Academia.eduAcademia.edu

Diode laser spectroscopy of several bands of hydroxylamine

1987, Journal of Molecular Spectroscopy

Diode laser spectroscopy has been carried out on the Y$ (11 I5 cm-') and v6 (895 cm-') fundamentals, the 24 overtone, the 3u,-v, hot band, and the Y~-v~ difference band (all near 700 cm-') of hydroxylamine (NHrOH). (Q = NH2 wag, y6 = NO stretch, and Ye = OH torsion.) Transition frequencies were determined with a nominal accuracy of +O.OOl cm-'. Accurate molecular parameters were determined for the ground state, u6 = 1, u9 = 1, and u9 = 2. The u5 = 1 and u9 = 3 states were perturbed by a Coriolis interaction with each other and possibly with a third state. In these cases effective rotational and distortion constants were determined together with empirical perturbation parameters. The data obtained on ~5 and v6 enabled assignments of the transitions involved in the optically pumped hydroxylamine FIR laser to be made. Q 1987 Academic Press, Inc.

JOURNAL OF MOLECULAR SPECTROSCOPY zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHG 123,366-38 1 (1987) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONM Diode Laser Spectroscopy of Several Bands of Hydroxylamine GERHARD TAUBMANN AND HAROLD JONES zyxwvutsrqponmlkjihgfedcbaZYXW Abteilung Physikdische Chernie, Universitdt Urn, D-7900 Urn, West Germany Diode laser spectroscopy has been carried out on the Y$(11 I5 cm-‘) and v6 (895 cm-‘) fundamentals, the 24 overtone, the 3u,-v, hot band, and the Y~--v~ difference band (all near 700 cm-‘) of hydroxylamine (NHrOH). (Q = NH2 wag, y6 = N-O stretch, and Ye= OH torsion.) Transition frequencies were determined with a nominal accuracy of +O.OOlcm-‘. Accurate molecular parameters were determined for the ground state, u6 = 1, u9 = 1, and u9 = 2. The u5 = 1 and u9 = 3 states were perturbed by a Coriolis interaction with each other and possibly with a third state. In these cases effective rotational and distortion constants were determined together with empirical perturbation parameters. The data obtained on ~5and v6 enabled assignments of the transitions involved in the optically pumped hydroxylamine FIR laser to be made. Q 1987 Academic Press, Inc. INTRODUCTION Small molecules containing amino groups have been a subject of sustained spectroscopic interest for many years. This is at least in part due to challanges offered by the spectral complexity often present with this class of substances. In the case of hydrazine (NHzNHz) the effects of inversion and internal rotation combine to produce a particularly complex situation which has only relatively recently been adequately theoretically treated (I). It is consequently, at first sight, somewhat surprising that the ground state microwave spectrum of hydroxylamine (NHzOH) displays no such complications at all (2). This results from a configuration with the hydrogen atom of the hydroxyl group in a trans position relative to those of the amino group (Fig. 1) being stabilized by what is presumed to be an interaction between the hydrogen atoms and the lone pairs on the two heavy atoms. So far only this form of hydroxylamine has been shown to be present in the gas phase (2-4). Our interest in obtaining high-resolution infrared spectra of hydroxylamine was twofold. First, we have recently produced optically pumped FIR laser action with this substance (5) and wished to explain the mechanism involved in this process. Second, it seemed possible that the effects of quantum mechanical tunneling might be observable in vibrationally excited states of this molecule and thus give information over the potential barriers involved. The FIR laser radiation was produced by pumping the amino wagging band (~5) and the N-O stretch (Q), near 1115 and 895 cm-’ respectively (6), with lo-pm lasers (5) and the gaining of information over these two bands was given priority. It was observed that the spectrum of v5was slightly perturbed. A possible interaction partner was 3vg, the second overtone of the torsional motion, which was to be expected near 1100 cm-‘. As a result of this it was decided to examine the 2~9, 3vg-ug band system 0022-2852187$3.00 Cqyri&t 0 1987 by Academic Press, Inc. AU rights of reproduction in any fom resewed. 366 367 SEVERAL BANDS OF HYDROXYLAMINE zyxwvutsrqponmlkjihgfedcbaZ FIG. 1. The truns form of hydroxylamine which is stabilized by interactions between the hydrogens and the lone electron pairs on the heavy atoms. to gain information over the u9 = 3 state. In this case the analysis was assisted by the work of Tamagake et al. (3) which was carried out under conditions of medium resolution. During the survey of this band system we were also able to assign transitions of the v5-vg difference band. EXPERIMENTAL DETAILS The diode laser spectrometer was based on the cold head assembly of Spectra Physics with diodes from the same firm. Measurements were carried out using a White cell with a 20-m path length and gas pressures in the range of 0.1 to 0.5 Torr. A calibrated confocal etalon (FSR = 0.0098 11 cm-‘) and accurately measured absorption lines of NH3 (7), N20 (8), and SO;! (9) were used to determine transition wavenumbers. The hydroxylamine was produced by warming hydroxylammonium phosphate to 80°C and passing the gas directly into the absorption cell. After an initial period in which the cell was passivated, hydroxylamine proved to be quite stable and the sample had to be replenished only every 20 to 30 min. OBSERVATIONS Although by no means obvious, hydroxylamine is in fact a very near-prolate symmetric rotor. As a consequence of this, in fitting the spectra, Watson’s &reduced Hamiltonian (IO) was used. Due to the large rotational constants the spectra of hydroxylamine display relatively few absorption lines. In the absence of perturbations, assignment proceeds smoothly via the recognition of characteristic patterns of absorption lines. The N- O Stretching Band (vd Some 150 lines of this band with J =G30 and K_ < 12 were measured in the region 890-920 cm-‘. These are listed together with their assignments in Table I. This band proved to be an u/c hybrid and a section of the RQl subband near 9 11 cm-’ is shown in Fig. 2. The asymmetry splitting is clearly Seen here, although in many cases the 368 TAUBMANN AND JONES TABLE I Observed Transitions of the v6 Band J 0 1 2 6 IO 14 15 20 1 11 4 6 6 K_ K, 0 0 0 1 o 2 o 6 o lo o 14 o 15 o 20 11 o 13 1 1 5 6 .J K_ 1 2 11 5 9 13 14 19 2 2 5 5 K, 0 0 1 2 o 5 9 12 14 la o o 1 o 1 12 11 o 5 1 4 19 1 9 1 IO 1 IO 1 15 1 14 121 1 23 1 22 1 25 1 26 1 27 1 28 1 29 1 30 2 0 21 2 1 2 2 2 2 2 3 2 3 2 2 2 3 2 4 2 4 2 5 2 4 2 5 2 6 2 6 2 7 2 a 5 a 9 9 10 14 14 21 22 22 25 26 27 28 28 29 2 2 3 3 4 4 3 3 5 5 6 6 5 7 7 a a 9 2 2 2 2 9 9 a a 11. 10 9 10 1 II 1 9 2 7 1 10 10 2 a 11 1 10 11 15 17 17 6 633 2 9 2 14 2 16 2 15 3 3 11 14 16 16 7 532 1 2 3 3 2 11 13 14 13 5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 4 12 13 14 15 16 14 16 16 17 19 19 20 20 21 21 5 9 lo IO 11 15 15 22 23 23 25 26 27 28 29 30 2 2 3 3 4 4 4 4 5 5 6 6 6 7 7 a a 9 927 10 10 10 10 919 10 11 12 13 12 12 13 14 14 16 17 17 la 18 19 2 093.5257 891.8245 892.9732 9o*.a*ao 910.0511 910.8922 917.0720 918.6341 891.0192 891.8152 892.1296 904.8451 904.8362 892.7488 910.8496 910.8378 917.8809 917.8590 917.8698 910.4369 911.1694 911.6409 893.6449 893.0803 892.4932 891.8863 917.7151 918.7284 911.7056 911.6997 911.6456 911.6331 911.5655 911.5450 918.2811 918.2689 911.4649 911.4343 911.3463 911.3028 904.8180 911.2063 911.1481 911.0475 910.9719 910.7740 910.8671 892.2084 910.5537 910.8204 910.6692 892.0739 910.4496 917.8405 892.8793 892.8907 910.5836 904.7805 910.7824 893.5130 893.2416 892.9499 892.6359 893.4071 917.8010 893.4163 892.3020 891.9478 918.7849 918.7664 918.3641 918.3411 917.9237 917.8972 904.7285 caLa-obe 0.0001 0.0002 -0.0001 -0.0004 0.0003 -0.0004 -0.0004 -0.0004 0.0005 0.0002 -0.0008 -0.0005 -0.0005 -0.0001 -0.0002 0.0002 0.0003 0.0004 0.0000 -0.0006 -0.0010 0.0005 -0.0001 -0.0002 0.0009 0.0004 0.0003 -0.0006 0.0003 0.0000 0.0004 0.0004 0.0006 0.0003 0.0013 0.0012 0.0013 0.0008 0.0002 0.0000 -0.0003 0.0004 0.0004 -0.0005 0.0002 -0.0003 0.0003 -0.0006 -0.0005 0.0005 -0.0013 -0.0002 -0.0012 -0.0003 -0.0004 -0.0004 -0.0006 -0.0003 -0.0001 -0.0001 -0.0001 -0.0006 0.0003 -0.0008 0.0004 -0.0006 0.0003 -0.0001 0.0001 0.0000 0.0011 0.0014 0.0009 -0.0001 -0.0006 K_ J a 10 12 13 14 15 15 16 17 21 6 10 11 12 13 14 15 15 16 17 17 26 10 11 12 13 I4 ii K, 4 4 4 6 4 9 4 10 411 4 12 4 11 4 13 4 14 4 17 5 1 5 5 5 7 5 a 5 9 5 10 5 IO 5 11 5 12 5 12 5 13 5 21 6 4 6 6 6 7 6 a 6 9 6 15 6 16 6 16 6 17 6 19 6 22 6 10 7 11 7 12 7 13 7 14 7 15 7 16 7 16 7 IO a 11 a 11 a 12 6 13 6 14 a 15 a 16 a 16 a 9 9 10 9 11 9 11 9 12 9 13 9 14 9 15 9 16 9 16 9 10 10 12 10 13 10 14 10 15 10 16 10 11 11 12 11 1311 14 11 15 11 16 11 12 12 14 12 10 9 10 11 12 13 16 3 5 6 7 a 9 9 10 3 3 4 5 6 7 a a 9 1 2 3 2 4 5 6 7 a 7 1 3 4 5 6 6 1 2 3 4 5 5 1 3 .I K_ 9 9 12 13 14 15 14 16 17 22 5 9 11 12 13 14 14 15 16 Ia 17 27 9 11 12 13 14 15 14 15 16 17 20 23 9 11 12 13 14 15 15 16 IO IO 11 12 13 14 15 15 16 9 10 11 10 12 13 14 15 16 15 10 12 13 I4 15 15 11 12 13 14 15 15 12 14 3 6 4 5 4 a 4 9 4 10 4 11 4 10 4 12 4 13 3 19 5 0 5 4 5 6 5 7 5 a 5 9 5 9 5 10 511 4 14 5 12 4 23 6 3 6 5 6 6 6 7 6 a 6 9 6 a 6 9 6 10 6 11 5 15 5 la 7 2 7 4 7 5 7 6 7 7 7 a 7 a 7 9 a 2 a 2 a 3 a 4 a 5 a 6 a 7 a 7 a a 9 0 9 1 9 2 9 1 9 3 9 4 9 5 9 6 9 7 9 6 10 0 10 2 10 3 10 4 10 5 10 5 11 0 11 1 11 2 11 3 11 4 11 4 12 0 12 2 K, V(C.‘l) ca1c-oh 917.9059 -0.0001 910.7293 893.4631 893.1911 892.8995 892.5855 917.7458 892.2514 891.8970 892.0362 904.6617 910.6608 893.6484 893.3984 893.1266 892.8343 917.6751 892.5207 892.1873 911.3249 891.8311 892.1379 910.5778 893.5701 893.3195 893.0477 892.7552 892.4416 917.5897 918.9269 892.1083 891.7526 918.1369 911.7961 910.4797 893.4777 893.2268 892.9555 892.6632 892.3497 918.8253 892.0158 893.6013 911.8119 893.3723 893.1213 892.8503 892.5571 892.2439 918.7095 891.9103 893.6917 893.4831 893.2530 911.6850 893.0026 892.7323 892.4387 892.1260 891.7914 918.5791 893.3522 892.8719 892.5992 892.3078 691.9946 918.4337 892.9779 892.7282 892.4557 892.1642 891.8507 918.2756 892.5724 892.0097 -0.0005 -0.0007 0.0000 -0.0006 0.0003 0.0004 0.0004 0.0001 0.0000 -0.0007 -0.0006 -0.0001 -0.0006 -0.0002 -0.000~ 0.0005 0.0004 -0.0001 -0.0009 0.0013 -0.0009 -0.0009 -0.0003 -0.0002 0.0002 0.0004 0.0009 0.0000 0.0003 0.0002 0.0011 -0.0005 -0.0007 -0.0008 -0.0001 0.0002 0.0001 0.0001 0.0005 0.0004 0.0004 0.0004 -0.0007 -0.0003 0.0001 -0.0003 0.0006 0.0006 -0.0001 0.0002 0.0003 0.0000 0.0004 -0.0006 0.0002 -0.0010 0.0003 -0.0002 0.0003 -0.0005 -0.0003 -0.0004 0.0008 -0.0002 -0.0002 0.0000 0.0008 -0.0002 0.0008 -0.0001 0.0001 -0.0003 0.0004 -0.0009 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA 936 1037 12 13 14 15 15 15 15 16 17 19 19 20 20 21 21 6 15 2 7 1 a 19 o 10 1 I4 1 13 2 19 221 2 20 o 25 o 26 0 27 0 28 227 2 28 12 11 13 12 I4 13 13 12 15 14 16 I5 2 3 17 16 1 a 17 1 a “(C.-l) 3 9 3 10 311 3 12 2 14 311 2 15 3 13 3 15 2 la 2 17 2 19 2 18 2 20 2 19 41 369 zyxwvutsrqponm SEVERAL BANDS OF HYDROXYLAMINE 6 n Qlb.6 91'1.0 91'1.2 5 rl 91'1.4 4 32J zyxwvutsrqponmlkjihgfedcbaZY n nn Qllh cm-’ FIG. 2. The RQ, subbranch of v6 of hydroxylamine near 9 11 cm-‘. The values of the J quantum number are indicated above the trace. The small asymmetry splitting which arises entirely from the ground state zyxwvutsrq K- = 1 levels is clearly seen. spectra of hydroxylamine are essentially those of a symmetric rotor. The band constants were determined by fitting the lines of Table I with the ground state parameters fixed at values determined in the manner described in the next section. The results are shown in Table II. The NH2 W agging Band (Q) Over 300 a- and c-type transitions of this band which fell in the region 1070- 1140 cm-’ were eventually measured and assigned. These are given in Table III. Examples of the two types of Q branches observed are shown in Figs. 3 and 4 and a demonstration 370 TAUBMANN AND JONES TABLE III Observed Transitions of the v5 Band J K_ K, 3 3 3 3 0 1 4 3 1 4 3 2 4 3 2 533 533 5 3 2 6 3 3 6 3 4 6 3 4 735 7 3 5 8 3 6 6 3 6 9 37 9 3 7 9 3 7 10 3 7 10 3 7 10 3 8 10 3 8 11 3 8 11 3 9 11 3 9 12 3 9 12 3 10 12 3 10 13 311 14 3 12 15 3 12 15 3 12 16 3 13 19 3 16 21 3 19 23 3 20 24 3 22 25 3 23 25 3 23 26 3 24 27 325 26 3 26 29 3 27 30 3 28 4 41 5 4 2 5 41 6 4 2 6 4 3 7 4 4 8 4 5 9 4 6 10 4 6 10 4 7 11 4 6 12 4 6 14 4 10 14 4 11 15 4 11 15 4 11 16 4 12 17 4 13 19 4 15 21 4 17 23 4 19 25 4 21 5 51 6 51 652 7 5 3 6 5 4 955 10 5 5 . = “.J’ 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA “(Cm-11 J K_ K, v(c.-1) ccdc-ohs zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONML J K_ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONML K. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQ J K_ zyxwvutsrqponmlkjihgfedcbaZY K, c*1c-oh 4 4 0 3 3 0 3 3 0 4 4 0 4 3 1 541 532 4 3 1 5 3 2 6 4 2 6 3 3 734 7 4 3 9 3 5 6 4 4 936 9 4 5 10 2 9 9 4 5 9 3 6 10 4 6 10 3 7 12 3 9 11 4 7 11 3 6 13 3 10 12 4 * 12 3 9 13 3 10 15 3 13 16 3 13 14 311 17 3 14 20 3 17 22 3 19 24 321 24 4 20 26 3 24 25 421 26 4 22 27 4 23 28 4 24 29 4 25 30 4 26 4 4 0 5 4 1 4 4 0 5 41 6 4 2 7 4 3 6 4 4 9 4 5 9 4 5 10 4 6 11 4 7 13 4 9 15 4 11 14 4 10 14 4 10 16 4 12 17 4 13 16 4 14 20 4 16 22 4 16 24 4 20 26 4 22 5 5 0 5 5 0 651 7 5 2 8 5 3 954 9 5 4 level perturbed, 1070.1705 1115.5758 1122.2737 1076.8661 1115.5543 1076.8397 1115.5263 1123.9263 1125.5720 1076.8089 1115.4939 1115.4547 1076.7725 1115.4111 1076.7309 1115.3610 1076.6640 1126.2037 1093.4211 1132.0949 1076.6320 1115.3056 1095.1035 1076.5749 1115.2443 1093.3634 1076.5116 1115.1786 1115.1070 1069.8651 1088.1109 1140.1143 1096.3493 1081.0436 1077.4833 1073.9078 1075.3584 1070.3162 1075.2289 1075.0939 1074.9534 1074.6065 1074.6565 1074.5015 1115.6617 1115.6335 1124.0316 1125.6777 1115.6004 1115.5611 1115.5160 1115.4670 1132.1986 1115.4111 1115.3507 1093.4725 1089.9741 1115.1339 1140.2142 1088.2198 1096.4589 1084.6949 lOBl.1529 1077.5918 1074.0155 1070.4239 1115.7691 1125.8101 1115.7352 1115.6960 1115.6519 1115.6004 1132.3290 zero 10 5 6 11 5 7 12 5 7 12 5 8 15 5 10 15 5 10 16 5 11 17 5 12 19 5 14 21 5 16 25 5 20 6 6 1 7 6 2 6 6 3 9 6 4 10 6 5 11 6 6 15 6 9 16 6 10 17 6 11 21 6 15 23 6 17 7 71 8 7 2 9 7 3 10 7 4 11 7 5 12 7 6 13 7 7 15 7 6 16 7 9 23 7 16 6 61 9 6 2 10 6 3 11 6 4 12 6 5 13 6 6 14 6 7 16 6 6 23 9 15 9 9 1 10 9 2 11 9 3 12 9 4 13 9 5 15 9 7 10 10 1 1110 2 12 10 3 13 10 4 14 10 5 15 10 6 16 10 6 16 10 7 17 10 6 11 11 1 12 11 2 13 11 3 14 11 4 15 11 5 16 11 6 19 11 .9 1 0 1 2 0 2 3 0 3 404 4 0 4 5 0 5 5 0 5 606 606 7 0 7 -0.0005 0.0002 -0.0006 0.0010 -0.0004 0.0014 0.0001 -0.0015 -0.0012 0.0010 -0.0006 0.0000 0.0009 -0.0005 0.0009 0.0000 0.0010 -0.0006 -0.0019 0.0003 0.0009 0.0003 -0.0002 0.0009 0.0009 -0.0014 0.0015 0.0005 0.0004 0.0001 -0.0011 -0.0016 0.0006 -0.0001 0.0010 0.0005 0.0003 0.0009 -0.0001 -0.0003 -0.0001 -0.0007 0.0006 -0.0003 -0.0007 -0.0002 -0.0014 -0.0020 -0.0004 0.0002 0.0010 0.0001 -0.0006 0.0006 0.0001 -0.0012 0.0002 0.0009 -0.0020 -0.0009 0.0000 -0.0005 -0.0009 0.0006 0.0004 -0.0009 0.0000 -0.0012 0.0004 0.0006 0.0001 0.0014 -0.0006 10 5 5 11 5 6 13 5 9 12 5 7 14 5 9 16 5 11 17 5 12 16 5 13 20 5 1s 22 5 17 26 521 6 6 0 7 6 1 8 6 2 9 6 3 10 6 4 11 6 5 14 6 8 17 6 11 19 6 12 22 6 16 24 6 16 7 7 0 9 7 1 9 7 2 10 7 3 11 7 4 12 7 5 13 7 6 14 7 7 17 7 10 24 7 17 8 8 0 9 81 10 8 2 11 8 3 12 8 4 13 8 5 14 9 6 17 8 9 24 8 16 9 9 0 10 9 1 11 9 2 12 9 3 13 9 4 15 9 6 10 10 0 11 10 1 12 10 2 13 10 3 14 10 4 15 10 5 17 10 7 16 10 6 17 10 7 11 11 0 12 11 1 13 11 2 14 11 3 15 11 4 16 11 5 16 11 7 1 1 1 212 3 13 303 4 14 4 0 4 5 I5 616 505 717 1115.5464 1115.4846 1093.6093 1115.4169 1140.3392 1066.3561 1066.5970 1084.8322 1061.2696 1077.7275 1070.5568 1115.8990 1115.8598 1115.8142 1115.7637 1115.7076 1115.6455 1140.4899 1086.7632 1064.9975 1077.8901 1074.3116 1116.0466 1116.0040 1115.9515 1115.9951 1115.8323 1115.7637 1115.6901 1140.6648 1086.9540 1074.4978 1116.2179 1116.1658 1116.1075 X116.0447 1115.9755 1115.8990 1115.6166 1067.1701 1074.7039 1116.4016 1116.3426 1116.2774 1116.2065 1116.1300 1115.9579 1116.6009 1116.5338 1116.4610 1116.3831 1116.2982 1116.2065 1067.6699 1116.1099 1116.0084 1116.8115 1116.7367 1116.6535 1116.5675 1116.4723 1116.3732 1116.1550 1109.9370 1109.9290 1109.9160 1122.1372 1109.6960 1123.7908 1109.8760 1109.9500 1125.4363 1109.6190 -0.0003 0.0001 0.0006 0.0009 -0.0011 0.0010 -0.0001 -0.0001 -0.0006 0.0010 -0.0001 0.0000 -0.0002 0.0004 0.0003 0.0001 0.0003 -0.0009 -0.0007 -0.0003 0.0011 0.0004 0.0005 -0.0005 0.0008 0.0002 0.0003 0.0006 0.0001 -0.0014 0.0001 -0.0006 -0.0004 -0.0005 0.0000 -0.0009 -0.0011 0.0001 0.0014 0.0001 0.0005 0.0003 O.OOOl 0.0006 0.0007 0.0004 O.OOll -0.0005 0.0001 0.0003 -0.0005 -0.0004 0.0004 -0.0012 0.0000 -0.0017 -0.0009 -0.0009 0.0013 -O.O(301 0.0014 0.0005 -0.0003 -0.0019 -0.0027 -0.0029 -0.0016 -0.0025 -0.0031 -0.0026 -0.0030 -0.0020 -0.0026 l l . . . f . * l . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIH “eight in the ITi+. 371 zyxwvutsrqpo SEVERAL BANDS OF HYDROXYLAMINE TABLE III-Continued zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQ J J K_K, v(on-1) ca1c-ohs zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONML J zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONM K. K, J K_ K. v(cm-ll cn1c-0k.s zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA K_ K. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA a 0 9 10 10 10 11 11 12 14 1s 19 21 23 4 0 s 6 6 6 6 7 a 9 10 10 11 a 9 0 10 0 10 0 10 0 11 0 11 0 12 0 14 0 1s 0 19 0 21 0 23 1 3 1 4 1 5 1 s 1 s 1 s 1 6 1 7 1 8 1 9 1 9 1 10 11 1 10 12 1 11 12 1 11 12 1 11 13 1 12 13 1 12 14 1 13 IS 1 14 1s 1 14 17 1 16 17 1 16 19 1 18 21 1 20 22 1 21 23 1 22 1 11 212 2 12 3 13 3 13 4 14 4 14 4 14 s 1s s 1 s S 1 s 6 16 6 16 6 16 6 16 6 16 7 17 7 17 a 1 a a 1 a 9 19 9 19 10 1 10 10 1 10 10 1 10 11 1 11 11 1 11 11 1 11 12 1 12 12 1 12 12 1 12 12 1 12 13 1 13 13 1 13 14 1 14 1s 1 15 16 1 16 17 1 17 17 1 17 19 1 19 2 2 0 3 2 1 4 2 2 . _ _ 8 9 10 9 9 12 12 1 1 1 1 0 0 a 1109.7840 9 1109.7438 10 8 9 12 111 13 0 13 1s 0 1s 16 0 16 20 0 20 22 0 22 24 0 24 3 12 4 13 7 2 5 7 16 5 14 6 2 s 7 2 6 a 2 7 9 2 * 918 10 2 9 11 2 10 12 1 11 13 2 11 12 2 11 13 1 12 14 2 12 13 2 12 15 1 14 16 0 16 16 1 1s 16 2 14 18 0 la 20 1 19 22 1 21 23 1 22 24 1 23 1 0 1 2 0 2 2 2 0 3 0 3 3 2 1 4 0 4 4 2 2 3 13 4 14 s 2 3 S 0 s 51s 6 2 4 7 2 6 6 0 6 717 7 2 s 7 0 7 a 0 a a 2 6 9 2 7 9 0 9 10 2 a 9 19 10 0 10 12 1 12 11 0 11 11 2 9 13 2 12 12 2 10 13 1 13 12 0 12 14 2 13 13 2 11 15 1 1s 16 1 16 17 1 17 La 1 la 16 2 1s 20 1 20 2 12 4 3 1 3 2 1 1109.7003 1126.3907 1131.96Sl 1094.9653 1089.3589 1093.2272 1089.7307 1087.9775 loao.9164 1077.3594 1073.7868 1122.1456 1123.7952 1087.0275 1103.S84S 1125.4363 1098.7870 1098.7496 1098.7073 1098.6588 1131.9311 1098.6OSS 1098.5473 1094.8966 1076.6560 1098.4827 1093.1447 1074.911s 1098.4132 1089.6164 1093.5094 1087.8444 1126.5824 1089.9806 1080.7019 1077.0970 1075.2882 1073.4728 1121.0120 1121.0000 1098.8829 1120.9850 109a.a669 1120.9640 1098.a460 1122.1605 1123.8193 1098.8222 1120.9370 1125.4723 1098.7920 1087.0326 1120.9060 1103.6474 1098.7558 1120.a690 1120.8260 1098.7149 1098.6687 1120.7790 1098.6171 1132.0377 1120.7260 1095.074s 1120.6680 109a.5607 1076.6795 1098.4990 1093.3501 1120.6OSO 1074.9400 1098.4326 x089.8867 1088.1521 1086.4121 1084.6704 1126.6312 1081.1752 1132.1080 1081.1400 1122.1976 . .._ .-_. -0.0031 -0.0026 -0.0032 -0.0037 -0.0036 -0.0036 -0.0042 -0.0067 -0.0063 -0.0080 -0.0097 -0.0092 -0.0091 -0.0010 -0.002s -0.0014 -0.0022 -0.0024 -0.0029 -0.0029 -0.0034 -0.0030 -0.0016 -0.0031 -0.0037 -0.0001 -0.0001 -0.0031 -0.0029 -0.0009 -0.0030 -0.0010 -0.0020 -0.0006 0.0000 0.0010 0.0011 0.0040 0.0041 0.0058 -0.0024 -0.001s -0.0024 -0.0031 -0.002s -0.0042 -0.0030 -0.0035 -0.0059 -0.0060 -0.0048 -0.0072 -0.0079 -0.0059 -0.0069 -0.0071 -0.0093 -0.0085 -0.0096 -0.0113 -0.0133 -0.0122 -0.0154 -0.0146 -0.0143 -0.0167 -0.0168 -0.0180 -0.0176 -0.0208 -0.0202 -0.0197 -0.0214 -0.0243 -0.0235 -0.0275 -0.0297 -0.033s -0.0325 -0.0392 -0.0014 -0.0018 -0.0008 _ ___. l . * . f 1 . . . . . . . . . f . . . 4 5 S 6 7 ; 7 a 9 10 10 11 11 . 12 12 13 13 14 14 14 IS l 15 l . . l . . II . . . l l . . . . . . f . l . . l . . f . . . . f l . f . . . . . . . . . . . . . . . . . . . . . f . . . . . 15 1s 16 16 16 17 17 ia 19 19 20 21 21 22 23 23 2s 2 2 3 3 3 4 S S 6 6 6 7 a a 9 9 10 10 11 11 12 12 12 13 13 14 14 1s 15 16 16 17 17 la 19 19 20 21 21 22 23 22 2 3 2 3 23 2 3 2 3 2 4 2 5 2 5 2s 2 6 27 2 a 2 a 2 9 2 9 2 10 2 10 2 11 2 11 2 12 2 12 2 12 2 13 2 13 2 13 2 13 2 14 2 14 2 14 2 15 2 IS 2 16 2 17 2 17 2 la 2 19 2 19 2 20 2 21 2 21 2 23 21 2 1 22 2 2 2 2 23 2 4 24 2s 2 s 2 s 26 2 7 27 2 a 2 8 2 9 2 9 2 IO 2 10 2 11 2 11 2 11 2 12 2 12 2 13 2 13 2 14 2 14 2 15 2 1s 2 16 2 16 2 17 218 2 Ia 2 19 2 20 2 20 2 21 2 22 _ 414 6 3 3 s 2 4 414 4 2 2 515 s 2 3 7 2 6 a 3 5 717 a 1 a 919 9 2 7 IO 1 10 11 1 11 12 2 10 12 1 12 12 3 10 13 1 13 13 3 11 14 1 I4 14 3 12 1s 2 13 14 2 12 1s 1 1s 16 2 14 1s 3 13 16 1 16 16 3 14 17 2 1s 17 3 15 la 2 16 18 3 16 19 3 17 20 2 Ia 20 31s 22 2 20 21 3 19 22 3 20 23 3 21 24 2 22 26 2 24 2 11 2 2 0 312 3 3 0 3 2 1 431 4 13 532 624 6 1 S 6 3 3 734 a I 7 a35 9 3 6 9 16 10 3 7 10 1 9 11 3 a 11 1 10 12 3 9 13 2 12 12 1 11 13 1 12 13 3 10 14 3 11 15 2 14 1s 3 12 16 2 1s 16 3 13 17 2 16 17 3 14 18 2 17 18 3 1s 19 3 16 20 2 19 20 3 17 21 3 la 22 2 21 22 3 19 24 2 23 _. .__ 1132.0754 1077.7319 1115.4493 1140.4472 1123.8506 1132.0520 1125.4963 lllS.3780 1074.3065 1131.9919 1131.9551 1131.9141 1132.0207 1131.8680 1131.8178 1095.0229 1131.7626 1087.4791 1131.7030 1087.4101 1131.6380 1087.3368 1089.7825 1140.0397 1131.5689 1088.0282 1087.2578 1131.4962 1087.1738 1086.2657 1067.0842 1084.5013 lOB6.9899 ~086.89io loao.9s67 1086.7867 1077.3936 1086.6777 1086.5627 1086.4430 1073.8147 1070.2184 1132.1009 lllS.SlbO 1132.0811 1087.8584 1115.4983 1087.8369 1140.4276 1087.8103 1115.4169 1131.9812 1087.7789 1087.7416 1131.8807 1087.6992 loa7.6s23 1131.a205 1087.5990 1131.7538 1087.5410 1131.6ao4 1087.4768 1093.2838 1131.6000 1131.s130 1087.4068 1087.3326 1089.7852 1087.2520 loaa.0319 1087.1662 1086.2703 1087.0749 1084.5072 1086.9786 1086.8771 1080.9655 1086.7694 1086.6S64 1077.4054 loa6.5371 1073.8304 -0.0010 0.0005 0.0001 -0.0007 -0.0017 -0.000s -0.0011 0.0002 0.000s 0.0000 0.0001 -0.0002 0.0004 0.0001 0.0000 0.0009 0.0003 -0.0003 0.0004 0.0006 0.0014 0.0006 0.0022 0.0011 0.0020 0.0008 0.0013 0.0017 0.0018 0.0030 0.0028 0.0026 0.0034 0.0036 0.0041 0.0042 0.0066 0.004s 0.0059 0.0070 0.0080 0.0101 -0.0006 -0.0007 -0.0007 -0.0011 0.0005 -0.0007 -0.0019 -o.oooS -0.0007 -0.0008 -0.0008 -0.0005 -0.0003 -0.0004 -0.0012 -0.0001 -0.0008 -0.0001 -0.0011 0.0000 -0.0006 0.0001 0.0003 0.0007 0.0004 0.0002 0.0023 0.0010 0.0006 0.0016 0.0026 0.0022 0.0018 0.0023 0.0022 0.0027 0.0028 0.0031 O.OOSl 0.0042 0.0061 . f . . f . . f . l f l . . f . * . l . . l * . . . * . . . f . . f . . . * f . . l f f . . . . . f f . . . l f . f . . . . * . . . . * * * . . . . . . 4 . . . l . zyxwvutsrqponml TAUBMANN AND JONES zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPO 372 ‘Q-Branch 10 J=ll 4 --l--P* Abs. I I --r-k-A 113 I ’I ’ 9 I a I ,5 7 +3=K I I 11 15.40 .50 I .80 1 .70 .80 .QO cm-’ 3. The u-type Q-branch region of yj near 1115 cm-‘. The series of lines with a particular zyxwvutsrqponm K value (large number) spread out to lower wavenumber with increasing J value, producing considerable overlapping. FIG. of the near-symmetric rotor character of the hydroxylamine spectrum is given in Fig. 5. It became apparent in the early stages of the analysis that this band is slightly perturbed. Transitions with K!. 2 3 behaved normally, but those with lower KL values resisted fitting. The asymmetry in the u5 = 1 state is so small that only the K_ = 1 levels display appreciable splittings. These were determined directly by observation of the PQ2 subbranch. It soon became clear that the upper state K_ = 1 levels are energetically inverted compared to the order normally present (i.e., J,,., is above J1,tJ_ljin this case). This can only be produced by an extraneous effect such as a Coriolis-type interaction between v5 = 1 and some other state. Under these circumstances it is very difficult to obtain reliable information over the asymmetry in v5 = 1. It appears that it is very small and in order to progress with the problem it was assumed that in its unperturbed condition the upper state is accidentally symmetric (i.e., bp = 0). Effective band constants for u5 were obtained by using the following procedure. Since the frequencies of only 13 ground state rotational transitions were observed in the microwave work (2), further purely ground state data were generated from the frequency difference between infrared transition pairs with a common upper state level. The 46 effective frequencies obtained in this manner (Table IV) were combined RP (13) I’ pQ1 J 10 I 1 i 100.70 cm-l I .80 I .80 FIG. 4. An example of the much weaker c-type spectrum of Ye, the ‘Q, subbranch near 1109.7 cm-‘. Since for these transitions K = 0 in the upper state, only one component of the asymmetry doublet appears in this case. The =I’,( 13) asymmetry doublet happens to fall in the same region. SEVERAL BANDS OF HYDROXYLAMINE zyxwvutsrqponmlkjihgfedcbaZYXWVU 373 FIG. 5. The near-symmetric rotor character of the hydroxylamine spectra is illustrated by the P-branch patterns. In this case the a-type P( 15) of v3near 1089.6 cm-’ is shown. Only the zyxwvutsrqponmlkjihgfedcb K = 2 and K = 1transitions show deviation from a completely symmetric pattern, with a very small splitting in the former and a much larger one in the latter. Although not apparent in this figure, the transitions with K = 0,1, and 2 are slightly perturbed in rj. with the 13 microwave transitions (2) to produce the values for the ground state parameters shown in Table II. This procedure gave a considerable improvement in the accuracy of these parameters compared to those calcuable from the microwave data alone. Effective values for the remaining band parameters were produced by fitting 136 lines of v5 with J’ < 30 and 3 < K!_ < 11 with the ground state values constrained (Table II). It proved necessary to include distortion parameters at the sextic level in the u5 = 1 state. However, since this was the only case in which this was required it seems likely that these have their origin with the perturbation. Under the assumption that the unperturbed energy levels of Q = 1 can be reliably calculated from the data of Table II, the energy shifts of the individual low-K_ levels can be calculated. A plot of shift against J(J + 1) produced in all cases an approximately straight line, as would be expected for a Coriolis-type perturbation. This is illustrated in Fig. 6 for the most strongly affected levels with K_ , K+ = 1, J. As can be seen in this figure, for large values of J a higher order term in [J(J + l)]’ is required to account for the slight curvature. The energy shifts, 6v, calculated from comparison of transition frequencies predicted from the parameters of Table II with 178 experimental values for transitions with K_ =S2, were fitted to an equation of the form a + bJ(J + 1) + c[J(J + 1)12.The values determined for the coefficients are shown in Table V. The Torsion Overtone Region 2~ Overtone Although this band is in principle an a/c hybrid, only the c-type lines display considerable intensity. Using the data from Ref. (3) as starting values, assignment proceeded smoothly. A total of 144 transitions with J < 28 and K- G 6 were measured (Table VI). These were fitted with the single u9 = 2 microwave frequency (2) and with the ground state constants constrained at the values of Table II to produce the data set also given in this table. 314 TAUBMANN AND JONES TABLE IV Ground State Rotational Transitions* and Combination Differences zyxwvutsrqponmlkjihgf J K_ 21 19 19 17 17 16 16 16 16 14 14 16 15 15 14 14 16 14 15 14 14 13 13 13 13 12 12 12 12 12 12 12 12 12 12 11 11 11 11 11 11 11 12 9 9 1 2 2 2 1 4 5 7 7 8 a 11 11 3 18 3 16 3 17 3 14 3 15 2 15 10 6 1 16 1 16 5 9 4 10 2 15 1 15 1 15 2 12 2 12 0 16 4 10 2 14 1 14 1 14 1 12 1 13 2 11 2 12 5 7 3 9 3 9 1 11 1 11 1 12 0 12 0 12 2 11 2 11 3 6 3 6 1 10 1 11 0 11 0 11 2 10 0 12 5 4 4 5 0 1 0 2 12 11 10 0 4 0 5 2 6 2 5 2 7 2 6 1 11 ._ I IU Y = from K, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIH K, (GHe) talc-obs J K_ 22 20 20 18 18 18 17 17 16 16 16 15 15 16 15 16 16 15 14 15 14 13 13 14 14 13 12 13 13 12 12 13 12 13 13 11 12 11 12 12 11 12 12 10 10 0 1 1 1 2 3 4 8 8 9 9 10 ._ 1" 2 2 2 2 2 1 10 2 3 5 4 3 3 2 3 2 1 4 3 2 3 3 3 2 2 5 4 3 2 3 3 1 2 1 2 4 3 3 2 1 2 1 1 5 4 0 0 11 10 0 12 13 18 17 19 18 2 2 reference Y 21 19 18 17 16 18 7 15 14 11 12 12 13 14 13 14 15 11 11 13 12 10 11 13 12 8 8 10 12 9 10 13 10 12 11 7 9 8 10 12 9 11 11 5 6 0 1 (2). 2 9 8 -277.336000 -177.225000 -177.906000 -76.978000 -77.433000 -1257.953000 -852.610000 -1355.976000 -1328.752000 -1558.414000 -1558.753000 -23.381000 -1328.413000 -1305.317000 -1562.362000 -1559.266000 -169.832000 -754.272000 -73.527000 -1254.796000 -1328.117000 -1322.271000 -1327.868000 -704.290000 -704.563000 -653.775000 -1159.202000 -654.003000 -1148.691000 -1322.780000 -1327.586000 -817.081000 -662.859000 -160.029000 -654.348000 -1159.282000 -603.806000 -1323.266000 -1103.083000 -767.274000 -662.768000 -109.445000 -168.076000 -503.130000 -503.277000 50.375000 100.748230 100.683580 100.807620 65.066840 35.518090 85.755730 95.473960 93.259230 45.407410 42.646910 54.600970 58.619730 0.060038 0.014327 0.014257 -0.010264 -0.006683 -0.027878 -0.034587 0.038591 0.001419 0.065079 0.034530 0.013030 -0.023510 -0.036833 0.005848 -0.007475 0.041237 -0.019250 -0.062809 0.023431 -0.023417 -0.007205 0.005363 0.085920 0.062488 -0.009502 0.030156 -0.057218 -0.008443 -0.027838 -0.017478 -0.017091 0.103654 0.008113 0.090427 -0.001289 -0.032618 -0.032379 0.026603 0.000891 -0.031014 0.108327 -0.017118 0.009973 0.037861 0.000035 0.000005 -0.000103 0.000117 -0.000005 -0.000089 0.000061 -0.000070 -0.000263 0.000100 0.000367 0.000036 0.000113 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDC zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFE 3u9-u9 Hot Band As with 2v9 this band was essentially purely c-type but was about half as intense. From the data available (3) at the start of this work it was apparent that the K_ = 2 levels of Q = 3 were close to the K- = 1 levels of u5 = 1 and were probably involved in the observed perturbation. A similar situation was expected between the K_ = 3 and K- = 2 levels of these states respectively. Infrared transitions involving these levels SEVERAL BANDS OF HYDROXYLAMINE zyxwvutsrqponmlkjihgfedcba 375 zyxwvutsrq NHPOH 6x6): Kp ~1, Ko= J Fw. 6. A plot of the deviation of the uj = 1 K_, K+ = 1, J levels from the energy calculated from the effective constants of Table II (here delta(calwzxp) is in units of lo4 cm-‘) against J(J + 1) for the level concerned. As can be seen, the result is an almost straight-line relationship. The slight curvature at high values ofJ was allowed for in the calculation of empirical perturbationparameters(Table V) by the inclusion of a term in [J(J + l)]‘. were consequently only included with zero weight in the fit to determine the band constants. To maximize the information available over the ug = 1 state, effective rotational frequencies were calculated from combination differences. The band constants shown in Table II were determined from 66 infrared transitions with K_ < 5 and J < 24, 6 v9 = 1 combination differences, and 1 microwave frequency in both states (2). These data are shown in Table VII. It was assumed that the deviations of the zero-weighted transitions with K_ = 2, 3 in 09 = 3 from the fit were entirely due to a Coriolis-type perturbation of these levels. As with L+ = 1, empirical parameters were calculated which reproduced the observed shift and these are shown in Table V. v5- - v9 D@ erence Band As can be seen from Fig. 7, despite having accurate data on the two bands discussed above, we still have no way of determining the energy separation between v5 = 1 and n9 = 3 directly. Since v9 is too low (386 cm-‘) for our diode laser system the only alternative was to search for the weak us-v9 difference band. Using an initial value for the band center calculated from the data of Ref. (3), 11 weak transitions were measured (Table VIII). Most of the transitions observed involved levels with K_ = 1 which from the work on the v5 fundamental were known to be perturbed. The experimental frequencies were therefore corrected using the empirical terms given in Table V. With the upper- and lower-state rotational and distortion constants constrained at the values shown in Table II, the corrected frequencies were fitted to determine the band center. The value obtained and the resulting energies of the vg = 1,2, 3 are shown in Table IX in comparison with those from the earlier work (3). 316 TAUBMANN AND JONES TABLE V Empirical Coefficients for Perturbed Levels (cm-‘) zyxwvutsrqponmlkjihgfedcba Level v5= a.104 b.104 c.107 1 JO,J -16(3) -0.26(4) 0.21(8) JO,J -22(3) -0.16(l) 0.0 J~,J -16(26) -1.29(4) 0.8(l) J~,J -27(3) -1.02(2) 0.0 JI,(J-I) -23(S) -0.02(5) 0.32(9) J~,(J-1) -37(4) 0.14(2) 0.0 Jz,(J-1) -9(2) 0.05(2) 0.13(3) J2,(~-1) -14(2) 0.116(6) 0.0 J2,(5-2) -B(2) 0.06(2) 0.16(3) J2,(5-2) -15(2) 0.148(7) 0.0 -15(3) 0.87(8) .1.(3) -4(4) 0.52(4) 0.0 7(5) 0.23(6) 0.40(8) -13(5) 0.53(2) 0.0 -17(9) -0.11(4) 0.0 -2(6) -0.20(2) 0.0 DISCUSSION FIR Laser Line Assignments The observation of a number of strong optically pumped FIR laser in hydroxylamine has been recently reported from this laboratory (5). The measurements carried out here on the v5 and 4 allow four of these lines to be assigned. The details of the assignment are given in Ref. (5). Both the infrared and rotational spectra of hydroxylamine are so sparsely populated that the assignments could be made with high certainty. The rotational constants of the vibrationally excited states given here (Table II) allowed the laser transition frequencies to be calculated with greater accuracy than those experimentally determined (5). The Torsional Motion The values for the energies of the states u9 = 1, 2, 3 determined here confirm the basic correctness of the earlier medium-resolution work (Table IX). The improved resolution and accuracy of the present work, however, provides the first detailed information over these states since too little microwave data (2) was available to allow SEVERAL BANDS OF HYDROXYLAMINE TABLE VI Observed Transitions of the 23 Overtone .I K_ K, 4 6 6 6 12 16 19 20 20 21 1 6 717 717 8 9 10 11 11 11 11 12 12 12 12 13 13 13 14 14 15 15 16 16 17 16 19 19 20 20 21 21 22 23 23 24 24 3 322 4 4 4 5 6 6 624 624 6 7 725 8 8 927 928 10 10 13 14 15 15 16 16 0 0 06 08 0 0 0 0 0 0 10 1 4 6 12 16 19 20 20 21 6 1 6 1 9 1 10 1 11 1 10 1 11 1 11 1 11 1 12 1 12 111 1 13 1 12 1 13 1 13 1 14 1 15 1 14 1 16 1 15 1 16 1 17 1 16 1 16 1 19 119 1 21 1 20 1 21 1 22 1 22 1 23 1 23 2 1 2 2 2 2 2 25 2 3 2 3 4 2 5 2 2 6 7 1 2 * 2 2 2 2 2 9 6 12 13 14 13 15 14 26 J K_ K, 5 5 716 716 13 16 19 20 19 21 000 6 725 627 6 9 10 11 11 11 12 11 12 12 12 13 13 I,? 14 14 15 15 16 16 17 16 18 19 21 20 20 21 22 24 23 25 24 4 330 4 5 5 5 5 717 716 634 1 1 4 4 1 1 1 1 1 1 12 16 19 20 16 21 2 4 2 2 2 z 2 0 2 0 0 2 2 0 2 2 2 0 0 2 0 2 2 2 2 2 0 2 2 6 7 6 9 10 11 11 11 12 10 11 13 12 11 13 14 15 14 16 15 16 17 16 16 21 19 19 220 2 21 1 22 2 22 0 25 2 23 3 1 3 1 1 3 1 2 5 4 2 4 5 734 735 1 5 6 6 937 936 3 3 6 5 3 3 3 1 1 1 1 1 7 6 IO 13 14 15 15 16 10 10 12 14 15 15 16 16 vccn-l1 talc-ohs 737.0357 755.4066 733.5612 758.6145 722.8694 744.0624 743.8899 743.7064 776.6294 743.5114 756.2074 734.1142 734.0137 720.5771 733.8992 733.7680 733.6262 733.4667 734.1372 755.5733 713.3239 776.3363 755.3998 733.2962 734.0866 755.2130 734.0319 754.9313 733.9732 755.0101 754.7942 733.9066 754.5612 733.8411 733.7700 733.6905 765.4461 733.6063 720.4047 733.5226 766.3051 733.4313 733.3363 693.0069 733.2353 713.3331 733.1282 716.3659 723.0845 723.0484 758.8919 758.6605 723.0025 777.2356 755.4400 755.3839 722.9479 777.2653 722.8830 722.8850 722.6129 722.8095 722.7325 722.7273 722.6347 722.6437 744.1227 766.2639 766.1066 766.3699 765.9379 766.2639 -0.0007 0.0030 -0.0012 -0.0002 0.0006 0.0006 0.0009 0.0013 0.0002 0.0022 -0.0004 -0.0023 -0.0020 -0.0010 -0.0021 0.0001 -0.0015 -0.0019 -0.0001 0.0021 0.0010 0.0006 0.0019 -0.0017 -0.0002 0.0004 -0.0001 0.0002 -0.0006 0.0007 -0.0006 0.0001 0.0006 -0.0003 -0.0016 0.0005 0.0003 0.0009 0.0006 0.0000 -0.0006 0.0003 -0.0007 0.0003 -0.0006 -0.0003 0.0008 -0.0006 -0.0002 -0.0003 -0.0009 -0.0003 0.0002 0.0010 0.0017 0.0011 0.0006 0.0012 0.0003 0.0004 0.0006 0.0007 0.0008 0.0005 0.0014 0.0007 0.0000 0.0003 -0.0006 -0.0001 -0.0012 -0.0001 .l K_ K, 17 17 16 16 18 19 19 20 20 20 21 22 24 25 25 26 26 27 28 4 6 6 10 12 12 12 13 13 14 14 15 15 16 16 17 17 18 16 19 19 6 6 6 9 9 10 10 11 12 12 12 13 16 16 24 6 12 16 20 22 6 7 6 9 10 11 12 13 14 215 2 16 * 17’ 2 17 2 16 2 17 2 16 2 19 2 16 2 16 2 19 2 20 2 2.3 2 24 2 23 2 24 2 25 2 25 2 26 3 1 3 3 3 3 3 7 3 10 3 9 3 9 3 11 3 10 311 3 12 3 13 3 12 3 14 3 13 3 15 3 14 3 16 3 15 3 16 3 17 4 2 4 4 4 5 4 6 4 5 4 7 4 6 4 6 4 9 4 6 4 8 4 10 4 12 4 14 4 20 5 1 5 7 5 13 515 5 17 6 1 6 2 6 3 6 4 6 5 6 6 6 7 6 8 6 9 15 16 17 1 6 6 6 0 10 11 12 1 .J K_ x, 17 17 i9 16 18 19 19 19 20 19 21 22 24 25 25 26 26 27 28 5 7 7 11 12 13 12 13 13 14 14 15 15 16 16 17 17 16 16 16 16 7 7 6 9 1 1 1 1 1 1 1 3 1 3 1 1 3 3 3 3 3 3 3 4 4 .? 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 3 5 5 5 17 16 19 17 16 19 16 17 20 16 21 22 21 22 23 14 23 25 26 1 3 5 7 10 11 11 11 12 13 12 13 14 14 15 15 16 16 17 16 17 4 * 3 4 5 5 5 5 5 4 6 7 3 3 5 3 3 3 4 4 4 6 4 5 5 5 5 5 5 5 5 5 10 9 6 14 16 22 1 9 15 13 19 1 7. 3 4 5 6 7 6 9 5 5 5 0 10 11 12 0 10 ; 10 9 11 12 13 11 13 17 19 25 5 13 19 19 23 6 7 8 9 10 11 12 13 14 15 16 17 0 ; v(ca-1) 766.1316 765.7577 734.0757 765.5667 765.9929 765.8473 765.3665 754.7230 765.6957 754.8424 765.5387 765.3768 720.3657 720.1309 720.4152 720.2163 719.8875 720.0139 719.8068 703.2410 699.7846 766.1034 692.7694 777.3156 755.4978 777.3166 777.1926 777.1969 777.0649 777.0590 776.9170 776.9245 776.7656 776.7757 776.6045 776.6177 776.4333 776.4496 806.1125 606.1251 776.6402 713.2896 699.8606 699.7602 682.9973 699.6919 716.4747 699.5945 699.4883 766.0352 607.9939 699.3727 756.7676 755.1136 743.9057 606.8561 776.4157 765.4945 720.1633 756.0467 809.0072 808.9398 808.8620 808.7742 806.6789 808.5708 808.4544 608.3286 808.1939 608.0494 607.8958 607.7310 _^^^r C.k-0b. -0.0005 -0.0006 -0.0008 -0.0004 -0.0009 -0.0007 -0.0014 0.0007 -0.0004 0.0009 -0.0006 -0.0014 0.0001 0.0005 -0.0001 0.0007 -0.0003 0.0002 0.0000 -0.0007 -0.0004 -0.0014 0.0010 0.0011 -0.0016 0.0013 0.0004 0.0005 0.0009 0.0009 0.0003 0.0006 -0.0005 -0.0003 -0.0006 -0.0009 -0.0002 ^ -0.0005 -0.0023 -0.0014 -0.0001 -0.0002 0.0001 0.0006 0.0014 0.0004 -0.0001 0.0004 0.0003 -0.0019 -0.0016 0.0010 0.0001 0.0013 -0.0011 -0.0013 0.0011 -0.0006 0.0034 -0.0003 0.0001 -0.0005 -0.0002 0.0003 -0.0013 0.0003 0.0006 0.0005 0.0001 -0.0002 -0.0010 0.0000 ^ zyxwvutsrqponmlkjihgfedc _ 378 TAUBMANN AND JONES TABLE VII Observed Transitions of the (3~~4 J K_ K, J K_ K. vtcm-1) 5 0 0 5 9 4 8 1 1 3 7 0 11 0 12 0 1s 10 13 17 713.6716 720.0052 723.0906 602.6044 733.4163 713.0286 719.7250 689.3933 723.0614 682.6558 702.9190 -0.0008 0.0001 0.0000 0.0005 0.0000 0.0000 0.0014 -0.0006 0.0000 -0.0003 0.0008 699.5364 692.7473 689.3436 716.3659 -0.0009 0.0000 0.0005 0.0000 689.3512 716.3339 716.2858 716.2202 716.1393 716.0435 713.2645 692.9582 716.1720 692.7298 720.4047 -0.0002 -0.0003 -0.0007 0.0004 0.0006 -0.0004 0.0001. -0.0003 0.0003 0.0001 0.0014 -0.0004 -0.0004 0.0005 0.0000 -0.0007 0.0000 O.DOO2 -0.0007 0.0010 0.0025 0.0015 0.0030 0.0040 0.0052 0.0044 0.0060 0.0074 0.0067 0.0000 0.0027 0.0020 0.0029 0.0020 9 11 12 18 1 2 2 4 6 7 9 13 15 11 2 2 3 4 5 6 12 13 14 14 17 la 19 20 24 3 3 4 4 5 6 625 7 8 10 10 11 1 0 11 11 13 15 16 18 1 12 1 14 1 12 12 13 14 15 16 1 12 1 13 1 14 1 14 1 17 1 18 1 19 1 20 1 24 2 2 2 2 2 3 2 3 2 4 2 5 2 6 2 7 2 9 2 9 2 10 2 11 2 14 2 1 12 15 3 624 6 2 7 2 725 4 5 2 1 9 1 12 1 16 0 2 I.0 1 3 2 1 3 0 3 7 2 5 8 0 a 10 0 10 14 0 14 16 0 16 1 0 1 3 2 2 2 0 2 3 0 3 4 0 4 5 0 5 6 0 6 11 2 10 13 2 11 13 2 12 14 2 12 16 2 15 18 0 18 18 2 17 20 0 20 24 2 22 3 3 0 414 4 3 1 3 13 5 3 2 6 3 3 515 7 3 4 8 3 5 9 19 9 3 7 11 3 6 12 3 9 16 1 16 4 13 634 5 14 7 3 5 817 713.6292 723.1432 713.0027 689.4957 683.2181 720.4534 683.1814 733.8079 683.1359 683.0807 737.0814 683.0174 682.9446 743.5494 699.5158 682.6723 682.5624 699.7086 720.3910 683.0825 736.9892 683.0212 713.4097 J ca1c-Oh . l l l l . . f . l l l . l l l l f l K_ K, 826 1028 11 ; 9 12 2 10 13 211 25 2 24 26 2 25 12 3 10 13 3 11 13 3 11 13 3 11 14 3 12 15 3 13 16 3 I4 17 3 15 12 3 9 13 3 10 13 3 IO 13 3 10 13 3 10 14 3 11 15 3 12 16 3 13 17 3 14 18 3 15 18 3 15 4 4 0 6 4 2 11 4 7 14 4 10 15 4 12 18 4 15 19 4 15 5 5 1 6 5 2 753 8 5 4 955 10 5 6 11 5 7 11 5 6 12 5 8 101 IO 1 4 14 313 5 15 919 5 14 8 1 7 Hot Band “(cm-l) c.lc-ob* zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQP J zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPON K_ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPO K. 836 936 1; 12 13 25 26 12 12 13 14 14 15 16 17 12 13 14 12 12 14 15 16 17 17 17 3 5 10 13 16 17 20 5 6 743 8 9 10 11 10 12 0 0 3 4 6 9 6 7 3 3 3 1 1 2 2 2 2 2 2 2 2 2 2 2 4 2 2 2 2 2 2 2 3 3 3 5 3 3 3 4 4 9 10 11 24 25 10 11 11 13 12 13 14 15 11 12 12 8 10 13 14 15 16 16 15 0 2 7 8 14 15 17 1 2 4 4 4 4 4 4 0 0 3 3 3 3 3 1 4 5 6 7 6 8 0 0 0 1 3 7 4 5 682.9510 699.5309 602.6934 682.5927 682.4832 723.1159 722.7904 737.1283 758.7756 737.0067 713.5907 736.8755 736.7359 736.5871 736.4276 737.1370 737.0180 713.5763 692.9634 758.7681 736.8911 736.7553 736.6123 736.4602 766.3980 766.3681 755.0039 758.2519 766.1984 683.1359 720.5185 776.9065 713.2084 758.6765 758.6203 758.5541 758.4793 758.3947 758.3000 758.1970 776.6094 750.0847 50233.1 49959.7 -1116286.0 -1517744.0 -1618900.0 -1320094.0 -1616082.0 -911024.0 0.0038 0.0038 0.0058 0.0062 0.0084 0.0068 0.0052 -0.0036 -0.0035 -0.0036 -0.0048 -0.0034 -0.0043 -0.0055 -0.0055 -0.0042 -0.0037 -0.0044 -0.0032 -0.0036 -0.0041 -0.0041 -0.0053 -0.0059 -0.0067 -0.0073 0.0019 0.0000 -0.0010 -0.0001 -0.0006 0.0000 -0.0002 -0.0007 -0.0008 -0.0003 -0.0005 -0.0002 0.0008 0.0009 -0.0002 0.0010 0.6 -0.6 -20.2 29.1 29.9 -24.1 21.6 26.9 l l l . . * l . . . l l . . l l l l l . l . l l l l (a> tb) (0) cc> CC) tc) (0) tc, calculation of all three rotational constants. Comparison of the (Yconstants of the three states (Table X) shows a regular variation on moving from one state to the other. This indicates that, despite the approximations made in the analysis, the vg = 3 parameters are probably reliable. Consequently it appears that the calculated perturbation shifts in the K_ = 2, 3 levels are also reasonably accurate. Perhaps the most important result of Tamagake et al. (3) in their work on this region was to show that the band at 75 1 cm-’ was in fact 2vg and not, as erroneously assigned by Giguere and Lin (6), the NH2 twisting motion, vg . The question remaining which is relevant to the present work is, where is vs? An ab initio calculation using a 4-31G* basis set with anharmonic correction (II) has produced vg = 1451 cm-‘. As 379 SEVERAL BANDS OF HYDROXYLAMINE 365.963 cm-l I I ground FIG. 7. The levels involved in the 2u9/(3Y+~) band system of hydroxylamine. The bold arrows represent the experimentally observed bands, the thin, double-headed arrows the energy differences calculable from the data. As can be seen, the determination of the band center of the difference band, Q-Y~, allows the energy difference between us = 1 and u9 = 3 and the band center of v9 to be calculated (Table IX). is usual with such calculations, in the case of a twisting motion, this is probably an over estimation and a value as low as 1250 cm-’ might be expected. zyxwvutsrqponmlkjihgfedcbaZYX The Perturbation The low symmetry of the hydroxylamine molecule (C,),resuIts in the us = 1 state being able to couple with any nearby state. Since us belongs to the representation A’ it can couple with A” via an a-type or c-type interaction or with A’ via a b-type interaction. Since 34 is A” the former type of interaction is to be expected between q = 1 and 2)g= 3. These two states are certainly close enough together to affect each other, but it appears that this effect alone is insufficient to explain the observed shifts. Assuming that the effective constants of us = 1 and vg = 3 given in Table II reliably reproduce the unperturbed levels, the energy separation between individual levels of these two states can be calculated. The levels which approach each other most closely are given in Table XI. The range of energy differences for groups of levels with the TABLE VIII Observed Transitions of the (~~-4) Difference Band zyxwvutsrqponmlkjihgfedcba J 4 13 13 11 11 7 7 5 514 12 818 K_ K, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFE v(cm-1) J K_ K, talc-ohs 3 1 1 1 1 16 17 14 2 12 13 10 11 1 12 5 14 14 12 12 8 8 6 6 13 9 41 2 2 2 2 2 2 2 2 0 0 13 12 11 10 7 6 5 4 13 9 683.2241 669.6095 689.5973 692.9656 692.9597 699.6778 699.6751 703.0345 703.0346 713.2359 719.9514 -0.0003 -0.0012 -0.0008 -0.0006 -0.0012 0.0015 0.0028 0.0012 0.0006 -0.0017 -0.0002 380 TAUBMANN AND JONES TABLE IX Band Centers (Energies) Determined (cm-‘) Band 729.5068(41 x-y9 v9 386.2 385.9627(41 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA 2v9 751.0741(3) 751.3 3v9 1096.9153(5) 1097.5 same value of K_ are indicated for the lowest value of J and J = 20. As can be seen, the K_ = 1 and K_ = 2 levels of 05 = 1 and 219= 3, respectively, come very close together. Since these levels can couple via a c-type interaction, this agrees qualitatively with the observation that these displayed the largest shifts. However, there are a number of problems with this explanation: the shifts of the two t+ = 1 K- = 1 levels differ considerably although they are nearly equidistant from their interaction partner, the shifts in us = 1 and u9 = 3 are of different magnitudes, the shift in the K_ = 0 level of v5 = 1 is of opposite sign from that expected from consideration of Table XI. Two possible explanations for these quantitative difficulties are: (i) the effective constants for v5 = 1 and o9 = 3 are not reliable, (ii) a third state plays a role in the perturbation. The tirst possibility seems somewhat unlikely since as already mentioned the observed CYconstants indicate that the v9 = 3 rotational constants are at least reasonably reliable. The situation with Q = 1 is considerably more complicated, but since a similar procedure as that used with 24 = 3 was employed they should also be quite reliable. The chances for the second possibility being correct are increased by the fact that, as already mentioned, one fundamental (vs) has so far not been located. The ab initio calculation (II) appears not to rule out the possibility that USis close to u5. Even if considerably further away than 39 the interaction between the two fundamentals might still be of comparable strength to that between v5 and 3~9. It appears that at the moment we do not have sufficient data to come to a definitive conclusion on this matter. We are nevertheless convinced that the data of Table II and the empirical perturbation parameters of Table V can be used to accurately predict hydroxylamine spectra. Further work will have to be carried out in order to enable a full analysis of the perturbation. TABLE X The (YConstants of vg vg=1 1283(l) 8.1(3) 133.4(3) vg=2 1165.8(5) 9.58(5) 130.75(5) vg=3 1075(l) 10.2(l) 128.5(l) SEVERAL BANDS OF HYDROXYLAMINE 381 TABLE XI Nearest Levels of us = 1 and ug = 3 zyxwvutsrqponmlkjihgfedcbaZYX Energy Levels "5'1 V9'3 Join difference* J=20 J~,(J-1) -3.14 -1.33 J~,(J-2) 2.41 3.96 JI,(J-1) J2,(~-1) 2.41 4.19 J~,(J-1) J~,(J-3) -8.07 -6.39 J~,(J-2) -8.07 -6.37 JO,J J~,J J~,(J-2) l = <vg=l) - ("9'3). ACKNOWLEDGMENTS This work is funded by the Deutsehe Forsehungsgemeinsehah. The authors wish to thank Professor H. D. Rudolph for his support and interest in this work and the Fonds der Chemisehen Industrie for their aid. RECEIVED: October 2, 1986 REFERENCES 1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA J. T. HOUGEN,J. Mol. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFED Spectrosc.89,296-305 (1981). 2. S. TSUNEKAWA,J. Phys. Sot. Japan 33, 167-174 (1972). 3. K. TAMAGAKE,Y. HAMADA,J. YUMAGUCHI,A. Y. HIRAKAWA,AND M. TSUBOI,J. M ol. Spectrosc. 49,232-240 (1974). 4. M. E. COLES,A. J. MERER,AND R. F. CURL,J. M ol. Spectrosc. 103, 300-311 (1984). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQP Phys. B 41, 179-181 (1986). 5. G. TAUBMANN,H. JONES,ANDP. B. DAVIES,Appl. 6. P. A. GIGUEREAND I. D. LIN, Canad. J. Chem. 30,948- 962 (1952). 7. S. URBAN,D. PAPOUSEK, J. KAUPPINEN, K. YAMADA, AND G. WINNEWISSER, .I. M ol. Spectrosc. 101, 300-305 (1983). 8. W . B. OLSON,A. G. M AKI, AND W. J. LAFFERTY,J. Phys. Chem. Ref: Data 10, 1065-1084 (1981). 9. G. GUELACHVILI, 0. N. ULENIKOV,AND G. A. YSHAKOVA,J. M ol. Spectrosc. 108, l-5 (1984). 10. J. K. G. WATSON,in “Vibrational Spectra and Structure,” Vol. 6, pp. l-89, Elsevier, Amsterdam/New York, 1977. 11. N. TANAKA,Y. HAMADA,AND M. TSUBOI,Chem. Phys. 94,65- 75 (1985).