Academia.eduAcademia.edu

Ricci Yamabe Soliton on Genearlized Sasakian Space Form

Quest Journals Journal of Research in Applied Mathematics Volume 10 ~ Issue 8 (2024) pp: 10-19 ISSN (Online): 2394-0743 ISSN (Print): 2394-0735 www.questjournals.org Review Paper Ricci Yamabe Soliton on Genearlized Sasakian Space Form RAHUL KUMAR JHA AND G. SOMASHEKHARA (Rahul Kumar Jha and G. Somashekhara), Department of Mathematics and Statistics,, Faculty of Mathematics and Physical Sciences , M.s Ramaiah University of Applied Sciences, Bengaluru-560054, India. Received 13 Aug., 2024; Revised 25 Aug., 2024; Accepted 27 Aug., 2024 © The author(s) 2024. Published with open access at www.questjournas.org *Corresponding Author: Rahul Kumar Jha 10 | Page Ricci Yamabe Soliton on Genearlized Sasakian Space Form II. *Corresponding Author: Rahul Kumar Jha Preliminaries 11 | Page Ricci Yamabe Soliton on Genearlized Sasakian Space Form *Corresponding Author: Rahul Kumar Jha 12 | Page Ricci Yamabe Soliton on Genearlized Sasakian Space Form *Corresponding Author: Rahul Kumar Jha 13 | Page Ricci Yamabe Soliton on Genearlized Sasakian Space Form *Corresponding Author: Rahul Kumar Jha 14 | Page Ricci Yamabe Soliton on Genearlized Sasakian Space Form *Corresponding Author: Rahul Kumar Jha 15 | Page Ricci Yamabe Soliton on Genearlized Sasakian Space Form *Corresponding Author: Rahul Kumar Jha 16 | Page Ricci Yamabe Soliton on Genearlized Sasakian Space Form *Corresponding Author: Rahul Kumar Jha 17 | Page Ricci Yamabe Soliton on Genearlized Sasakian Space Form References [1]. [2]. [3]. D.E. Blair (1976), Contact manifolds in Riemannian geometry, Lecture Notes in Math., Vol.509, Springer Verlag, Berlin. Guler, S. and Crasmareanu (2019), M., Ricci-Yamabe maps for Riemannian flow and their volume variation and volume entropy, Turk. J, Math.,43,2631-2641. H.G. Nagaraj, C. Premalatha and Somashekara G. (2012), On (ε, δ)-trans-Sasakian structure, Proceedings of the Estonian Academy of Sciences, 61,No.1, 20-28. *Corresponding Author: Rahul Kumar Jha 18 | Page Ricci Yamabe Soliton on Genearlized Sasakian Space Form [4]. [5]. [6]. [7]. [8]. [9]. [10]. [11]. [12]. [13]. [14]. Hamilton, R. S. (1988), The Ricci flow on surfaces, Mathematics and general relativity.(Santa Cruz. CA, 1986), Contemp. Math. 71, Amer. Math. Soc., 237-262, . K. Yano and M. Kon, (1984), Structures on manifolds, World Scientific Publishing. Catino, G., Cremaschi, L.,Djadli, Z., Mantegazza, C., Mazzieri, L. (2017) The Ricci-Bourguignon flow, Pacific J. Math. 287, 337370. S. Golab (1975), On semi-symmetric and quarter symmetric linear connections, Tensor(N.S.), 29, 249-254. U. C. De and A. Sarkar (2009), On ϵ-Kenmotsu manifolds, Hadronic J., 32,231-242. Y.B. Maralabhavi and Shivaprasanna G.S. (2014), Ricci solitons in 3-dimensional (ε, δ)-trans-Sasakian structure. International Journal of Mathematical archive, Volume 5, N0 4, 258-265. G. ingalahalli and C. S. Bagewadi (2012), Ricci solitons in α-Sasakian manifolds, ISRN Geom ,421384. J. Maldacena (1999), The large N limit of superconfo.rmal field theories and supergravity, Internat. J. Theoret. Phys. 38, 1113–1133 K.L. Duggal (2017), Almost Ricci Solitons and Physical Applications, International Electronic Journal of Geometry, 2, 1-10. M. D. Siddiqi (2004) M. A. Akyol (2020), η-Ricci-Yamabe soliton on Riemannian submersions from Riemannian manifolds, arXiv preprint, arXiv,14124. H.G Nagaraj and C.R. Premalatha(2012), Ricci soliton in Kenmotsu manifolds, journal of Mathematical analysis 3(2),18-24. *Corresponding Author: Rahul Kumar Jha 19 | Page