JOURNAL OF MOLECULAR SPECTROSCOPY
zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHG
123,366-38
1 (1987)
zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONM
Diode Laser Spectroscopy
of Several Bands of Hydroxylamine
GERHARD TAUBMANN AND HAROLD JONES zyxwvutsrqponmlkjihgfedcbaZYXW
Abteilung Physikdische Chernie, Universitdt Urn, D-7900 Urn, West Germany
Diode laser spectroscopy has been carried out on the Y$(11 I5 cm-‘) and v6 (895 cm-‘) fundamentals, the 24 overtone, the 3u,-v, hot band, and the Y~--v~
difference band (all near 700
cm-‘) of hydroxylamine (NHrOH). (Q = NH2 wag, y6 = N-O stretch, and Ye= OH torsion.)
Transition frequencies were determined with a nominal accuracy of +O.OOlcm-‘. Accurate molecular parameters were determined for the ground state, u6 = 1, u9 = 1, and u9 = 2. The u5 = 1
and u9 = 3 states were perturbed by a Coriolis interaction with each other and possibly with a
third state. In these cases effective rotational and distortion constants were determined together
with empirical perturbation parameters. The data obtained on ~5and v6 enabled assignments of
the transitions involved in the optically pumped hydroxylamine FIR laser to be made. Q 1987
Academic Press, Inc.
INTRODUCTION
Small molecules containing amino groups have been a subject of sustained spectroscopic interest for many years. This is at least in part due to challanges offered by
the spectral complexity often present with this class of substances. In the case of
hydrazine (NHzNHz) the effects of inversion and internal rotation combine to produce
a particularly complex situation which has only relatively recently been adequately
theoretically treated (I). It is consequently, at first sight, somewhat surprising that the
ground state microwave spectrum of hydroxylamine (NHzOH) displays no such complications at all (2). This results from a configuration with the hydrogen atom of the
hydroxyl group in a trans position relative to those of the amino group (Fig. 1) being
stabilized by what is presumed to be an interaction between the hydrogen atoms and
the lone pairs on the two heavy atoms. So far only this form of hydroxylamine has
been shown to be present in the gas phase (2-4).
Our interest in obtaining high-resolution infrared spectra of hydroxylamine was
twofold. First, we have recently produced optically pumped FIR laser action with this
substance (5) and wished to explain the mechanism involved in this process. Second,
it seemed possible that the effects of quantum mechanical tunneling might be observable
in vibrationally excited states of this molecule and thus give information over the
potential barriers involved.
The FIR laser radiation was produced by pumping the amino wagging band (~5)
and the N-O stretch (Q), near 1115 and 895 cm-’ respectively (6), with lo-pm lasers
(5) and the gaining of information over these two bands was given priority. It was
observed that the spectrum of v5was slightly perturbed. A possible interaction partner
was 3vg, the second overtone of the torsional motion, which was to be expected near
1100 cm-‘. As a result of this it was decided to examine the 2~9, 3vg-ug band system
0022-2852187$3.00
Cqyri&t 0 1987 by Academic Press, Inc.
AU rights of reproduction in any fom resewed.
366
367
SEVERAL BANDS OF HYDROXYLAMINE zyxwvutsrqponmlkjihgfedcbaZ
FIG. 1. The truns form of hydroxylamine which is stabilized by interactions between the hydrogens and
the lone electron pairs on the heavy atoms.
to gain information
over the u9 = 3 state. In this case the analysis was assisted by the
work of Tamagake et al. (3) which was carried out under conditions of medium resolution. During the survey of this band system we were also able to assign transitions
of the v5-vg difference band.
EXPERIMENTAL DETAILS
The diode laser spectrometer was based on the cold head assembly of Spectra Physics
with diodes from the same firm. Measurements were carried out using a White cell
with a 20-m path length and gas pressures in the range of 0.1 to 0.5 Torr. A calibrated
confocal etalon (FSR = 0.0098 11 cm-‘) and accurately measured absorption lines of
NH3 (7), N20 (8), and SO;! (9) were used to determine transition wavenumbers. The
hydroxylamine was produced by warming hydroxylammonium
phosphate to 80°C
and passing the gas directly into the absorption cell. After an initial period in which
the cell was passivated, hydroxylamine proved to be quite stable and the sample had
to be replenished only every 20 to 30 min.
OBSERVATIONS
Although by no means obvious, hydroxylamine
is in fact a very near-prolate symmetric rotor. As a consequence of this, in fitting the spectra, Watson’s &reduced
Hamiltonian (IO) was used. Due to the large rotational constants the spectra of hydroxylamine display relatively few absorption lines. In the absence of perturbations,
assignment proceeds smoothly via the recognition of characteristic patterns of absorption lines.
The N- O Stretching Band (vd
Some 150 lines of this band with J =G30 and K_ < 12 were measured in the region
890-920 cm-‘. These are listed together with their assignments in Table I. This band
proved to be an u/c hybrid and a section of the RQl subband near 9 11 cm-’ is shown
in Fig. 2. The asymmetry splitting is clearly Seen here, although in many cases the
368
TAUBMANN AND JONES
TABLE I
Observed Transitions of the v6 Band
J
0
1
2
6
IO
14
15
20
1
11
4
6
6
K_
K,
0
0
0
1
o
2
o
6
o lo
o 14
o 15
o 20
11
o
13
1
1
5
6
.J
K_
1
2
11
5
9
13
14
19
2
2
5
5
K,
0
0
1
2
o
5
9
12
14
la
o
o
1
o
1
12
11
o
5
1
4
19
1 9
1 IO
1 IO
1 15
1 14
121
1 23
1 22
1 25
1 26
1 27
1 28
1 29
1 30
2
0
21
2
1
2
2
2
2
2
3
2
3
2
2
2
3
2
4
2
4
2
5
2
4
2
5
2
6
2
6
2 7
2
a
5
a
9
9
10
14
14
21
22
22
25
26
27
28
28
29
2
2
3
3
4
4
3
3
5
5
6
6
5
7
7
a
a
9
2
2
2
2
9
9
a
a
11.
10
9
10
1 II
1 9
2 7
1 10
10
2
a
11
1
10
11
15
17
17
6
633
2
9
2 14
2 16
2 15
3
3
11
14
16
16
7
532
1
2
3
3
2
11
13
14
13
5
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
4
12
13
14
15
16
14
16
16
17
19
19
20
20
21
21
5
9
lo
IO
11
15
15
22
23
23
25
26
27
28
29
30
2
2
3
3
4
4
4
4
5
5
6
6
6
7
7
a
a
9
927
10
10
10
10
919
10
11
12
13
12
12
13
14
14
16
17
17
la
18
19
2
093.5257
891.8245
892.9732
9o*.a*ao
910.0511
910.8922
917.0720
918.6341
891.0192
891.8152
892.1296
904.8451
904.8362
892.7488
910.8496
910.8378
917.8809
917.8590
917.8698
910.4369
911.1694
911.6409
893.6449
893.0803
892.4932
891.8863
917.7151
918.7284
911.7056
911.6997
911.6456
911.6331
911.5655
911.5450
918.2811
918.2689
911.4649
911.4343
911.3463
911.3028
904.8180
911.2063
911.1481
911.0475
910.9719
910.7740
910.8671
892.2084
910.5537
910.8204
910.6692
892.0739
910.4496
917.8405
892.8793
892.8907
910.5836
904.7805
910.7824
893.5130
893.2416
892.9499
892.6359
893.4071
917.8010
893.4163
892.3020
891.9478
918.7849
918.7664
918.3641
918.3411
917.9237
917.8972
904.7285
caLa-obe
0.0001
0.0002
-0.0001
-0.0004
0.0003
-0.0004
-0.0004
-0.0004
0.0005
0.0002
-0.0008
-0.0005
-0.0005
-0.0001
-0.0002
0.0002
0.0003
0.0004
0.0000
-0.0006
-0.0010
0.0005
-0.0001
-0.0002
0.0009
0.0004
0.0003
-0.0006
0.0003
0.0000
0.0004
0.0004
0.0006
0.0003
0.0013
0.0012
0.0013
0.0008
0.0002
0.0000
-0.0003
0.0004
0.0004
-0.0005
0.0002
-0.0003
0.0003
-0.0006
-0.0005
0.0005
-0.0013
-0.0002
-0.0012
-0.0003
-0.0004
-0.0004
-0.0006
-0.0003
-0.0001
-0.0001
-0.0001
-0.0006
0.0003
-0.0008
0.0004
-0.0006
0.0003
-0.0001
0.0001
0.0000
0.0011
0.0014
0.0009
-0.0001
-0.0006
K_
J
a
10
12
13
14
15
15
16
17
21
6
10
11
12
13
14
15
15
16
17
17
26
10
11
12
13
I4
ii
K,
4
4
4
6
4
9
4 10
411
4 12
4 11
4 13
4 14
4 17
5
1
5
5
5 7
5
a
5
9
5 10
5 IO
5 11
5 12
5 12
5 13
5 21
6
4
6
6
6
7
6
a
6
9
6
15
6
16
6
16
6
17
6
19
6
22
6
10
7
11
7
12
7
13
7
14
7
15
7
16
7
16
7
IO
a
11
a
11
a
12
6
13
6
14
a
15
a
16
a
16
a
9
9
10
9
11
9
11
9
12
9
13
9
14
9
15
9
16
9
16
9
10 10
12 10
13 10
14 10
15 10
16 10
11 11
12 11
1311
14 11
15 11
16 11
12 12
14 12
10
9
10
11
12
13
16
3
5
6
7
a
9
9
10
3
3
4
5
6
7
a
a
9
1
2
3
2
4
5
6
7
a
7
1
3
4
5
6
6
1
2
3
4
5
5
1
3
.I
K_
9
9
12
13
14
15
14
16
17
22
5
9
11
12
13
14
14
15
16
Ia
17
27
9
11
12
13
14
15
14
15
16
17
20
23
9
11
12
13
14
15
15
16
IO
IO
11
12
13
14
15
15
16
9
10
11
10
12
13
14
15
16
15
10
12
13
I4
15
15
11
12
13
14
15
15
12
14
3
6
4
5
4
a
4
9
4 10
4 11
4 10
4 12
4 13
3 19
5
0
5 4
5
6
5 7
5
a
5 9
5 9
5 10
511
4 14
5 12
4 23
6
3
6
5
6
6
6
7
6
a
6
9
6
a
6
9
6 10
6 11
5 15
5 la
7
2
7
4
7
5
7
6
7
7
7
a
7
a
7
9
a
2
a
2
a
3
a
4
a
5
a
6
a 7
a 7
a
a
9
0
9
1
9
2
9
1
9
3
9
4
9
5
9
6
9 7
9
6
10
0
10
2
10
3
10
4
10
5
10
5
11
0
11
1
11
2
11
3
11
4
11
4
12
0
12
2
K,
V(C.‘l)
ca1c-oh
917.9059
-0.0001
910.7293
893.4631
893.1911
892.8995
892.5855
917.7458
892.2514
891.8970
892.0362
904.6617
910.6608
893.6484
893.3984
893.1266
892.8343
917.6751
892.5207
892.1873
911.3249
891.8311
892.1379
910.5778
893.5701
893.3195
893.0477
892.7552
892.4416
917.5897
918.9269
892.1083
891.7526
918.1369
911.7961
910.4797
893.4777
893.2268
892.9555
892.6632
892.3497
918.8253
892.0158
893.6013
911.8119
893.3723
893.1213
892.8503
892.5571
892.2439
918.7095
891.9103
893.6917
893.4831
893.2530
911.6850
893.0026
892.7323
892.4387
892.1260
891.7914
918.5791
893.3522
892.8719
892.5992
892.3078
691.9946
918.4337
892.9779
892.7282
892.4557
892.1642
891.8507
918.2756
892.5724
892.0097
-0.0005
-0.0007
0.0000
-0.0006
0.0003
0.0004
0.0004
0.0001
0.0000
-0.0007
-0.0006
-0.0001
-0.0006
-0.0002
-0.000~
0.0005
0.0004
-0.0001
-0.0009
0.0013
-0.0009
-0.0009
-0.0003
-0.0002
0.0002
0.0004
0.0009
0.0000
0.0003
0.0002
0.0011
-0.0005
-0.0007
-0.0008
-0.0001
0.0002
0.0001
0.0001
0.0005
0.0004
0.0004
0.0004
-0.0007
-0.0003
0.0001
-0.0003
0.0006
0.0006
-0.0001
0.0002
0.0003
0.0000
0.0004
-0.0006
0.0002
-0.0010
0.0003
-0.0002
0.0003
-0.0005
-0.0003
-0.0004
0.0008
-0.0002
-0.0002
0.0000
0.0008
-0.0002
0.0008
-0.0001
0.0001
-0.0003
0.0004
-0.0009
zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJ
zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
936
1037
12
13
14
15
15
15
15
16
17
19
19
20
20
21
21
6
15
2 7
1 a
19
o 10
1 I4
1 13
2 19
221
2 20
o 25
o 26
0 27
0 28
227
2 28
12
11
13
12
I4
13
13
12
15
14
16
I5
2
3
17
16
1 a
17
1 a
“(C.-l)
3
9
3 10
311
3 12
2 14
311
2 15
3 13
3 15
2 la
2 17
2 19
2 18
2 20
2 19
41
369 zyxwvutsrqponm
SEVERAL BANDS OF HYDROXYLAMINE
6
n
Qlb.6
91'1.0
91'1.2
5
rl
91'1.4
4
32J
zyxwvutsrqponmlkjihgfedcbaZY
n
nn
Qllh
cm-’
FIG. 2. The RQ, subbranch of v6 of hydroxylamine near 9 11 cm-‘. The values of the J quantum number
are indicated above the trace. The small asymmetry splitting which arises entirely from the ground state zyxwvutsrq
K- = 1 levels is clearly seen.
spectra of hydroxylamine are essentially those of a symmetric rotor. The band constants
were determined by fitting the lines of Table I with the ground state parameters fixed
at values determined in the manner described in the next section. The results are
shown in Table II.
The NH2 W agging Band (Q)
Over 300 a- and c-type transitions of this band which fell in the region 1070- 1140
cm-’ were eventually measured and assigned. These are given in Table III. Examples
of the two types of Q branches observed are shown in Figs. 3 and 4 and a demonstration
370
TAUBMANN AND JONES
TABLE III
Observed Transitions of the v5 Band
J
K_
K,
3
3
3
3
0
1
4
3
1
4
3
2
4
3
2
533
533
5
3
2
6
3
3
6
3 4
6
3 4
735
7
3
5
8
3
6
6
3
6
9
37
9
3
7
9
3
7
10
3
7
10
3 7
10
3
8
10
3 8
11
3
8
11
3
9
11
3
9
12
3
9
12
3 10
12
3 10
13
311
14
3 12
15
3 12
15
3 12
16
3 13
19
3 16
21
3 19
23
3 20
24
3 22
25
3 23
25
3 23
26
3 24
27
325
26
3 26
29
3 27
30
3 28
4
41
5 4
2
5
41
6
4
2
6 4
3
7
4
4
8
4
5
9
4
6
10
4
6
10
4
7
11
4
6
12
4
6
14
4 10
14
4 11
15
4 11
15
4 11
16
4 12
17
4 13
19
4 15
21
4 17
23
4 19
25
4 21
5
51
6
51
652
7
5
3
6
5 4
955
10
5
5
. =
“.J’
1
zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
“(Cm-11
J
K_ K,
v(c.-1)
ccdc-ohs zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONML
J
K_ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONML
K. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQ
J
K_ zyxwvutsrqponmlkjihgfedcbaZY
K,
c*1c-oh
4
4
0
3
3
0
3
3
0
4
4
0
4
3
1
541
532
4
3
1
5
3
2
6
4
2
6
3
3
734
7
4
3
9
3
5
6
4
4
936
9
4
5
10
2
9
9 4
5
9
3
6
10
4
6
10
3 7
12
3 9
11
4 7
11
3
6
13
3 10
12
4
*
12
3 9
13
3 10
15
3 13
16
3 13
14
311
17
3 14
20
3 17
22
3 19
24
321
24
4 20
26
3 24
25
421
26
4 22
27
4 23
28
4 24
29
4 25
30
4 26
4
4
0
5
4
1
4
4
0
5 41
6
4
2
7
4
3
6 4
4
9 4
5
9 4
5
10
4
6
11
4
7
13
4
9
15
4 11
14
4 10
14
4 10
16
4 12
17
4 13
16
4 14
20
4 16
22
4 16
24
4 20
26
4 22
5
5 0
5
5 0
651
7
5
2
8
5
3
954
9
5
4
level
perturbed,
1070.1705
1115.5758
1122.2737
1076.8661
1115.5543
1076.8397
1115.5263
1123.9263
1125.5720
1076.8089
1115.4939
1115.4547
1076.7725
1115.4111
1076.7309
1115.3610
1076.6640
1126.2037
1093.4211
1132.0949
1076.6320
1115.3056
1095.1035
1076.5749
1115.2443
1093.3634
1076.5116
1115.1786
1115.1070
1069.8651
1088.1109
1140.1143
1096.3493
1081.0436
1077.4833
1073.9078
1075.3584
1070.3162
1075.2289
1075.0939
1074.9534
1074.6065
1074.6565
1074.5015
1115.6617
1115.6335
1124.0316
1125.6777
1115.6004
1115.5611
1115.5160
1115.4670
1132.1986
1115.4111
1115.3507
1093.4725
1089.9741
1115.1339
1140.2142
1088.2198
1096.4589
1084.6949
lOBl.1529
1077.5918
1074.0155
1070.4239
1115.7691
1125.8101
1115.7352
1115.6960
1115.6519
1115.6004
1132.3290
zero
10
5
6
11
5 7
12
5 7
12
5
8
15
5 10
15
5 10
16
5 11
17
5 12
19
5 14
21
5 16
25
5 20
6
6
1
7
6
2
6
6
3
9
6
4
10
6
5
11
6
6
15
6
9
16
6 10
17
6 11
21
6 15
23
6 17
7
71
8 7
2
9
7
3
10
7
4
11
7
5
12
7
6
13
7
7
15
7
6
16
7
9
23
7 16
6
61
9
6
2
10
6
3
11
6
4
12
6
5
13
6
6
14
6
7
16
6
6
23
9 15
9
9
1
10
9
2
11
9
3
12
9
4
13
9
5
15
9
7
10 10
1
1110
2
12 10
3
13 10
4
14 10
5
15 10
6
16 10
6
16 10
7
17 10
6
11 11
1
12 11
2
13 11
3
14 11
4
15 11
5
16 11
6
19 11
.9
1 0
1
2
0
2
3
0
3
404
4
0
4
5
0
5
5
0
5
606
606
7
0 7
-0.0005
0.0002
-0.0006
0.0010
-0.0004
0.0014
0.0001
-0.0015
-0.0012
0.0010
-0.0006
0.0000
0.0009
-0.0005
0.0009
0.0000
0.0010
-0.0006
-0.0019
0.0003
0.0009
0.0003
-0.0002
0.0009
0.0009
-0.0014
0.0015
0.0005
0.0004
0.0001
-0.0011
-0.0016
0.0006
-0.0001
0.0010
0.0005
0.0003
0.0009
-0.0001
-0.0003
-0.0001
-0.0007
0.0006
-0.0003
-0.0007
-0.0002
-0.0014
-0.0020
-0.0004
0.0002
0.0010
0.0001
-0.0006
0.0006
0.0001
-0.0012
0.0002
0.0009
-0.0020
-0.0009
0.0000
-0.0005
-0.0009
0.0006
0.0004
-0.0009
0.0000
-0.0012
0.0004
0.0006
0.0001
0.0014
-0.0006
10
5
5
11
5
6
13
5
9
12
5 7
14
5
9
16
5 11
17
5 12
16
5 13
20
5 1s
22
5 17
26
521
6
6
0
7
6
1
8
6
2
9
6
3
10
6
4
11
6
5
14
6
8
17
6 11
19
6 12
22
6 16
24
6 16
7
7
0
9 7
1
9 7
2
10
7
3
11
7
4
12
7
5
13
7
6
14
7
7
17
7 10
24
7 17
8
8
0
9
81
10
8
2
11
8
3
12
8
4
13
8
5
14
9
6
17
8
9
24
8 16
9
9
0
10
9
1
11
9
2
12
9
3
13
9 4
15
9
6
10 10
0
11 10
1
12 10
2
13 10
3
14 10
4
15 10
5
17 10
7
16 10
6
17 10
7
11 11
0
12 11
1
13 11
2
14 11
3
15 11
4
16 11
5
16 11
7
1
1
1
212
3
13
303
4
14
4
0
4
5
I5
616
505
717
1115.5464
1115.4846
1093.6093
1115.4169
1140.3392
1066.3561
1066.5970
1084.8322
1061.2696
1077.7275
1070.5568
1115.8990
1115.8598
1115.8142
1115.7637
1115.7076
1115.6455
1140.4899
1086.7632
1064.9975
1077.8901
1074.3116
1116.0466
1116.0040
1115.9515
1115.9951
1115.8323
1115.7637
1115.6901
1140.6648
1086.9540
1074.4978
1116.2179
1116.1658
1116.1075
X116.0447
1115.9755
1115.8990
1115.6166
1067.1701
1074.7039
1116.4016
1116.3426
1116.2774
1116.2065
1116.1300
1115.9579
1116.6009
1116.5338
1116.4610
1116.3831
1116.2982
1116.2065
1067.6699
1116.1099
1116.0084
1116.8115
1116.7367
1116.6535
1116.5675
1116.4723
1116.3732
1116.1550
1109.9370
1109.9290
1109.9160
1122.1372
1109.6960
1123.7908
1109.8760
1109.9500
1125.4363
1109.6190
-0.0003
0.0001
0.0006
0.0009
-0.0011
0.0010
-0.0001
-0.0001
-0.0006
0.0010
-0.0001
0.0000
-0.0002
0.0004
0.0003
0.0001
0.0003
-0.0009
-0.0007
-0.0003
0.0011
0.0004
0.0005
-0.0005
0.0008
0.0002
0.0003
0.0006
0.0001
-0.0014
0.0001
-0.0006
-0.0004
-0.0005
0.0000
-0.0009
-0.0011
0.0001
0.0014
0.0001
0.0005
0.0003
O.OOOl
0.0006
0.0007
0.0004
O.OOll
-0.0005
0.0001
0.0003
-0.0005
-0.0004
0.0004
-0.0012
0.0000
-0.0017
-0.0009
-0.0009
0.0013
-O.O(301
0.0014
0.0005
-0.0003
-0.0019
-0.0027
-0.0029
-0.0016
-0.0025
-0.0031
-0.0026
-0.0030
-0.0020
-0.0026
l
l
.
.
.
f
.
*
l
.
zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIH
“eight
in
the
ITi+.
371 zyxwvutsrqpo
SEVERAL BANDS OF HYDROXYLAMINE
TABLE III-Continued zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQ
J
J
K_K, v(on-1)
ca1c-ohs zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONML
J zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONM
K.
K,
J K_ K.
v(cm-ll
cn1c-0k.s
zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
K_
K. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
a
0
9
10
10
10
11
11
12
14
1s
19
21
23
4
0
s
6
6
6
6
7
a
9
10
10
11
a
9
0 10
0 10
0 10
0 11
0 11
0 12
0 14
0 1s
0 19
0 21
0 23
1
3
1
4
1
5
1
s
1
s
1
s
1
6
1
7
1
8
1
9
1
9
1 10
11
1 10
12
1 11
12
1 11
12
1 11
13
1 12
13
1 12
14
1 13
IS
1 14
1s
1 14
17
1 16
17
1 16
19
1 18
21
1 20
22
1 21
23
1 22
1
11
212
2
12
3
13
3
13
4
14
4
14
4
14
s
1s
s
1
s
S
1
s
6
16
6
16
6
16
6
16
6
16
7
17
7
17
a
1 a
a
1 a
9
19
9
19
10
1 10
10
1 10
10
1 10
11
1 11
11
1 11
11
1 11
12
1 12
12
1 12
12
1 12
12
1 12
13
1 13
13
1 13
14
1 14
1s
1 15
16
1 16
17
1 17
17
1 17
19
1 19
2
2 0
3
2
1
4
2
2
. _ _
8
9
10
9
9
12
12
1
1
1
1
0
0
a
1109.7840
9
1109.7438
10
8
9
12
111
13
0 13
1s
0 1s
16
0 16
20
0 20
22
0 22
24
0 24
3
12
4
13
7
2
5
7
16
5
14
6
2
s
7
2
6
a
2 7
9
2
*
918
10
2
9
11
2 10
12
1 11
13
2 11
12
2 11
13
1 12
14
2 12
13
2 12
15
1 14
16
0 16
16
1 1s
16
2 14
18
0 la
20
1 19
22
1 21
23
1 22
24
1 23
1 0
1
2
0
2
2
2
0
3
0
3
3
2
1
4
0
4
4
2
2
3
13
4
14
s
2
3
S
0
s
51s
6
2
4
7
2
6
6
0
6
717
7
2
s
7
0
7
a 0
a
a
2
6
9
2 7
9 0
9
10
2
a
9
19
10
0 10
12
1 12
11
0 11
11
2
9
13
2 12
12
2 10
13
1 13
12
0 12
14
2 13
13
2 11
15
1 1s
16
1 16
17
1 17
La
1 la
16 2 1s
20
1 20
2
12
4
3
1
3
2
1
1109.7003
1126.3907
1131.96Sl
1094.9653
1089.3589
1093.2272
1089.7307
1087.9775
loao.9164
1077.3594
1073.7868
1122.1456
1123.7952
1087.0275
1103.S84S
1125.4363
1098.7870
1098.7496
1098.7073
1098.6588
1131.9311
1098.6OSS
1098.5473
1094.8966
1076.6560
1098.4827
1093.1447
1074.911s
1098.4132
1089.6164
1093.5094
1087.8444
1126.5824
1089.9806
1080.7019
1077.0970
1075.2882
1073.4728
1121.0120
1121.0000
1098.8829
1120.9850
109a.a669
1120.9640
1098.a460
1122.1605
1123.8193
1098.8222
1120.9370
1125.4723
1098.7920
1087.0326
1120.9060
1103.6474
1098.7558
1120.a690
1120.8260
1098.7149
1098.6687
1120.7790
1098.6171
1132.0377
1120.7260
1095.074s
1120.6680
109a.5607
1076.6795
1098.4990
1093.3501
1120.6OSO
1074.9400
1098.4326
x089.8867
1088.1521
1086.4121
1084.6704
1126.6312
1081.1752
1132.1080
1081.1400
1122.1976
. .._ .-_.
-0.0031
-0.0026
-0.0032
-0.0037
-0.0036
-0.0036
-0.0042
-0.0067
-0.0063
-0.0080
-0.0097
-0.0092
-0.0091
-0.0010
-0.002s
-0.0014
-0.0022
-0.0024
-0.0029
-0.0029
-0.0034
-0.0030
-0.0016
-0.0031
-0.0037
-0.0001
-0.0001
-0.0031
-0.0029
-0.0009
-0.0030
-0.0010
-0.0020
-0.0006
0.0000
0.0010
0.0011
0.0040
0.0041
0.0058
-0.0024
-0.001s
-0.0024
-0.0031
-0.002s
-0.0042
-0.0030
-0.0035
-0.0059
-0.0060
-0.0048
-0.0072
-0.0079
-0.0059
-0.0069
-0.0071
-0.0093
-0.0085
-0.0096
-0.0113
-0.0133
-0.0122
-0.0154
-0.0146
-0.0143
-0.0167
-0.0168
-0.0180
-0.0176
-0.0208
-0.0202
-0.0197
-0.0214
-0.0243
-0.0235
-0.0275
-0.0297
-0.033s
-0.0325
-0.0392
-0.0014
-0.0018
-0.0008
_ ___.
l
.
*
.
f
1
.
.
.
.
.
.
.
.
.
f
.
.
.
4
5
S
6
7
;
7
a
9
10
10
11
11
.
12
12
13
13
14
14
14
IS
l
15
l
.
.
l
.
.
II
.
.
.
l
l
.
.
.
.
.
.
f
.
l
.
.
l
.
.
f
.
.
.
.
f
l
.
f
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
f
.
.
.
.
.
15
1s
16
16
16
17
17
ia
19
19
20
21
21
22
23
23
2s
2
2
3
3
3
4
S
S
6
6
6
7
a
a
9
9
10
10
11
11
12
12
12
13
13
14
14
1s
15
16
16
17
17
la
19
19
20
21
21
22
23
22
2
3
2
3
23
2
3
2
3
2
4
2
5
2
5
2s
2 6
27
2
a
2
a
2
9
2
9
2 10
2 10
2 11
2 11
2 12
2 12
2 12
2 13
2 13
2 13
2 13
2 14
2 14
2 14
2 15
2 IS
2 16
2 17
2 17
2 la
2 19
2 19
2 20
2 21
2 21
2 23
21
2
1
22
2
2
2
2
23
2
4
24
2s
2
s
2
s
26
2
7
27
2
a
2
8
2
9
2
9
2 IO
2 10
2 11
2 11
2 11
2 12
2 12
2 13
2 13
2 14
2 14
2 15
2 1s
2 16
2 16
2 17
218
2 Ia
2 19
2 20
2 20
2 21
2 22
_
414
6
3
3
s
2
4
414
4
2
2
515
s
2
3
7
2
6
a
3
5
717
a
1 a
919
9
2
7
IO
1 10
11
1 11
12
2 10
12
1 12
12
3 10
13
1 13
13
3 11
14
1 I4
14
3 12
1s
2 13
14
2 12
1s
1 1s
16
2 14
1s
3 13
16
1 16
16
3 14
17
2 1s
17
3 15
la
2 16
18
3 16
19
3 17
20
2 Ia
20
31s
22
2 20
21
3 19
22
3 20
23
3 21
24
2 22
26
2 24
2
11
2
2
0
312
3
3
0
3
2
1
431
4
13
532
624
6
1 S
6
3 3
734
a
I 7
a35
9
3
6
9
16
10
3 7
10
1 9
11
3 a
11
1 10
12
3 9
13
2 12
12
1 11
13
1 12
13
3 10
14
3 11
15
2 14
1s
3 12
16
2 1s
16
3 13
17
2 16
17
3 14
18
2 17
18
3 1s
19
3 16
20
2 19
20
3 17
21
3 la
22
2 21
22
3 19
24
2 23
_. .__
1132.0754
1077.7319
1115.4493
1140.4472
1123.8506
1132.0520
1125.4963
lllS.3780
1074.3065
1131.9919
1131.9551
1131.9141
1132.0207
1131.8680
1131.8178
1095.0229
1131.7626
1087.4791
1131.7030
1087.4101
1131.6380
1087.3368
1089.7825
1140.0397
1131.5689
1088.0282
1087.2578
1131.4962
1087.1738
1086.2657
1067.0842
1084.5013
lOB6.9899
~086.89io
loao.9s67
1086.7867
1077.3936
1086.6777
1086.5627
1086.4430
1073.8147
1070.2184
1132.1009
lllS.SlbO
1132.0811
1087.8584
1115.4983
1087.8369
1140.4276
1087.8103
1115.4169
1131.9812
1087.7789
1087.7416
1131.8807
1087.6992
loa7.6s23
1131.a205
1087.5990
1131.7538
1087.5410
1131.6ao4
1087.4768
1093.2838
1131.6000
1131.s130
1087.4068
1087.3326
1089.7852
1087.2520
loaa.0319
1087.1662
1086.2703
1087.0749
1084.5072
1086.9786
1086.8771
1080.9655
1086.7694
1086.6S64
1077.4054
loa6.5371
1073.8304
-0.0010
0.0005
0.0001
-0.0007
-0.0017
-0.000s
-0.0011
0.0002
0.000s
0.0000
0.0001
-0.0002
0.0004
0.0001
0.0000
0.0009
0.0003
-0.0003
0.0004
0.0006
0.0014
0.0006
0.0022
0.0011
0.0020
0.0008
0.0013
0.0017
0.0018
0.0030
0.0028
0.0026
0.0034
0.0036
0.0041
0.0042
0.0066
0.004s
0.0059
0.0070
0.0080
0.0101
-0.0006
-0.0007
-0.0007
-0.0011
0.0005
-0.0007
-0.0019
-o.oooS
-0.0007
-0.0008
-0.0008
-0.0005
-0.0003
-0.0004
-0.0012
-0.0001
-0.0008
-0.0001
-0.0011
0.0000
-0.0006
0.0001
0.0003
0.0007
0.0004
0.0002
0.0023
0.0010
0.0006
0.0016
0.0026
0.0022
0.0018
0.0023
0.0022
0.0027
0.0028
0.0031
O.OOSl
0.0042
0.0061
.
f
.
.
f
.
.
f
.
l
f
l
.
.
f
.
*
.
l
.
.
l
*
.
.
.
*
.
.
.
f
.
.
f
.
.
.
*
f
.
.
l
f
f
.
.
.
.
.
f
f
.
.
.
l
f
.
f
.
.
.
.
*
.
.
.
.
*
*
*
.
.
.
.
.
.
4
.
.
.
l
.
zyxwvutsrqponml
TAUBMANN AND JONES zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPO
372
‘Q-Branch
10
J=ll
4
--l--P*
Abs.
I
I
--r-k-A
113
I
’I
’
9
I
a
I
,5
7
+3=K
I
I
11 15.40
.50
I
.80
1
.70
.80
.QO cm-’
3. The u-type Q-branch region of yj near 1115 cm-‘. The series of lines with a particular zyxwvutsrqponm
K value
(large number) spread out to lower wavenumber with increasing J value, producing considerable overlapping.
FIG.
of the near-symmetric rotor character of the hydroxylamine spectrum is given in
Fig. 5.
It became apparent in the early stages of the analysis that this band is slightly
perturbed. Transitions with K!. 2 3 behaved normally, but those with lower KL values
resisted fitting. The asymmetry in the u5 = 1 state is so small that only the K_ = 1
levels display appreciable splittings. These were determined directly by observation of
the PQ2 subbranch. It soon became clear that the upper state K_ = 1 levels are energetically inverted compared to the order normally present (i.e., J,,., is above J1,tJ_ljin
this case). This can only be produced by an extraneous effect such as a Coriolis-type
interaction between v5 = 1 and some other state. Under these circumstances it is very
difficult to obtain reliable information over the asymmetry in v5 = 1. It appears that
it is very small and in order to progress with the problem it was assumed that in its
unperturbed condition the upper state is accidentally symmetric (i.e., bp = 0). Effective
band constants for u5 were obtained by using the following procedure.
Since the frequencies of only 13 ground state rotational transitions were observed
in the microwave work (2), further purely ground state data were generated from the
frequency difference between infrared transition pairs with a common upper state
level. The 46 effective frequencies obtained in this manner (Table IV) were combined
RP (13)
I’
pQ1
J
10
I
1
i
100.70 cm-l
I
.80
I
.80
FIG. 4. An example of the much weaker c-type spectrum of Ye, the ‘Q, subbranch near 1109.7 cm-‘.
Since for these transitions K = 0 in the upper state, only one component of the asymmetry doublet appears
in this case. The =I’,( 13) asymmetry doublet happens to fall in the same region.
SEVERAL BANDS OF HYDROXYLAMINE zyxwvutsrqponmlkjihgfedcbaZYXWVU
373
FIG. 5. The near-symmetric rotor character of the hydroxylamine spectra is illustrated by the P-branch
patterns. In this case the a-type P( 15) of v3near 1089.6 cm-’ is shown. Only the zyxwvutsrqponmlkjihgfedcb
K = 2 and K = 1transitions
show deviation from a completely symmetric pattern, with a very small splitting in the former and a much
larger one in the latter. Although not apparent in this figure, the transitions with K = 0,1, and 2 are slightly
perturbed in rj.
with the 13 microwave transitions (2) to produce the values for the ground state
parameters shown in Table II. This procedure gave a considerable improvement in
the accuracy of these parameters compared to those calcuable from the microwave
data alone.
Effective values for the remaining band parameters were produced by fitting 136
lines of v5 with J’ < 30 and 3 < K!_ < 11 with the ground state values constrained
(Table II). It proved necessary to include distortion parameters at the sextic level in
the u5 = 1 state. However, since this was the only case in which this was required it
seems likely that these have their origin with the perturbation. Under the assumption
that the unperturbed energy levels of Q = 1 can be reliably calculated from the data
of Table II, the energy shifts of the individual low-K_ levels can be calculated. A plot
of shift against J(J + 1) produced in all cases an approximately straight line, as would
be expected for a Coriolis-type perturbation. This is illustrated in Fig. 6 for the most
strongly affected levels with K_ , K+ = 1, J. As can be seen in this figure, for large
values of J a higher order term in [J(J + l)]’ is required to account for the slight
curvature. The energy shifts, 6v, calculated from comparison of transition frequencies
predicted from the parameters of Table II with 178 experimental values for transitions
with K_ =S2, were fitted to an equation of the form a + bJ(J + 1) + c[J(J + 1)12.The
values determined for the coefficients are shown in Table V.
The Torsion Overtone Region
2~ Overtone
Although this band is in principle an a/c hybrid, only the c-type lines display considerable intensity. Using the data from Ref. (3) as starting values, assignment proceeded
smoothly. A total of 144 transitions with J < 28 and K- G 6 were measured (Table
VI). These were fitted with the single u9 = 2 microwave frequency (2) and with the
ground state constants constrained at the values of Table II to produce the data set
also given in this table.
314
TAUBMANN AND JONES
TABLE IV
Ground State Rotational Transitions* and Combination Differences zyxwvutsrqponmlkjihgf
J
K_
21
19
19
17
17
16
16
16
16
14
14
16
15
15
14
14
16
14
15
14
14
13
13
13
13
12
12
12
12
12
12
12
12
12
12
11
11
11
11
11
11
11
12
9
9
1
2
2
2
1
4
5
7
7
8
a
11
11
3
18
3
16
3
17
3
14
3
15
2
15
10
6
1
16
1
16
5
9
4
10
2
15
1
15
1
15
2
12
2
12
0
16
4
10
2
14
1
14
1
14
1
12
1
13
2
11
2
12
5
7
3
9
3
9
1
11
1
11
1
12
0
12
0
12
2
11
2
11
3
6
3
6
1
10
1
11
0
11
0
11
2
10
0
12
5
4
4
5
0
1
0
2
12
11
10
0
4
0
5
2
6
2
5
2
7
2
6
1
11
._
I
IU
Y
= from
K,
zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIH
K,
(GHe)
talc-obs
J
K_
22
20
20
18
18
18
17
17
16
16
16
15
15
16
15
16
16
15
14
15
14
13
13
14
14
13
12
13
13
12
12
13
12
13
13
11
12
11
12
12
11
12
12
10
10
0
1
1
1
2
3
4
8
8
9
9
10
._
1"
2
2
2
2
2
1
10
2
3
5
4
3
3
2
3
2
1
4
3
2
3
3
3
2
2
5
4
3
2
3
3
1
2
1
2
4
3
3
2
1
2
1
1
5
4
0
0
11
10
0
12
13
18
17
19
18
2
2
reference
Y
21
19
18
17
16
18
7
15
14
11
12
12
13
14
13
14
15
11
11
13
12
10
11
13
12
8
8
10
12
9
10
13
10
12
11
7
9
8
10
12
9
11
11
5
6
0
1
(2).
2
9
8
-277.336000
-177.225000
-177.906000
-76.978000
-77.433000
-1257.953000
-852.610000
-1355.976000
-1328.752000
-1558.414000
-1558.753000
-23.381000
-1328.413000
-1305.317000
-1562.362000
-1559.266000
-169.832000
-754.272000
-73.527000
-1254.796000
-1328.117000
-1322.271000
-1327.868000
-704.290000
-704.563000
-653.775000
-1159.202000
-654.003000
-1148.691000
-1322.780000
-1327.586000
-817.081000
-662.859000
-160.029000
-654.348000
-1159.282000
-603.806000
-1323.266000
-1103.083000
-767.274000
-662.768000
-109.445000
-168.076000
-503.130000
-503.277000
50.375000
100.748230
100.683580
100.807620
65.066840
35.518090
85.755730
95.473960
93.259230
45.407410
42.646910
54.600970
58.619730
0.060038
0.014327
0.014257
-0.010264
-0.006683
-0.027878
-0.034587
0.038591
0.001419
0.065079
0.034530
0.013030
-0.023510
-0.036833
0.005848
-0.007475
0.041237
-0.019250
-0.062809
0.023431
-0.023417
-0.007205
0.005363
0.085920
0.062488
-0.009502
0.030156
-0.057218
-0.008443
-0.027838
-0.017478
-0.017091
0.103654
0.008113
0.090427
-0.001289
-0.032618
-0.032379
0.026603
0.000891
-0.031014
0.108327
-0.017118
0.009973
0.037861
0.000035
0.000005
-0.000103
0.000117
-0.000005
-0.000089
0.000061
-0.000070
-0.000263
0.000100
0.000367
0.000036
0.000113
zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDC
zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFE
3u9-u9 Hot Band
As with 2v9 this band was essentially purely c-type but was about half as intense.
From the data available (3) at the start of this work it was apparent that the K_ = 2
levels of Q = 3 were close to the K- = 1 levels of u5 = 1 and were probably involved
in the observed perturbation. A similar situation was expected between the K_ = 3
and K- = 2 levels of these states respectively. Infrared transitions involving these levels
SEVERAL BANDS OF HYDROXYLAMINE zyxwvutsrqponmlkjihgfedcba
375 zyxwvutsrq
NHPOH
6x6):
Kp ~1, Ko= J
Fw. 6. A plot of the deviation of the uj = 1 K_, K+ = 1, J levels from the energy calculated from the
effective constants of Table II (here delta(calwzxp) is in units of lo4 cm-‘) against J(J + 1) for the level
concerned. As can be seen, the result is an almost straight-line relationship. The slight curvature at high
values ofJ was allowed for in the calculation of empirical perturbationparameters(Table V) by the inclusion
of a term in [J(J + l)]‘.
were consequently only included with zero weight in the fit to determine the band
constants. To maximize the information available over the ug = 1 state, effective
rotational frequencies were calculated from combination differences. The band constants shown in Table II were determined from 66 infrared transitions with K_ < 5
and J < 24, 6 v9 = 1 combination differences, and 1 microwave frequency in both
states (2). These data are shown in Table VII.
It was assumed that the deviations of the zero-weighted transitions with K_ = 2, 3
in 09 = 3 from the fit were entirely due to a Coriolis-type perturbation of these levels.
As with L+ = 1, empirical parameters were calculated which reproduced the observed
shift and these are shown in Table V.
v5- - v9
D@ erence Band
As can be seen from Fig. 7, despite having accurate data on the two bands discussed
above, we still have no way of determining the energy separation between v5 = 1 and
n9 = 3 directly. Since v9 is too low (386 cm-‘) for our diode laser system the only
alternative was to search for the weak us-v9 difference band. Using an initial value for
the band center calculated from the data of Ref. (3), 11 weak transitions were measured
(Table VIII). Most of the transitions observed involved levels with K_ = 1 which from
the work on the v5 fundamental were known to be perturbed. The experimental frequencies were therefore corrected using the empirical terms given in Table V. With
the upper- and lower-state rotational and distortion constants constrained at the values
shown in Table II, the corrected frequencies were fitted to determine the band center.
The value obtained and the resulting energies of the vg = 1,2, 3 are shown in Table
IX in comparison with those from the earlier work (3).
316
TAUBMANN AND JONES
TABLE V
Empirical Coefficients for Perturbed Levels (cm-‘) zyxwvutsrqponmlkjihgfedcba
Level
v5=
a.104
b.104
c.107
1
JO,J
-16(3)
-0.26(4)
0.21(8)
JO,J
-22(3)
-0.16(l)
0.0
J~,J
-16(26)
-1.29(4)
0.8(l)
J~,J
-27(3)
-1.02(2)
0.0
JI,(J-I)
-23(S)
-0.02(5)
0.32(9)
J~,(J-1)
-37(4)
0.14(2)
0.0
Jz,(J-1)
-9(2)
0.05(2)
0.13(3)
J2,(~-1)
-14(2)
0.116(6)
0.0
J2,(5-2)
-B(2)
0.06(2)
0.16(3)
J2,(5-2)
-15(2)
0.148(7)
0.0
-15(3)
0.87(8)
.1.(3)
-4(4)
0.52(4)
0.0
7(5)
0.23(6)
0.40(8)
-13(5)
0.53(2)
0.0
-17(9)
-0.11(4)
0.0
-2(6)
-0.20(2)
0.0
DISCUSSION
FIR Laser Line Assignments
The observation of a number of strong optically pumped FIR laser in hydroxylamine
has been recently reported from this laboratory (5). The measurements carried out
here on the v5 and 4 allow four of these lines to be assigned. The details of the
assignment are given in Ref. (5). Both the infrared and rotational spectra of hydroxylamine are so sparsely populated that the assignments could be made with high
certainty. The rotational constants of the vibrationally excited states given here (Table
II) allowed the laser transition frequencies to be calculated with greater accuracy than
those experimentally determined (5).
The Torsional Motion
The values for the energies of the states u9 = 1, 2, 3 determined here confirm the
basic correctness of the earlier medium-resolution work (Table IX). The improved
resolution and accuracy of the present work, however, provides the first detailed information over these states since too little microwave data (2) was available to allow
SEVERAL BANDS OF HYDROXYLAMINE
TABLE VI
Observed Transitions of the 23 Overtone
.I K_ K,
4
6
6
6
12
16
19
20
20
21
1
6
717
717
8
9
10
11
11
11
11
12
12
12
12
13
13
13
14
14
15
15
16
16
17
16
19
19
20
20
21
21
22
23
23
24
24
3
322
4
4
4
5
6
6
624
624
6
7
725
8
8
927
928
10
10
13
14
15
15
16
16
0
0
06
08
0
0
0
0
0
0
10
1
4
6
12
16
19
20
20
21
6
1
6
1
9
1 10
1 11
1 10
1 11
1 11
1 11
1 12
1 12
111
1 13
1 12
1 13
1 13
1 14
1 15
1 14
1 16
1 15
1 16
1 17
1 16
1 16
1 19
119
1 21
1 20
1 21
1 22
1 22
1 23
1 23
2
1
2
2
2
2
2
25
2
3
2
3
4
2
5
2
2
6
7
1
2
*
2
2
2
2
2
9
6
12
13
14
13
15
14
26
J K_ K,
5
5
716
716
13
16
19
20
19
21
000
6
725
627
6
9
10
11
11
11
12
11
12
12
12
13
13
I,?
14
14
15
15
16
16
17
16
18
19
21
20
20
21
22
24
23
25
24
4
330
4
5
5
5
5
717
716
634
1
1
4
4
1
1
1
1
1
1
12
16
19
20
16
21
2
4
2
2
2
z
2
0
2
0
0
2
2
0
2
2
2
0
0
2
0
2
2
2
2
2
0
2
2
6
7
6
9
10
11
11
11
12
10
11
13
12
11
13
14
15
14
16
15
16
17
16
16
21
19
19
220
2 21
1 22
2 22
0 25
2 23
3
1
3
1
1
3
1
2
5
4
2
4
5
734
735
1
5
6
6
937
936
3
3
6
5
3
3
3
1
1
1
1
1
7
6
IO
13
14
15
15
16
10
10
12
14
15
15
16
16
vccn-l1
talc-ohs
737.0357
755.4066
733.5612
758.6145
722.8694
744.0624
743.8899
743.7064
776.6294
743.5114
756.2074
734.1142
734.0137
720.5771
733.8992
733.7680
733.6262
733.4667
734.1372
755.5733
713.3239
776.3363
755.3998
733.2962
734.0866
755.2130
734.0319
754.9313
733.9732
755.0101
754.7942
733.9066
754.5612
733.8411
733.7700
733.6905
765.4461
733.6063
720.4047
733.5226
766.3051
733.4313
733.3363
693.0069
733.2353
713.3331
733.1282
716.3659
723.0845
723.0484
758.8919
758.6605
723.0025
777.2356
755.4400
755.3839
722.9479
777.2653
722.8830
722.8850
722.6129
722.8095
722.7325
722.7273
722.6347
722.6437
744.1227
766.2639
766.1066
766.3699
765.9379
766.2639
-0.0007
0.0030
-0.0012
-0.0002
0.0006
0.0006
0.0009
0.0013
0.0002
0.0022
-0.0004
-0.0023
-0.0020
-0.0010
-0.0021
0.0001
-0.0015
-0.0019
-0.0001
0.0021
0.0010
0.0006
0.0019
-0.0017
-0.0002
0.0004
-0.0001
0.0002
-0.0006
0.0007
-0.0006
0.0001
0.0006
-0.0003
-0.0016
0.0005
0.0003
0.0009
0.0006
0.0000
-0.0006
0.0003
-0.0007
0.0003
-0.0006
-0.0003
0.0008
-0.0006
-0.0002
-0.0003
-0.0009
-0.0003
0.0002
0.0010
0.0017
0.0011
0.0006
0.0012
0.0003
0.0004
0.0006
0.0007
0.0008
0.0005
0.0014
0.0007
0.0000
0.0003
-0.0006
-0.0001
-0.0012
-0.0001
.l K_ K,
17
17
16
16
18
19
19
20
20
20
21
22
24
25
25
26
26
27
28
4
6
6
10
12
12
12
13
13
14
14
15
15
16
16
17
17
18
16
19
19
6
6
6
9
9
10
10
11
12
12
12
13
16
16
24
6
12
16
20
22
6
7
6
9
10
11
12
13
14
215
2 16
* 17’
2 17
2 16
2 17
2 16
2 19
2 16
2 16
2 19
2 20
2 2.3
2 24
2 23
2 24
2 25
2 25
2 26
3
1
3
3
3
3
3
7
3 10
3
9
3
9
3 11
3 10
311
3 12
3 13
3 12
3 14
3 13
3 15
3 14
3 16
3 15
3 16
3 17
4
2
4
4
4
5
4
6
4
5
4
7
4
6
4
6
4
9
4
6
4
8
4 10
4 12
4 14
4 20
5
1
5
7
5 13
515
5 17
6
1
6
2
6
3
6
4
6
5
6
6
6
7
6
8
6
9
15
16
17
1
6
6
6
0
10
11
12
1
.J K_ x,
17
17
i9
16
18
19
19
19
20
19
21
22
24
25
25
26
26
27
28
5
7
7
11
12
13
12
13
13
14
14
15
15
16
16
17
17
16
16
16
16
7
7
6
9
1
1
1
1
1
1
1
3
1
3
1
1
3
3
3
3
3
3
3
4
4
.?
4
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
3
5
5
5
17
16
19
17
16
19
16
17
20
16
21
22
21
22
23
14
23
25
26
1
3
5
7
10
11
11
11
12
13
12
13
14
14
15
15
16
16
17
16
17
4
*
3
4
5
5
5
5
5
4
6
7
3
3
5
3
3
3
4
4
4
6
4
5
5
5
5
5
5
5
5
5
10
9
6
14
16
22
1
9
15
13
19
1
7.
3
4
5
6
7
6
9
5
5
5
0
10
11
12
0
10 ;
10
9
11
12
13
11
13
17
19
25
5
13
19
19
23
6
7
8
9
10
11
12
13
14
15
16
17
0
;
v(ca-1)
766.1316
765.7577
734.0757
765.5667
765.9929
765.8473
765.3665
754.7230
765.6957
754.8424
765.5387
765.3768
720.3657
720.1309
720.4152
720.2163
719.8875
720.0139
719.8068
703.2410
699.7846
766.1034
692.7694
777.3156
755.4978
777.3166
777.1926
777.1969
777.0649
777.0590
776.9170
776.9245
776.7656
776.7757
776.6045
776.6177
776.4333
776.4496
806.1125
606.1251
776.6402
713.2896
699.8606
699.7602
682.9973
699.6919
716.4747
699.5945
699.4883
766.0352
607.9939
699.3727
756.7676
755.1136
743.9057
606.8561
776.4157
765.4945
720.1633
756.0467
809.0072
808.9398
808.8620
808.7742
806.6789
808.5708
808.4544
608.3286
808.1939
608.0494
607.8958
607.7310
_^^^r
C.k-0b.
-0.0005
-0.0006
-0.0008
-0.0004
-0.0009
-0.0007
-0.0014
0.0007
-0.0004
0.0009
-0.0006
-0.0014
0.0001
0.0005
-0.0001
0.0007
-0.0003
0.0002
0.0000
-0.0007
-0.0004
-0.0014
0.0010
0.0011
-0.0016
0.0013
0.0004
0.0005
0.0009
0.0009
0.0003
0.0006
-0.0005
-0.0003
-0.0006
-0.0009
-0.0002
^
-0.0005
-0.0023
-0.0014
-0.0001
-0.0002
0.0001
0.0006
0.0014
0.0004
-0.0001
0.0004
0.0003
-0.0019
-0.0016
0.0010
0.0001
0.0013
-0.0011
-0.0013
0.0011
-0.0006
0.0034
-0.0003
0.0001
-0.0005
-0.0002
0.0003
-0.0013
0.0003
0.0006
0.0005
0.0001
-0.0002
-0.0010
0.0000
^
zyxwvutsrqponmlkjihgfedc
_
378
TAUBMANN AND JONES
TABLE VII
Observed Transitions of the (3~~4
J
K_
K,
J
K_
K.
vtcm-1)
5
0
0
5
9
4
8
1
1
3
7
0 11
0 12
0 1s
10
13
17
713.6716
720.0052
723.0906
602.6044
733.4163
713.0286
719.7250
689.3933
723.0614
682.6558
702.9190
-0.0008
0.0001
0.0000
0.0005
0.0000
0.0000
0.0014
-0.0006
0.0000
-0.0003
0.0008
699.5364
692.7473
689.3436
716.3659
-0.0009
0.0000
0.0005
0.0000
689.3512
716.3339
716.2858
716.2202
716.1393
716.0435
713.2645
692.9582
716.1720
692.7298
720.4047
-0.0002
-0.0003
-0.0007
0.0004
0.0006
-0.0004
0.0001.
-0.0003
0.0003
0.0001
0.0014
-0.0004
-0.0004
0.0005
0.0000
-0.0007
0.0000
O.DOO2
-0.0007
0.0010
0.0025
0.0015
0.0030
0.0040
0.0052
0.0044
0.0060
0.0074
0.0067
0.0000
0.0027
0.0020
0.0029
0.0020
9
11
12
18
1
2
2
4
6
7
9
13
15
11
2
2
3
4
5
6
12
13
14
14
17
la
19
20
24
3
3
4
4
5
6
625
7
8
10
10
11
1
0
11
11
13
15
16
18
1 12
1 14
1
12
12
13
14
15
16
1 12
1 13
1 14
1 14
1 17
1 18
1 19
1 20
1 24
2
2
2
2
2
3
2
3
2 4
2
5
2
6
2 7
2
9
2
9
2 10
2 11
2 14
2
1
12
15
3
624
6
2
7
2
725
4
5
2
1 9
1 12
1 16
0
2
I.0
1
3
2
1
3
0
3
7
2
5
8
0
a
10
0 10
14
0 14
16
0 16
1
0
1
3
2
2
2
0
2
3
0
3
4
0
4
5 0
5
6
0
6
11
2 10
13
2 11
13
2 12
14
2 12
16
2 15
18
0 18
18
2 17
20
0 20
24
2 22
3
3
0
414
4
3
1
3
13
5
3
2
6
3
3
515
7
3
4
8
3
5
9
19
9
3 7
11
3
6
12
3
9
16
1 16
4
13
634
5
14
7
3
5
817
713.6292
723.1432
713.0027
689.4957
683.2181
720.4534
683.1814
733.8079
683.1359
683.0807
737.0814
683.0174
682.9446
743.5494
699.5158
682.6723
682.5624
699.7086
720.3910
683.0825
736.9892
683.0212
713.4097
J
ca1c-Oh
.
l
l
l
l
.
.
f
.
l
l
l
.
l
l
l
l
f
l
K_
K,
826
1028
11
;
9
12
2 10
13
211
25
2 24
26
2 25
12
3 10
13
3 11
13
3 11
13
3 11
14
3 12
15
3 13
16
3 I4
17
3 15
12
3
9
13
3 10
13
3 IO
13
3 10
13
3 10
14
3 11
15
3 12
16
3 13
17
3 14
18
3 15
18
3 15
4
4
0
6
4
2
11
4
7
14
4 10
15
4 12
18
4 15
19
4 15
5
5
1
6
5
2
753
8
5
4
955
10
5
6
11
5
7
11
5 6
12
5
8
101
IO
1
4
14
313
5
15
919
5
14
8
1 7
Hot Band
“(cm-l)
c.lc-ob*
zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQP
J zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPON
K_ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPO
K.
836
936
1;
12
13
25
26
12
12
13
14
14
15
16
17
12
13
14
12
12
14
15
16
17
17
17
3
5
10
13
16
17
20
5
6
743
8
9
10
11
10
12
0
0
3
4
6
9
6
7
3
3
3
1
1
2
2
2
2
2
2
2
2
2
2
2
4
2
2
2
2
2
2
2
3
3
3
5
3
3
3
4
4
9
10
11
24
25
10
11
11
13
12
13
14
15
11
12
12
8
10
13
14
15
16
16
15
0
2
7
8
14
15
17
1
2
4
4
4
4
4
4
0
0
3
3
3
3
3
1
4
5
6
7
6
8
0
0
0
1
3
7
4
5
682.9510
699.5309
602.6934
682.5927
682.4832
723.1159
722.7904
737.1283
758.7756
737.0067
713.5907
736.8755
736.7359
736.5871
736.4276
737.1370
737.0180
713.5763
692.9634
758.7681
736.8911
736.7553
736.6123
736.4602
766.3980
766.3681
755.0039
758.2519
766.1984
683.1359
720.5185
776.9065
713.2084
758.6765
758.6203
758.5541
758.4793
758.3947
758.3000
758.1970
776.6094
750.0847
50233.1
49959.7
-1116286.0
-1517744.0
-1618900.0
-1320094.0
-1616082.0
-911024.0
0.0038
0.0038
0.0058
0.0062
0.0084
0.0068
0.0052
-0.0036
-0.0035
-0.0036
-0.0048
-0.0034
-0.0043
-0.0055
-0.0055
-0.0042
-0.0037
-0.0044
-0.0032
-0.0036
-0.0041
-0.0041
-0.0053
-0.0059
-0.0067
-0.0073
0.0019
0.0000
-0.0010
-0.0001
-0.0006
0.0000
-0.0002
-0.0007
-0.0008
-0.0003
-0.0005
-0.0002
0.0008
0.0009
-0.0002
0.0010
0.6
-0.6
-20.2
29.1
29.9
-24.1
21.6
26.9
l
l
l
.
.
*
l
.
.
.
l
l
.
.
l
l
l
l
l
.
l
.
l
l
l
l
(a>
tb)
(0)
cc>
CC)
tc)
(0)
tc,
calculation of all three rotational constants. Comparison of the (Yconstants of the
three states (Table X) shows a regular variation on moving from one state to the other.
This indicates that, despite the approximations made in the analysis, the vg = 3 parameters are probably reliable. Consequently it appears that the calculated perturbation
shifts in the K_ = 2, 3 levels are also reasonably accurate.
Perhaps the most important result of Tamagake et al. (3) in their work on this
region was to show that the band at 75 1 cm-’ was in fact 2vg and not, as erroneously
assigned by Giguere and Lin (6), the NH2 twisting motion, vg . The question remaining
which is relevant to the present work is, where is vs? An ab initio calculation using a
4-31G* basis set with anharmonic correction (II) has produced vg = 1451 cm-‘. As
379
SEVERAL BANDS OF HYDROXYLAMINE
365.963
cm-l
I
I
ground
FIG. 7. The levels involved in the 2u9/(3Y+~) band system of hydroxylamine. The bold arrows represent
the experimentally observed bands, the thin, double-headed arrows the energy differences calculable from
the data. As can be seen, the determination of the band center of the difference band, Q-Y~, allows the
energy difference between us = 1 and u9 = 3 and the band center of v9 to be calculated (Table IX).
is usual with such calculations, in the case of a twisting motion, this is probably an
over estimation and a value as low as 1250 cm-’ might be expected. zyxwvutsrqponmlkjihgfedcbaZYX
The Perturbation
The low symmetry of the hydroxylamine molecule (C,),resuIts in the us = 1 state
being able to couple with any nearby state. Since us belongs to the representation A’
it can couple with A” via an a-type or c-type interaction or with A’ via a b-type interaction. Since 34 is A” the former type of interaction is to be expected between q = 1
and 2)g= 3. These two states are certainly close enough together to affect each other,
but it appears that this effect alone is insufficient to explain the observed shifts.
Assuming that the effective constants of us = 1 and vg = 3 given in Table II reliably
reproduce the unperturbed levels, the energy separation between individual levels of
these two states can be calculated. The levels which approach each other most closely
are given in Table XI. The range of energy differences for groups of levels with the
TABLE VIII
Observed Transitions of the (~~-4) Difference Band zyxwvutsrqponmlkjihgfedcba
J
4
13
13
11
11
7
7
5
514
12
818
K_ K, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFE
v(cm-1)
J
K_ K,
talc-ohs
3
1
1
1
1
16
17
14
2
12
13
10
11
1 12
5
14
14
12
12
8
8
6
6
13
9
41
2
2
2
2
2
2
2
2
0
0
13
12
11
10
7
6
5
4
13
9
683.2241
669.6095
689.5973
692.9656
692.9597
699.6778
699.6751
703.0345
703.0346
713.2359
719.9514
-0.0003
-0.0012
-0.0008
-0.0006
-0.0012
0.0015
0.0028
0.0012
0.0006
-0.0017
-0.0002
380
TAUBMANN AND JONES
TABLE IX
Band Centers (Energies) Determined (cm-‘)
Band
729.5068(41
x-y9
v9
386.2
385.9627(41
zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2v9
751.0741(3)
751.3
3v9
1096.9153(5)
1097.5
same value of K_ are indicated for the lowest value of J and J = 20. As can be seen,
the K_ = 1 and K_ = 2 levels of 05 = 1 and 219= 3, respectively, come very close
together. Since these levels can couple via a c-type interaction, this agrees qualitatively
with the observation that these displayed the largest shifts. However, there are a number
of problems with this explanation: the shifts of the two t+ = 1 K- = 1 levels differ
considerably although they are nearly equidistant from their interaction partner, the
shifts in us = 1 and u9 = 3 are of different magnitudes, the shift in the K_ = 0 level
of v5 = 1 is of opposite sign from that expected from consideration of Table XI.
Two possible explanations for these quantitative difficulties are: (i) the effective
constants for v5 = 1 and o9 = 3 are not reliable, (ii) a third state plays a role in the
perturbation. The tirst possibility seems somewhat unlikely since as already mentioned
the observed CYconstants indicate that the v9 = 3 rotational constants are at least
reasonably reliable. The situation with Q = 1 is considerably more complicated, but
since a similar procedure as that used with 24 = 3 was employed they should also be
quite reliable.
The chances for the second possibility being correct are increased by the fact that,
as already mentioned, one fundamental (vs) has so far not been located. The ab initio
calculation (II) appears not to rule out the possibility that USis close to u5. Even if
considerably further away than 39 the interaction between the two fundamentals
might still be of comparable strength to that between v5 and 3~9. It appears that at the
moment we do not have sufficient data to come to a definitive conclusion on this
matter. We are nevertheless convinced that the data of Table II and the empirical
perturbation parameters of Table V can be used to accurately predict hydroxylamine
spectra. Further work will have to be carried out in order to enable a full analysis of
the perturbation.
TABLE X
The (YConstants of vg
vg=1
1283(l)
8.1(3)
133.4(3)
vg=2
1165.8(5)
9.58(5)
130.75(5)
vg=3
1075(l)
10.2(l)
128.5(l)
SEVERAL BANDS OF HYDROXYLAMINE
381
TABLE XI
Nearest Levels of us = 1 and ug = 3 zyxwvutsrqponmlkjihgfedcbaZYX
Energy
Levels
"5'1
V9'3
Join
difference*
J=20
J~,(J-1)
-3.14
-1.33
J~,(J-2)
2.41
3.96
JI,(J-1)
J2,(~-1)
2.41
4.19
J~,(J-1)
J~,(J-3)
-8.07
-6.39
J~,(J-2)
-8.07
-6.37
JO,J
J~,J
J~,(J-2)
l
=
<vg=l)
-
("9'3).
ACKNOWLEDGMENTS
This work is funded by the Deutsehe Forsehungsgemeinsehah. The authors wish to thank Professor
H. D. Rudolph for his support and interest in this work and the Fonds der Chemisehen Industrie for
their aid.
RECEIVED: October 2, 1986
REFERENCES
1. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
J. T. HOUGEN,J. Mol. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFED
Spectrosc.89,296-305 (1981).
2. S. TSUNEKAWA,J. Phys. Sot. Japan 33, 167-174 (1972).
3. K. TAMAGAKE,Y. HAMADA,J. YUMAGUCHI,A. Y. HIRAKAWA,AND M. TSUBOI,J. M ol. Spectrosc.
49,232-240 (1974).
4. M. E. COLES,A. J. MERER,AND R. F. CURL,J. M ol. Spectrosc. 103, 300-311 (1984).
zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQP
Phys. B 41, 179-181 (1986).
5. G. TAUBMANN,H. JONES,ANDP. B. DAVIES,Appl.
6. P. A. GIGUEREAND I. D. LIN, Canad. J. Chem. 30,948- 962 (1952).
7. S. URBAN,D. PAPOUSEK,
J. KAUPPINEN,
K. YAMADA, AND G. WINNEWISSER,
.I. M ol. Spectrosc. 101,
300-305
(1983).
8. W . B. OLSON,A. G. M AKI, AND W. J. LAFFERTY,J. Phys. Chem. Ref: Data 10, 1065-1084 (1981).
9. G. GUELACHVILI,
0. N. ULENIKOV,AND G. A. YSHAKOVA,J. M ol. Spectrosc. 108, l-5 (1984).
10. J. K. G. WATSON,in “Vibrational Spectra and Structure,” Vol. 6, pp. l-89, Elsevier, Amsterdam/New
York, 1977.
11. N. TANAKA,Y. HAMADA,AND M. TSUBOI,Chem. Phys. 94,65- 75 (1985).