content in the core for the ELSY reactor.
From the neutron design point of view, any design constraint must be fulfilled (as far as possible with
adequate margin) under any plant foreseeable operating condition pertaining either Design Base
Conditions (DBC) or Design Extension Conditions (DEC). To avoid undesirable feedbacks on the
criticality, the reactivity level and (mainly) the reactivity coefficients should be known with high
accuracy. It is worthwhile to mention that, in case of an erroneous evaluation of the critical mass or of
the sub criticality level, a “correction” is possible during the “loading” of the core, while a similar
“correction” is not as much feasible for the differential parameters, such as the reactivity coefficients.
Since the simulation results are heavily influenced by the nuclear data, their importance appears
evident: the nuclear data constitute a crucial point for the “decisions” of every neutron design. Since
extensive studies on the uncertainty evaluations and on the systematic of existing and required
uncertainties have already been performed in [1], [5], this investigation (which involves both ENDF/B
7.0 and JENDL 3.3 evaluated nuclear data files), deals mainly with their impact on the reactivity
parameters, with respect to the reference results obtained using the JEFF 3.1 data. MCNP/MCNPX
8████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████
01
████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████
NUCLEAR – 2009
████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████
codes [6] were used for the neutronics, while the NJOY (release 99, update 259) code [7] system was
used to process the evaluated data.
Results
The results to be discussed come from a sensitivity analysis through the “direct substitution” approach:
by substituting the cross section data of one or more isotopes. This approach is the natural
consequence of the neutronic investigation tool choice, because the stochastic transport codes do not
allow to perform perturbation and uncertainty evaluations in the sense of the classical deterministic
transport concept. The impact of the different sets of nuclear data on the multiplication factor, delayed
neutron effective fraction, reactivity burn up swing, materials reactivity worth, coolant void effect and
on the other neutron parameters was investigated in [8], [9]. The results obtained for some relevant
neutron parameters are presented as % variation with respect to the reference configuration results.
EFIT Core Results
Because of the sub-critical nature of the EFIT core, the following neutron parameters, which are
related to the proton beam or the external neutron source (coming from the spallation reactions on the
Pb target), are defined as below:
∑
n-source:
the spallation neutrons appearing below 20 MeV per impinging proton;
∑
M:
fission neutrons born per n-source;
∑
ks:
n-source multiplication factor:
ks = M/(M + 1);
*
∑
j :
n-source importance:
j *= [(1-keff) / keff] / [(1-ks) / ks].
Table 1 collects the obtained results:
Table 1 BoC EFIT core neutron source parameters.
JEFF 3.1
n-source
M
ks
ϕ*
ENDF/B 7.0
(%)
23.09
− 0.91
13.71
−32.7
0.93201
− 3.2
0.544
− 0.92
JENDL 3.3
(%)
/
−56.20
− 8.00
− 2.57
Concerning some of the main neutron parameters of the EFIT core configuration, the following results
have been carried out: Table 2 collects the average micro cross-sections variation for some fuel
isotopes, while Table 3 collects some of the main neutron parameters of the configuration at BoC.
Table 2 BoL EFIT core average micro cross sections percentage variation among the ENDF files.
237 Np
239 Pu
241 Pu
sf
sc
n tot
sf
sc
n tot
sf
sc
n tot
ENDF/B 7.0
(%)
-0.382
4.734
1.389
0.294
-1.760
0.035
-0.844
-9.237
-0.320
JENDL 3.3
(%)
-0.484 241 Am
4.748
1.387
0.287 243 Am
-1.870
0.034
-0.877 244 Cm
-9.313
-0.321
sf
sc
n tot
sf
sc
n tot
sf
sc
n tot
ENDF/B 7.0
(%)
-0.981
2.441
-3.466
-0.907
-6.378
-0.930
-0.184
-16.172
-0.215
JENDL 3.3
(%)
-1.128
2.435
-3.465
-1.063
-6.420
-0.931
-0.285
-16.133
-0.217
8████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████
01
████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████
NUCLEAR – 2009
████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████
The discrepancies of the data from the Tables 1, 2 and 3 are really relevant for both cases.
Table 3 BoC EFIT core integral and differential neutron parameters variation among the ENDF files.
ENDF/B 7.0
JENDL 3.3
(%)
(%)
k eff
− 1.765
− 4.458
< En >
− 0.635
− 5.853
<n>
− 0.911
− 1.336
11.76
beff
− 2.703
(*)
BUswing
−0.00294± 37E-5 −0.00087± 37E-5
- 0.724
- 2.985
Fission events
1.485
4.834
Capture events:
2.091
-13.62
(n, xn) events:
W = (∆k/k) /(∆N/N) ; AC = Active Core
ENDF/B 7.0
(%)
W_fuel Pucontent
W_fuel vol_fract
W_clad
W_cool AC
(∆k/k) AC Void
0.634
− 1.822
− 2.632
− 13.79
− 7.801
0.049 / −2.798
2.067 / 1.543
Pu/MA Fis evs.
Pu/MA Cpt evs.
Pu/MA n,xn evs − 15.57 / 30.08
JENDL 3.3
(%)
2.325
− 6.275
− 13.16
− 6.897
29.33
− 1.721 / − 6.366
7.366 / 4.467
− 25.22 / 5.624
Both integral and differential parameters are afflicted by significant discrepancies and Fig.1 confirms
the neutron average energy variation among the different ENDF. To extend the panorama concerning
the nuclear data impact on the reactivity parameters, several other simulations have been performed by
substituting the whole material cross sections. By substituting the whole fuel isotope cross sections
(including MgO matrix), with the corresponding ENDF/B 7.0 and JENDL 3.3 ones, the following
results have been obtained for the BoL core configuration:
∑ whole fuel cross sections substitution:
ENDF/B 7.0: (∆k/k)eff = − 0.01196 ± 0.00037
JENDL 3.3:
(∆k/k)eff = − 0.01965 ± 0.00036.
∑
Pb isotopes cross sections substitution:
ENDF/B 7.0: (∆k/k)eff = − 0.01065 ± 0.00038
JENDL 3.3:
(∆k/k)eff = − 0.02616 ± 0.00036.
More significant information about the different
neutron parameter discrepancies, using various
ENDF, can be obtained from the following results:
Fig. 1. BoC neutron flux spectra in the fuel zones.
∑
.∑
239
Pu cross sections substitution:
241
Am cross sections substitution:
ENDF/B 7.0:
JENDL 3.3:
ENDF/B 7.0:
JENDL 3.3:
(∆k/k)eff = + 0.00068 ± 0.00034
(∆k/k)eff = + 0.00160 ± 0.00035;
(∆k/k)eff = − 0.01169 ± 0.00037
(∆k/k)eff = − 0.01570 ± 0.00038.
These results confirm previous evaluation results using cross sections from ENDF/B 6 and from JEF
2.2 evaluated nuclear data [10]. While the 239Pu contribution remains always very limited, in
agreement with the current knowledge on the 239Pu data, strong discrepancies are observed in the case
of the substitution of the 241Am and of Pb data. Of course, because of the U-free nature of the CERCER fuel of EFIT, any information concerning U-isotopes micro cross sections or Doppler coefficient
evaluations is missing.
8████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████
01
████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████
NUCLEAR – 2009
████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████
ELSY Core Results
Although the neutron design activities are still in progress, some evaluations concerning the ENDF
impact are performed. An extensive investigation of the flux-weighted average micro cross sections is
included in Table 4 (limited to JEFF 3.1 and ENDF/B 7.0 evaluated data), while for the reactivity level
Table 4 ELSY core fuel average micro cross sections and their % variation.
U235
U238
Np237
Np238
Pu238
Pu239
Pu240
Pu241
Pu242
Am241
Am243
Cm242
Cm243
Cm244
Pb207
Pb208
σfiss
1.896
0.035
0.317
3.525
1.214
1.766
0.360
2.529
0.252
0.245
0.176
0.613
3.267
0.400
σelas
8.794
8.872
JEFF 3.1
σcapt
0.546
0.283
1.563
0.175
0.537
0.497
0.489
0.482
0.492
1.814
1.633
0.474
0.296
0.861
σn,2n
5.59E-04
3.93E-04
ν
2.455
2.757
2.805
2.818
2.982
2.938
3.037
2.970
3.114
3.473
3.498
3.598
3.481
3.487
σtot
8.944
8.899
ENDF/B 7.0 ∆(%)
σfis
σcapt
0.369
0.733
2.857
0.707
/
5.054
-37.418
142.857
- 9.390
38.734
0.680
- 0.201
/
5.112
- 0.237
- 7.469
- 3.571
- 7.317
/
3.252
1.136
- 4.715
-76.835
-29.114
-10.162
87.838
1.000
-15.796
σelas
σn,2n
0.284
4.293
0.259
-4.835
ν
0.163
-0.725
1.462
-9.368
0.268
0.034
-1.482
-0.202
-2.216
-3.455
0.943
6.337
-0.460
-0.201
σtot
0.291
0.258
and other integral parameter variations, the following results have been obtained:
∑
(∆k/k)eff = (keff, ENDF/B7.0 – keff, JEFF3.1)/ keff, JEFF3.1 = – 0.00531 ± 0.00019;
∑
∆< En > = 0.107 %
&
∆< n > = – 0.196 %;
∑
∆(Fis Events) = – 0.262 %; ∆(Cpt Events) = + 0.194 % &
∆(n,xn Events) = + 7.660 %.
For the ELSY critical core, fuelled with “classical” MOX fuel (enriched around the value of 18% in
Pu), the integral parameters are similar for the two different xs-libraries. The differences in the crosssections between the files JEFF 3.1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 and ENDF/B-VII.0 range from less
than 1% to about 140%, with
limited discrepancies for 235U, 238U
8
and 239Pu isotopes. The impact of
ENDF/B 7.0
7
the different ENDF files on the
JEFF 3.1
BISERM-2
DPA parameter have been evaluated
6
in [9] for some critical zones of the
5
ELSY reactor. Figure 2 shows the
4
Inner Vessel DPA evaluations; it
can be observed that both JEFF 3.1
3
and ENDF/B 7.0 data underestimate
2
from 5.5% to 6.7% the reference
results (BISERM-2), but with
DPA
1
limited
discrepancies
between
Fig. 2. Inner Vessel DPA (20 y) axial distribution (bottom to top).
themselves.
8████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████
01
████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████
NUCLEAR – 2009
████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████
Neutron Parameter Importance
For a better understanding of the importance of the various neutron events and in order to “translate”
the evaluated percentage variations in “neutron importance”, we start from the neutron balance
equation:
Total Loss = Total Gain
(1)
where:
Total Loss = Capt_Loss + Fiss_Loss + (n, xn)_Loss + Leakage
(2. 1)
Total Gain = n*Fiss_Loss / keff + (n, xn)_Gain
(2. 2)
(n, xn)_Gain = 1*(n, 1n) + 2*(n, 2n) + 3*(n,3n) + …
(2. 3)
Assuming that keff is a continuous function of the above independent variables and applying:
δk eff = ∑
j
δk eff
it follows that:
k eff
where:
∂k eff
∂ξ j
= ∑(
j
δξ j ;
δk eff
k eff
ξ j = ν , Cpt _ Loss , Fis _ Loss , ...
) j = ∑Cj
j
δξ j
;
ξj
Cξ =ν = 1;
Cξ = Fis _ Loss = 1 −
Cj =
∂k eff / k eff
∂ξ j / ξ j
C ξ =Cpt _ Loss = −k eff
k eff
ν
Cξ =( n , xn ) _ Gain = + k eff
(3. 1)
(3. 2)
Cpt _ Loss
ν ∗ Fis _ Loss
C ξ =( n , xn ) _ Loss = −k eff
;
(n, xn) _ Gain
; Cξ = Leak
ν ∗ Fis _ Loss
(n, xn) _ Loss
ν ∗ Fis _ Loss
Leak
= −k eff
ν ∗ Fis _ Loss
(3. 3)
The set of the equations (3.1 - 3.3) allows the evaluation of the neutron importance of each neutron
event. At this point, it should be underlined that the neutron multiplicity associated factor is equal to
6
(Dk/k) cpt
(Dk/k) fis
(Dk/k) nou
1=EFIT-BoC JEFF 3.1 - ENDF/B 7.0
2=EFIT-BoC JEFF 3.1 - JENDL 3.3
3=EFIT-BoC JEFF 3.1 - A.C Void Eff.
4=ELSY-BoC JEFF 3.1 - ENDF/B 7.0
5=EFIT-BoC 239Pu from ENDF/B 7.0
6=EFIT-BoC 241Am from JENDL 3.3
5
4
3
2
Neutron Events Importance
1
-0,03
-0,02
-0,01
0,01
0,02
0,03
0,04
Fig. 3. Main neutron event importance Dk/k for some ENDF or physics “ transitions”.
0,05
8████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████
01
████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████
NUCLEAR – 2009
████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████
unity, while all the other neutron event associated factors (Cj) are lower than one. At the same time the
fission and capture event associated factors are close (in absolute value) one to the other. Applying the
above formulation, Figure 3 summarises the main neutron event importance for some of the discussed
cases.
In detail, for example:
∑
the substitution of the 239Pu cross sections (JEFF3.1 to ENDF/B-7.0, see case 5 of Fig. 3)
implies a neutron multiplicity variation of +0.074%, i.e. neglecting any other neutron event,
the associated reactivity variation of 74 pcm (eq. 3.1-3.3), is very close to the simulation result
of 68 pcm; when all the neutron events are included, the final result (eq. 3.1-3.3) is equal to 67
pcm.
∑
in case of 241Am cross sections substitution (JEFF3.1 to JENDL 3.3, see case 6 of Fig. 3) a
reactivity variation of –1570 pcm is observed. Also the following results are observed: a
neutron multiplicity variation of –0.9694% corresponding to a reactivity variation of –969
pcm, a fission events variation of –0.6061% corresponding to a reactivity variation of –418
pcm, a capture events variation of +0.2647% corresponding to a reactivity variation of –183
pcm, etc. Neglecting all the other neutron events the associated reactivity variation, (eq. 3.1 –
3.3) is equal to –1570 pcm, while including all the neutron events a value of –1576 pcm is
obtained.
The same methodology could be applied to all the other investigated cases. Of course, in the case of
the void effect, cross sections data substitution does not matter and the reactivity variation is due only
to the physics.
Remarks
The current investigation shows that the integral and the differential neutron parameters are afflicted
by “uncertainties” up to few percent, equivalent to few “thousands” pcm, challenging in this way the
neutron design. It was found that both the ENDF/B 7.0 and JENDL 3.3 evaluated nuclear data
underestimate the JEFF 3.1 results up to about 4.5% in the keff integral parameter. At the same time the
ENDF/B 7.0 data set underestimates the differential parameters, for example up to about 8% for the
void effect reactivity, while the JENDL 3.3 data set overestimates the same parameter up to 29%. In
addition, using the ENDF/B 7.0 and JENDL 3.3 data, both Pb and fuel reactivity contributions are
overestimated, between ~1000 to ~2500 pcm. In terms of single isotope impact, acceptable
differences have been observed for 239Pu, while very strong overestimation has been observed for
241
Am in the JEFF 3.1 data. Finally, the high discrepancies carried out by the present sensitivity
analysis confirm the results of other previous studies. It is to be noted that the above uncertainties
impact on the FAs number required to assure the criticality level and also on the Decay Heath
Removal component, due to the 241Am (242Cm via neutron captures) high uncertainties, especially in
the case of a large amount of MA loaded in the core.
Acknowledgements
The authors thank the partners of the IP-EUROTRANS project for their fruitful contribution to the
project. Special thanks to the European Commission for the financial support through the FP5 and FP6
programs.
8████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████
01
████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████
NUCLEAR – 2009
████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████
References
[1] G. Aliberti, G. Palmiotti, M. Salvatores, C.G. Stenberg, Impact of nuclear data uncertainties on
transmutation of actinides in accelerator–driven assemblies, Nucl. Sci. Eng., 46, 13-50, 2004.
[2] G. Paliotti, G. Aliberti, M. Salvatores et al., A global approach to the Physics validation of
simulation codes for future nuclear systems, International Conference on Reactor Physics,
PHYSOR’08, Interlaken, Switzerland, September 14-19, 2008.
[3] Artioli, C., et al., Minor Actinides transmutation in ADS: The EFIT core design, International
Conference on Reactor Physics, PHYSOR’08, Interlaken, Switzerland, September 14-19, 2008.
[4] M. Sarotto, C. Artioli, G. Grasso, D. Gugiu, ELSY core design static, dynamic and safety
parameters with the open square FA, ENEA, FPN-P9IX-006, 2009 (WP2 / Deliverable D8).
[5] Korovin, Yu.A., et al., Transmutation of radioactive nuclear waste – present status and
requirement for the problem-oriented nuclear data base, PRAMANA, Vol.68, N° 2, February
2007, pp. 181-191.
[6] Hendricks, J.S., et al., MCNPX, Version 2.6D, Los Alamos National Laboratory report LA-UR07-4137, June 20, 2007.
[7] ORNL, 2000. NJOY99.0 Code system for producing point wise and multigroup neutron and
photon cross sections from ENDF/B data, PSR 480, March 2000.
[8] G. Glinatsis, C. Artioli, C. Petrovich, M. Sarotto, Reactivity coefficients and uncertainty
evaluations on the EFIT core neutron design, International Conference on Reactor Physics,
PHYSOR’08, Interlaken, Switzerland, September 14-19, 2008.
[9] D. Gugiu, G. Glinatsis, G. Grasso, C. Petrovich and C. Artioli, Radiation damage and activation
evaluations for the ELSY reactor, 2nd International Conference on Sustainable Development
through Nuclear Research and Education, NUCLEAR2009, Piteşti, România, May 27-29, 2009.
[10] G. Glinatsis, Stochastic Approach Studies on the 3 Zones EFIT-MgO/Pb-Coolant Core, ENEA
Technical Report, FPN-P9EH-005 rev.0, 25 Jun. 2007, Bologna (Italy).
8████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████
01
████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████