Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2013
…
9 pages
1 file
In this work we propose a heteroscedastic generalization to RVM, a fast Bayesian framework for regression, based on some recent similar works. We use variational approximation and expectation propagation to tackle the problem. The work is still under progress and we are examining the results and comparing with the previous works.
2004
The Relevance Vector Machine (RVM) provides an empirical Bayes treatment of function approximation by kernel basis expansion. In its original form ?, RVM achieves a sparse representation of the approximating function by structuring a Gaussian prior distribution in a way that implicitly puts a sparsity pressure on the coefficients appearing in the expansion. RVM aims at retaining the tractability of the Gaussian prior while simultaneously achieving the assumed (and desired) sparse representation. This is achieved by specifying independent Gaussian priors for each of the coefficients. In his introductory paper, ? shows that for such a prior structure, the use of independent Gamma hyperpriors yields a product of independent Student-t marginal prior for the coefficients, thereby achieving the desired sparsity. However, such a prior structure gives complete freedom to the coefficients, making it impossible to isolate a unique solution to the function estimation task.
2022
Statistical modeling and inference problems with sample sizes substantially smaller than the number of available covariates are challenging. Chakraborty et al. (2012) did a full hierarchical Bayesian analysis of nonlinear regression in such situations using relevance vector machines based on reproducing kernel Hilbert space (RKHS). But they did not provide any theoretical properties associated with their procedure. The present paper revisits their problem, introduces a new class of global-local priors different from theirs, and provides results on posterior consistency as well as posterior contraction rates
2009
This paper proposes an extended hierarchical hyperprior structure for kernel regression with the finality of solving the so-called Neyman-Scott problem inherent in the now very popular Relevance Vector Machine (RVM). We conjecture that the proposed prior helps achieve consistent estimates of the quantities of interest, thereby overcoming a limitation of the original RVM for which the estimates of the quantities of interest are shown to be inconsistent. Unlike the majority of other authors interested who typically used an Empirical Bayes approach for RVM, we adopt a fully Bayesian approach. Our consistency claim at this stage remains only a conjecture, to be proved theoretically in a subsequent paper. However, we use a computational argument to demonstrate the merits of proposed solution.
2004
Traditional non-parametric statistical learningtechniques are often computationally attractive, but lack the same generalization andmodel selection abilities as state-of-the-artBayesian algorithms which, however, are usuallycomputationally prohibitive. This papermakes several important contributions thatallow Bayesian learning to scale to more complex, real-world learning scenarios.
Machine Learning, 2007
Enforcing sparsity constraints has been shown to be an effective and efficient way to obtain state-of-the-art results in regression and classification tasks. Unlike the support vector machine (SVM) the relevance vector machine (RVM) explicitly encodes the criterion of model sparsity as a prior over the model weights. However the lack of an explicit prior structure over the weight variances means that the degree of sparsity is to a large extent controlled by the choice of kernel (and kernel parameters). This can lead to severe overfitting or oversmoothing -possibly even both at the same time (e.g. for the multiscale Doppler data). We detail an efficient scheme to control sparsity in Bayesian regression by incorporating a flexible noise-dependent smoothness prior into the RVM. We present an empirical evaluation of the effects of choice of prior structure on a selection of popular data sets and elucidate the link between Bayesian wavelet shrinkage and RVM regression. Our model encompasses the original RVM as a special case, but our empirical results show that we can surpass RVM performance in terms of goodness of fit and achieved sparsity as well as computational performance in many cases. The code is freely available.
Statistics and Computing, 2007
Our article presents a general treatment of the linear regression model, in which the error distribution is modelled nonparametrically and the error variances may be heteroscedastic, thus eliminating the need to transform the dependent variable in many data sets. The mean and variance components of the model may be either parametric or nonparametric, with parsimony achieved through variable selection and model averaging. A Bayesian approach is used for inference with priors that are data-based so that estimation can be carried out automatically with minimal input by the user. A Dirichlet process mixture prior is used to model the error distribution nonparametrically; when there are no regressors in the model, the method reduces to Bayesian density estimation, and we show that in this case the estimator compares favourably with a well-regarded plug-in density estimator. We also consider a method for checking the fit of the full model. The methodology is applied to a number of simulated and real examples and is shown to work well.
IEEE transactions on neural networks / a publication of the IEEE Neural Networks Council, 2009
Sparse kernel methods are very efficient in solving regression and classification problems. The sparsity and performance of these methods depend on selecting an appropriate kernel function, which is typically achieved using a cross-validation procedure. In this paper, we propose an incremental method for supervised learning, which is similar to the relevance vector machine (RVM) but also learns the parameters of the kernels during model training. Specifically, we learn different parameter values for each kernel, resulting in a very flexible model. In order to avoid overfitting, we use a sparsity enforcing prior that controls the effective number of parameters of the model. We present experimental results on artificial data to demonstrate the advantages of the proposed method and we provide a comparison with the typical RVM on several commonly used regression and classification data sets.
2012 IEEE 12th International Conference on Data Mining, 2012
We present a new regression mixture model where each mixture component is a multi-kernel version of the Relevance Vector Machine (RVM). In the proposed model, we exploit the enhanced modeling capability of RVMs due to their embedded sparsity enforcing properties. Moreover, robustness is achieved with respect to the kernel parameters, by employing a weighted multi-kernel scheme. The mixture model is trained using the maximum a posteriori (MAP) approach, where the Expectation Maximization (EM) algorithm is applied offering closed form update equations for the model parameters. An incremental learning methodology is also presented to tackle the parameter initialization problem of the EM algorithm. The efficiency of the proposed mixture model is empirically demonstrated on the time series clustering problem using various artificial and real benchmark datasets and by performing comparisons with other regression mixture models.
Knowledge and Information Systems, 2013
A regression mixture model is proposed where each mixture component is a multi-kernel version of the Relevance Vector Machine (RVM). This mixture model exploits the enhanced modeling capability of RVMs, due to their embedded sparsity enforcing properties. In order to deal with the selection problem of kernel parameters, a weighted multi-kernel scheme is employed, where the weights are estimated during training. The mixture model is trained using the maximum a posteriori (MAP) approach, where the Expectation Maximization (EM) algorithm is applied offering closed form update equations for the model parameters. Moreover, an incremental learning methodology is also presented that tackles the parameter initialization problem of the EM algorithm along with a BIC-based model selection methodology to estimate the proper number of mixture components. We provide comparative experimental results using various artificial and real benchmark datasets that empirically illustrate the efficiency of the proposed mixture model.
Journal of Multivariate Analysis, 2012
Statistical modelling and inference problems with sample sizes substantially smaller than the number of available covariates are challenging. This is known as large p small n problem. Furthermore, the problem is more complicated when we have multiple correlated responses. We develop multivariate nonlinear regression models in this setup for accurate prediction. In this paper, we introduce a full Bayesian support vector regression model with Vapnik's ǫ-insensitive loss function, based on reproducing kernel Hilbert spaces (RKHS) under the multivariate correlated response setup. This provides a full probabilistic description of support vector machine (SVM) rather than an algorithm for fitting purposes. We have also introduced a multivariate version of the relevance vector machine (RVM). Instead of the original treatment of the RVM relying on the use of type II maximum likelihood estimates of the hyper-parameters, we put a prior on the hyper-parameters and use Markov chain Monte Carlo technique for computation.
ICCROM Publication, 2023
Tópicos. Revista de Filosofía de Santa Fe, 2018
Los viajes extraordinarios de Jules Verne / coord. por Nicolás José Moragues González, Ariel Pérez Rodríguez, Yalkel Águila, 2018, ISBN 978-84-09-02159-8, págs. 167-176, 2018
Revista ESMAT, 2023
Climate Change - Geophysical Foundations and Ecological Effects, 2011
REVISTA DE HISTÓRIA DA SOCIEDADE E DA CULTURA, 2023
Going Beyond: Art as Adventure, 2018
BMC Psychology, 2021
Iranian Journal of Nursing and Midwifery Research, 2017
Semiconductor Science and Technology, 2014
Machining Science and Technology, 2015
Arquivos de Ciências da Saúde da UNIPAR, 2018
Mathematika, 2022
Economia. Niterói (RJ), 2001
RePEc: Research Papers in Economics, 2011