Interdisciplinary Studies of Complex Systems
No. 12 (2018) 5-16
© L. Di Persio, N. Gugole
V
o l a t il it y
o f
p r ic e s
o f
f in a n c ia l
a sse t s
L u ca D i P e r s i o ,1 N ic o la G u g o le2
1
Introduction
W h e n it com es t o analyze a financial tim e series, v o la tility m od ellin g
plays an im p o rta n t role. A s an exa m p le, th e varian ce o f financial returns often
d isplays a d e p en d en ce o n th e s econ d ord er m om en ts and h eav y-pea k ed and
ta iled d istrib u tion s. In ord er to take in to a ccou n t for this p h en om en on , kn ow n
at least from th e w ork o f [22] and [14], e co n o m e tric m o d e ls o f ch a n gin g v o la tility
have b e e n in trod u ced , such as the A u t o r e g r e s s i v e C o n d i t i o n a l H e t e r o s k e d a s t i c i t y
(A R C H ) m o d e l b y E ngle, see [13]. T h e idea b eh in d th e A R C H m o d e l is to m ake
v o la tility d ep en d en t on th e va riab ility o f past observation s.
T aylor, in [26],
stu d ied an altern ative form u lation in w h ich v o la tility was d riven b y u n observ ed
co m p o n e n ts, and has com e t o b e k n ow n as th e S t o c h a s t i c V o l a t il i ty (S V ) m od el.
B o th th e A R C H and th e S V m od els, cov ered in S ection 2, have b een intensively
stu d ied in th e past d ecades, tog e th e r w ith m ore or less sop h istica ted estim ation
approach es, see [25], as well as con cern in g c o n c r e t e a p p li c a t i o n s , see, e.g., [9],
and references therein.
P arallel t o th e stu d y o f d iscrete-tim e e co n o m e tric m od els for financial tim e
series, m ore p recisely in th e early 1970’s, th e w orld o f o p tio n p ricin g e x p erien ced
a great co n trib u tio n given b y th e w ork o f F isch er B la ck and M y ro n Scholes.
T h e B la ck -S ch oles (B S ) m o d e l, see [4], assum es th a t th e price o f the u n derlyin g
asset o f an o p tio n co n tra ct follow s a g eom etric B row n ian m o tio n . L a tter ty p e
o f a p p roa ch has b een also used w ith in th e fram ew ork o f interest rate d yn am ics,
see, e.g., [6], and references therein. O n e o f th e m ost su ccessfu l exten sion s has
b een the con tin u ou s-tim e S t o c h a s t i c V o l a t il i ty (S V ) m o d e l, in tro d u ce d w ith the
w ork o f H ull and W h ite , see, [19]. A m a jo r co n trib u tio n was su ccessively due
t o H eston in [18], in deed he d e v e lo p e d a m o d e l w h ich led t o a q u a si-closed
form expression for E u ro p e a n o p tio n prices.
D ifferen tly from th e B S m od el,
th e v o la tility is n ot longer con sidered con sta n t, b u t it is allow ed t o va ry trou g h
tim e in a stoch a stic way.
In S ection 3 we will start from a su b-class o f S V
m od els, w h ich is th e on e o f L o c a l V o la t il i ty (L V ), b e in g ch a ra cterized b y a
d eterm in istic tim e-v a ryin g volatility, and th en we will con sid er th e general S V
case, p ro v id in g in form a tion a b o u t the p ricin g eq u a tion as m ade, e.g., in [5] or,
from a p o in t o f view m ore cen tred tow ards a pp lica tion s, in [12], and references
therein.
1Department of Computer Science, University of Verona. lu ca.dipersio@ u n ivr.it
2Department of Computer Science, University of Verona.
5
6
L . D i P er s io , N .
2
G u g o le
Discrete-time models
D iscrete-tim e m o d e ls for th e volatility, as said in th e in tro d u ctio n , are
b o rn in ord er t o analyze and re p ro d u ce th e b eh a vior o f real financial tim e
series, w h ich are o ften ch a ra cterized b y a n u m ber o f s t y l i z e d f a c t s , i.e., features
o f p articu la r interest.
• T h e variance o f returns o f financial p ro d u cts is o ften s u b je ct t o th e so
called v o l a t i l i t y c l u s t e r i n g e f f e c t . T h is m eans th a t th e returns sh ow an
high serial a u tocorrela tion :
p erio d s o f h igh v o la tility are follow ed b y
p erio d s w ith th e sam e feature and viceversa.
• A s n o te d in the p ion eer w orks b y M a n d e lb ro t, see [22], and Fam a, see
[14], th e varian ce o f financial returns o ften displays a d ep en d en ce o n th e
secon d ord er m om en ts and h eav y-pea k ed and ta iled distrib u tion s.
• S tock returns o ften ex h ib it th e so ca lled le v e r a g e e f f e c t : th e co n d itio n a l
variance resp on d s in an a sy m m etric w ay w ith resp ect t o rises or falls o f
th e asset price.
• T h e c o v a r i a t i o n e f f e c t ca p tu res th e fact th a t th e volatilities o f different
financial assets co u ld b e correlated : large changes in th e returns o f an
asset ca n in d u ce a sim ilar b e h a v io r in oth er assets.
In th e follow in g we w ill b riefly in trod u ce th e A R C H m o d e l, see [13], tryin g
to em ph asize its lim its. T h en , we w ill treat th e S V m od el, see [26], and related
exten sions, in ord er t o m o d e l the a forem en tion ed stylized facts.
It is w orth
to m en tion th a t different, m ore n u m erica lly orien ted m e th o d s, ca n b e also
fru itfu lly exp lo ite d , as, e.g., su ggested in [10, 11] and references therein.
2.1
A R C H model
O n e o f th e m ost p o p u la r d iscrete-tim e m o d e ls for th e stoch a stic v o la tility
is th e A R C H m o d e l, w h ich establishes a co n n e ctio n b etw een the past squared
returns
o f a financial asset and its current co n d itio n a l
b e th e return p rocess o f som e ob serva tion m o d e l.
variance. W e let { y t }t==1
In th e origin al
form u lation
o f E n gle, see [13], th e d y n a m ic o f th e A R C H (1 ) was given b y
y t| F t-i -
N (m ,^ 2),
a2
t = w + a y t-1
(1)
(2)
w here w, a > 0 are real n o n -s to ch a s tic param eters, F t d en otes th e globa l in
form a tio n u p t o tim e t. N aturally, eq. (2) co u ld b e gen eralized t o th e general
A R C H (p ) case
p
a t = w + ^ 2 a® y 2- 1 ,
a® > 0,
i= 1
in w h ich th e co n d itio n a l variance is given b y a linear co m b in a tio n o f p -lag ged
squ ared error term s. A s n o te d b y N elson, see [23], th e A R C H m o d e l presents
at least 2 draw backs:
• C on strain ts m ust b e im p osed o n th e param eters in ord er t o gu aran
tee th e p o s itiv ity o f th e co n d itio n a l variance, h ow ever th e y are often
v io la te d in th e classical estim ation p rocedu res.
7
V o la tility o f p r i c e s o f fin a n c ia l a s s e ts
• It is n o t possible t o m o d e l th e co n d itio n a l variance as a ra n d o m oscil
la to ry p rocess, w h ich is a recurrent situ a tion ob served in real data.
In th e follow in g we will present th e S t o c h a s t i c V o l a t il i ty (S V ) m o d e l due to
T aylor, see [26] and [27], and able t o o v ercom e th e a forem en tion ed difficulties.
2.2
Stochastic volatility (S V ) model
T h e p e cu lia rity o f th e S V m o d e l b y T aylor is th a t th e varian ce o f th e
returns is m o d e le d as an u n observ ed p rocess.
In [27] T aylor show s th a t this
m o d e l ca n b e tra n sp osed in to a con tin u ou s tim e version, useful w hen it com es
t o p rice o p tio n s and oth er m o d e rn financial instrum ents.
D en otin g again { y t } t = 1 as th e return p rocess o f som e o b serva tion m od el,
th e S V p aram etriza tion sets
yt = e x p (h t /2 )e t ,
ht = w + a h t-
1
£ t — N (0 ,1 )
+ nt,
2
nt — N ( 0 ,a ? )
w here th e £t ’s and th e nt ’s are in d ep en d en t.
(3)
N otice th a t { h t }t==1 represents
n o th in g b u t th e log a rith m o f th e v o la tility o f th e return p rocess
this way, th e
p o s itiv ity o f th e related varian ce is gu aran teed.
In
{ y t }t==1.
a ca n b e seen
as a p ersisten ce param eter. N otice th a t { h t }t==1 is a stan d ard autoregressive
A R (1 ) p rocess o n ly w h en |a| < 1, case in w h ich it is s trictly sta tio n a ry w ith
m ean an variance
2
Mh = E[ht] =
W ,
1 —a
ah = V a r(h t) = -— -r 4 t .
1 —a 2
E q u a tio n (3) is n o t th e u n iqu e w ay t o w rite th e d y n a m ic o f th e m o d e l, see [24]
for equivalent form u lation s.
In p articu lar, th e S V m o d e l ca n b e e x ten d ed in
ord er t o take in to a ccou n t the follow in g stylized facts, see [21] for further details:
• In som e cases, th e ku rtosis o f a financial tim e series is greater th an 3.
T h is co rresp on d s t o fatter tails w ith resp ect to a n orm al distrib u tion .
T h e p ro b le m ca n b e solv ed b y allow in g e t in eq u a tion (3) to have a
S tudent t-d istrib u tio n .
• A financial asset ca n e xh ibit th e so ca lled l e v e r a g e e f f e c t , th a t is, th e
v o la tility resp on ds in an asy m m etric w ay t o rises or falls in th e returns.
T h is fact can b e in co rp o ra te d in th e S V m o d e l b y in tro d u cin g a n egative
instan tan eou s correla tion betw een e t and nt in eq u a tion (3).
2 .2.1
Estim ation procedures
D ifferen tly from th e A R C H -ty p e m od els, we d o n o t k n ow the co n d itio n a l
d istrib u tio n o f yt in closed form , see eq u a tion (1 ). F or this reason, th e stan
d ard M a x im u m L ik e lih o o d (M L ) a p p roa ch is h ard t o im plem en t. In deed, if we
d e n o te b y y = ( y 1 , . . . , y N ) th e v e cto r o f N con secu tiv e ob serva tion s o f th e p ro
cess y t, b y h = ( h 1, . . . , h N ) the co rre sp o n d in g v e cto r for th e log-v ola tilities,
and b y в =
(w ,a ,a 1 )
th e v e cto r o f param eters, th en th e lik elih ood ca n be
w ritten as
L ( y ; в ) = J p ( y , h |e) d h = J p ( y |h , e ) p ( h |e) d h ,
(4)
8
L . D i P er s io , N .
G u g o le
w here we integrate w ith resp ect t o th e jo in t p ro b a b ility d istrib u tion o f the
d ata. T h e N -dim en sion al integral in eq u a tion (4) requires the use o f co m p u ta
tio n a lly in v olv ed nu m erical m e th o d s and for this reason the estim a tion o f the
param eters is h ard. F ollow in g [24], we b riefly cite som e altern ative estim ation
p rocedu res:
• G e n e r a l i z e d M e t h o d o f M o m e n t s (G M M ): this m e th o d was in trod u ced
b y T aylor, see [26]. T h e b asic idea is t o m a tch th e em pirical m om en ts
o f th e ob served v e cto r y w ith th e co rre sp o n d in g th eoretica l ones, w hich
ca n b e co m p u te d explicitly, h en ce th e k ey advan tage is th a t th e c o n
d ition a l d istrib u tion o f y t is n o t required. M ore precisely, we n eed to
m in im ize th e o b je c tiv e fu n ction Q = g 'W g w ith resp ect t o th e v ector
o f param eters 9, w here
т > 1,
and W is a p o sitiv e definite, sy m m etric w eigh ting m a trix o f d im en sion
( т + 2) x ( т + 2 ). It is p ossible t o m in im ize Q usin g stan d ard num erical
routines.
• Q u a s i - M a x i m u m L i k e l ih o o d e s t i m a t i o n (Q M L ): this a pp roa ch is based
on th e lin earization o f th e S V m o d e l in eq u a tion (3 ).
A ssu m in g є t ~
N ( 0 ,1 ) and defin in g w t = log y ^ , it is possible t o p rove th at
wt = —1.2704 + ht + £t,
ht = w + a h t -1 + nt,nt ~ N ( 0 , ^ ) ,
(5)
w here £t = log є 2 —E [log є)2], V a r(£ t ) = n 2/ 2 . E ven if th e errors £t d o not
have a n orm al d istrib u tion , th e u n derlyin g idea o f th e Q M L app roach
is t o su p p ose £t ~ N (0 , n 2/ 2 ) i.i.d., and t o a p p ly th e K a lm a n filter to
eq u a tion (5) in ord er t o p ro d u ce o n e-step ahead forecasts o f w t as well
as h t . D e co m p o s in g th e p re d ictio n error, it is p ossible t o co n s tru ct the
G aussian lik elih ood o f th e data , t o b e m in im ized in ord e r t o estim ate
th e v e cto r o f param eters 9, see [17].
2 .2.2
T he multivariate case
A stylized fact w h ich ca n n ot b e ca p tu re d b y the stan d ard u nivariate
S V m o d e l is th e so ca lled c o v a r i a t i o n e f f e c t , th a t is, ro u g h ly speakin g, the
presen ce o f a correla tion b etw een th e volatilities o f different financial series.
O ften , large changes in th e returns o f an asset are follow ed b y large changes
in oth er ones. T h is ca n b e due to th e presen ce o f co m m o n u n observ ed factors
in fluen cin g th e d yn a m ics o f a set o f assets. V ola tilities are also s u b je c t t o the
co m in g o f new in form ation , such as trad in g volu m e, q u o te arrivals, g o v e rm e n t’s
health, d iv id e n d an n ou n cem en ts and so on . A ll these p h en om en a suggest th a t a
m u ltivariate m o d e l co u ld b e b e tte r th an an univariate one in term o f adherence
to real data.
V o la tility o f p r i c e s o f fin a n c ia l a s s e ts
T h e first m u ltivariate S V m o d e l was p ro p o se d in [16].
9
W e d en ote b y
y t = ( y 1,t , . . . , y N,t ) T th e v e cto r o f returns related t o N different assets at tim e
t. T h e d y n a m ic o f th e i-th co m p o n e n t is assum ed t o be
( y i ,t = e x p (h M / 2 ^ i , t ,
\ h i,t = w® + a . i h i , t - 1 + ni,t,
w here є t = (є 1,t , . . . , є N,t) and nt = (n 1,t, . . . , nN,t ) are m u tu a lly ind ep en d en t
and n orm a lly d istrib u ted . M oreover
V ar(n t) =
V a r(є t) =
,
1
P 1,2
P 1,2
1
P1,n \
P2,N
\
=
1.
(
w here |P®,j | < 1, so th a t
P1,N
P2, N
is a correlation m a trix. T h e w eakness o f th e m od el
is th a t it d oes n o t allow th e covarian ces o f th e assets to e volve in an in d ep en d en t
m an ner o f th e variances. I f i = j ,
C o v (y i,t,y j,t| h t)
е [у м у Ы ^ ]
P i,j exp
and since
Var(y®,t|h t) = ex p ( h i ,t ) ,
it follow s th a t the m o d e l has con sta n t correlation s, w h ich ca n b e a lim itin g fact
in som e situ ation s, see, e.g., [25].
A s in th e univariate case, it is possible to
estim ate th e param eters th rou g h a Q M L a pp roa ch , see [16], b y linearizing the
co rre s p o n d in g equations.
T h e m u ltivariate S V m o d e l a dm its also oth er represen tation s, e.g., th e
factorial one, see [20]. T h e m ain advantage w ith resp ect t o th e p reviou s m ul
tivariate m o d e l, is th e red u ction o f th e d im en sion a lity o f th e p aram eter space:
th e returns v e cto r y t =
( y 1 t , . . . , y N,t ) T is a linear co m b in a tio n o f u n obser
ved and co m m o n factors follow in g a univariate S V d y n a m ic. I f we d e n o te b y
f t = ( f 1,t, . . . , f K ,t) T th e set o f co m m o n factors at tim e t, th en
yt = B
ft +
wt ,
f i t = e x p (h M / 2 ^ i , t ,
h i,t = Mi +
.
i = 1, . . . , K ,
Фі ^-і ^ - 1 + Пі,Ь
w here B is a co n sta n t m a trix o f dim en sion N x K , K
< N , w t ~ N (0 , П)
is th e error v e c to r and it is assum ed in d ep en d en t o f all th e o th e r term . T h e
ra n d o m variables є®^ and n®,t are serially and m u tu a lly in d ep en d en t and n or
m a lly d istrib u ted . W e assum e also th a t |ф®| < 1 so th a t th e fa cto r lo g -v o la tility
processes hi t are station ary. F or m ore details a b o u t th e m od el, see [20], [24].
10
L . D i P e r s io , N .
3
G u g o le
Continuous-time models
In th e ea rly 1970’s th e w orld o f o p tio n p ricin g ex p erien ced a great con tri
b u tio n given b y th e w ork o f F isch er B la ck and M y ro n Scholes. T h e y d e v elop ed
a n ew m a th em a tica l m o d e l t o treat certa in financial q uan tities p u b lish in g th e
related results in th e article T h e P r i c i n g o f O p t i o n s a n d C o r p o r a t e L i a b i li t ie s ,
see [4]. T h e latter w ork b eca m e s o o n a reference p o in t in th e financial scenario.
N ow adays, m a n y traders still use th e B la ck and Scholes (B S ) m o d e l t o price
as well as t o h edge various ty p e s o f con tin gen t claim s. A n im p o rta n t p ro p e rty
o f th e B S m o d e l is th a t all th e in volved param eters are n o t in fluen ced b y the
risk preferen ces o f investors.
In p articu lar, the B S a p p roa ch is b ased o n th e
so-ca lled risk-neutral p ricin g assu m p tion w h ich grea tly sim plifies th e associated
derivatives analysis.
In p articu lar, in th e classical B S -m o d e l, th e v o la tility param eter, let us
in d ica te it w ith a , is assum ed to b e con sta n t.
L a tter h y p oth esis ca n n o t be
con sid ered realistic, as sim ple em p irical analyses ca n easily show . In particu lar
it is rath er sim ple to sh ow th a t th e im plied v o la tility o f a financial asset is not
co n sta n t b u t varies w ith tim e t o m a tu rity T > 0, and w ith resp ect to th e strike
p rice K . Such a fact has sta rted to b e co m e m ore and m ore eviden t since the
general m arket crash in 1987. A s a con seq u en ce, th e real values o f th e v o la tility
p aram eter th a t can b e ob served in th e m arket d o n o t give rise t o a flat shape
as th e B S -m o d e l forecasts. In fact, if we fix the strike p rice value and we lo o k
at th e co rre sp o n d in g im plied v o la tility section , e.g., w ith respect t o a plain
vanilla o p tio n , th e ty p ica l figure th a t appears ju stifies th e d efin ition o f the soca lled s m i l e / s m i r k e f f e c t .
T h e latter b eca u se, esp e cia lly for sh ort m atu rities,
the im p lied v o la tility section s assum e a shape w h ich resem bles a s m i l e o r a
s m ir k .
A s a con seq u en ce o f th e B S -m o d e l lack o f d escrip tio n accu racy, new m o
dels have b een d e v e lo p e d t o o v ercom e issues o f th e ty p e m en tion ed so far. T h is
has b een also p ro d u ce d app roa ch es able t o treat the in creasin gly co m p le x ity
ch a ra cterizin g m o d e rn financial instrum ents. B etw een such alternatives t o the
B S analysis, we fo cu s ou r a tten tion o n th e so ca lled lo c a l v o l a t i l i t y (L V ) and
s t o c h a s t i c v o l a t i l i t y (S V ) m od els.
3.1
Local volatility models
T h e L V m od els ca n b e seen as the sim plest exten sion o f th e classical B S
case, in ord er t o achieve an e x a ct re p ro d u ctio n o f th e v o la tility sm ile, th rou g h
ca lib ra tio n t o m arket data.
T h e m ain differen ce is th a t in L V m od els, the
instan tan eou s v o la tility is, in general, a fu n ction o f th e current tim e and the
cu rren t asset price. I f we d en ote b y S t th e p rice o f th e asset at tim e t, we can
w rite th e related S D E as
d S t = M(t, S t)S t dt + a (t , S t)S t d W t ,
w here So > 0, ^ (t, S t ) is the instan tn eous drift, a (t , S t ) is the instan tan eou s
v o la tility at tim e t, and W t a B row n ian m o tio n . I f a (t , S t ) = a > 0 th en we
tu rn b ack t o the B S case.
V o la tility o f p r ic e s o f fin a n c ia l a s s e ts
11
T h e first L V m o d e l a p p eared in the literatu re is th e so called C o n s t a n t
E l a s t i c i t y o f V a r ia n c e (C E V ) m od el, see [7].
T h e latter is ch a ra cterized b y a
v o la tility defin ed as
a (t , S t ) = a S ^
1,
a > 0,
7 =1
7 = 0 leads t o n orm a lly d istrib u te d returns.
w here y m ust b e d eterm in ed w ith a ca lib ra tio n t o m arket d ata. W ith
we fin d th e B S m o d e l, w hile
3 .1.1
T he pricing equation
D en otin g b y C = C (t , S t ; T , K ) th e tim e-t p rice o f a vanilla o p tio n havin g
as u n derly in g th e asset p rice S t , m a tu rity T and strike K > 0, th en it is possible
t o show , assum ing existen ce and uniqueness o f th e risk-neutral m easure, th at
C solves th e follow in g P D E :
d C + rS dC +
at +
as +
w here r >
1„ , t s ) 2 ! f l —
= rC
2a ( i ' S ) S a S 2 = r C
(6)
(6)
'
0 is th e con sta n t instan tan eou s sp o t rate, to b e
p riate b o u n d a r y co n d itio n s, d e p e n d in g o n th e n ature o f th e o p tio n
co u p le d w ith a p p ro
o f interest.
In p articu lar, settin g C (T , S T ) t o th e o p t io n ’s p a y o ff and solv in g th e eq u a tion
b ackw ards from T t o t, it is p ossible t o fin d C (t , S t ).
3 .1 .2
T he Dupire formula
S u p pose t o have a set o f vanilla o p t io n ’s prices related t o tim e t. Is there
a w ay to set a (t , S ) in such a w a y t o p e rfe ctly fit these p rices? T h e answ er is
yes, and com es from th e well k n ow n D u p i r e f o r m u l a , see [3], [15], or [8]:
a (T ,K
)2 = a ( T , K ; t , S t )2 = 2
dC
dC
-------+ r K ----dT
dK .
K
(7)
2—
dK2
In p articu lar, if eq u a tion (7) h old s at tim e t = 0, th en th e m o d e l is a u tom a ti
ca lly ca lib ra ted to th e initial m arket v o la tility sm ile. M oreover, it is possible
t o sh ow th a t the right h an d side o f eq u a tion (7) is alw ays well defin ed if the
real m arket is arbitrage free. M a n ip u la tin g a little b it the D u pire form ula, we
ca n rew rite it in th e follow in g way:
§
+ rK §
— 2 a ( T - K )2 K 2ё
= » .
<8 >
E q u a tio n ( 8) is sim ilar t o ( 6) in m a n y aspects, h ow ever m ust b e solv ed forw ard
in ord er t o find o p t io n ’s prices for all th e values o f K and T , fixin g t and St.
S u ppose, for sim p licity o f e x p o sitio n , th a t r = 0. T h e n th e D u p ire form ula
(7) tu rn s into
dC
a (T ,K
)2 = ^ ^ d . _ .
K
K
2— —
dK2
( 9)
12
L . D i P e r s io , N .
G u g o le
U sually, vanilla o p tio n prices are q u o te d in term s o f th e B S im p lied v o la tility
a BS = a B S (t, S t; T , K ), i.e., th a t value o f th e v o la tility w hich, o n ce inserted
in to th e B S p ricin g form ula, gives th e m arket price:
C (t , St; K , T ) = C b s (t, St; K , T , a B - ).
B y usin g th e chain differen tiation rules and th e form ulas o f th e B S greeks, it is
p ossible t o w rite eq u a tion in term s o f a B S , instead if C , see [15], i.e.,
2d a g s + a B s
K )2 = ___________________________ д т ______ т _________________________
а (т
'
k
2
- d 1v r
(^
y2 +
aBs
(*
^
+
^
) 2)
'
w here т = T — t and
d1 = d v ? ln
(K ) +
2aBs ^ .
A s a particu la r case, su p p ose th a t a BS is in d ep en d en t o f K , i.e., the v o la tility
sm ile has n o skew , so ст(т, K ) = ст(т), w here
^
о
d a BS ,
2 _ д / 2
a ( T )2 = 2 r a B s ~ d r " - + a BS = д т ( тстВ s )
from w h ich
/
a ( u ) 2du = r a g - .
Jo
3.2
Stochastic volatility models
T h e S V m o d e ls represent a natural exten sion o f th e L V m od els. W e will
con sid er th e follow in g co u p le o f SD E s:
dSt = ^
S t)S t dt + V * St dW t ї
dvt = a (t , St, vt) dt + ^ ^ (t, St, vt) V t d Z t ,
E [dW tdZt] = p d t ,
(10)
w here n is th e v o la tility o f volatility, p represents th e instan tan eou s correlation
b etw een the tw o B row n ian m o tio n s W t and Z t , and
7 > 0. In th e lim it n ^ 0,
we retrieve th e S V case.
T h e H eston m o d e l is, now adays, th e m ost kn ow S V m od el; it was in tro
d u ce d for th e first tim e in [18]. S tartin g from eq u a tion (1 0 ), th e H eston m od el
corre sp o n d s t o th e ch oice
a (t , S t , v t ) = e (v — v t),
v > 0,
в > 0,
^ (t, St, vt) = 1.
In oth er w ords, v t is a C o x -In g e rso ll-R o ss (C I R ) p rocess, w here У is th e so
ca lled lo n g t e r m m e a n and в represents th e s p e e d o f r e v e r s i o n . T h is te rm in o lo g y
reflects the fact th a t, for su fficien tly large tim es, v t w ill m ove a rou n d th e value
v w ith an in ten sity d e p e n d in g o n th e m a gn itu d e o f y. A n im p o rta n t feature
o f th e C IR p rocess is, u n der som e co n d itio n s on param eters, th e p o sitiv ity : in
p articu lar, we have to im p ose
2в-У > n 2.
13
V o la tility o f p r ic e s o f fin a n c ia l a s s e ts
3 .2.1
T he pricing equation
In th e B S case, as well as in the S V case, there is o n ly one sou rce o f
ran dom ness, m ore p recisely th e
p rocess W t , b u t in th e S V case we have also
ra n d om changes in th e v o la tility t o b e h edged. T h e idea is t o set u p a p o r tfo lio
con ta in in g th e o p tio n o f interest, a q u a n tity —Д 1 o f th e u n derly in g asset and
a q u a n tity —Д 2 o f an oth er asset d e p e n d in g o n th e v o la tility value v t . D ifferen
tiatin g th e p o rtfo lio value and im p o sin g th e usual risk-free co n d itio n s (ra n d om
term s equal to ze ro and return equal t o r ) , see [15] for further details, we en d
u p w ith th e follow in g P D E :
9C
S 2 д 2C , S 8 C ,
e S d 2C . 1 2
д 2C
2 v ' S ' a S 2 + r S ' a S + Pnv' e S a v a S + 2 n v ‘ e a ?
, 1
at +
a—
= r C — (a — ф в ^ і ) a y ,
(
(11)
)
w here ф = ф (^ S t , v t ) is the so ca lled m a r k e t p r i c e o f v o l a t i l i t y r is k , and ca n be
seen as th e extra return (requ ired b y the investors) p e r unit o f v o la tility risk.
D efining
a = a — Ф вл/^:
as th e d rift o f th e v o la tility vt p rocess u n der the risk-neutral m easure, we co u ld
rew rite eq u a tion (11) in a m ore co m p a ct w a y as
a c
at +
1
о a 2с
а с
a 2c 1 2 n2 a 2c
2 " A a S 2 + r S a S + pnv‘ e S ‘ a v a S + 2 n v ‘ e w
_ac
= r C —a л
• (12)
E q u a tio n (12) is a g o o d p o in t t o start w ith , if the aim is t o ca lib ra te th e S V
m o d e l t o o p tio n prices, w h ich are clo s e ly co n n e cte d t o th e risk-neutral m easure.
In p articu lar, we ca n assum e th at th e S V m o d e l o f interest, o n ce fitted the
related param eters t o o p tio n prices, gen erates th e risk-neutral m easure such
th a t the m arket p rice o f v o la tility risk ф is equal t o zero. T h is a ssu m p tion makes
sense w h en we are interested o n ly in th e p ricin g part, n o t in the statistical
prop erties, w h ich are d e scrib e d b y th e p h ysical m easure.
3 .2 .2
Calibrating the parameters o f the H eston m odel
T h e m ain advan tage o f th e H eston m o d e l w ith resp ect to oth er (p o te n
tia lly m ore realistic) stoch a stic v o la tility m od els is th e existen ce o f a fast and
easily im plem en ted q u a si-closed form solu tion for E u ro p e a n op tio n s, see [15]
for th e d erivation . T h is co m p u ta tio n a l efficien cy in th e va lu a tion o f E u ro p e a n
o p tio n s b e co m e s useful w h en ca lib ra tin g th e m o d e l t o real o p tio n prices. H ow
ca n we p e rfo rm th e ca lib ra tio n ? T h e sim plest w ay is t o m in im ize th e d istance
b etw een the ob served E u ro p e a n call o p tio n prices and the th eoretica l ones. If
we d en ote b y в th e set o f param eters o f th e H eston m od el, th en we have to
solve th e n on -lin ea r least squares
N
в = arg m ill £
2
( c ° bs — C j ( e ) )
,
(13)
j=1
w here C ? bs = C obs( K j, T j), i = 1 , . . . , N , is th e set o f ob served o p tio n prices,
w hile — (в ) = C j( K j, T j; в ), i = 1 , . . . , N , is th e set o f o p tio n prices p ro d u ce d
14
L . D i P e r s io , N .
G u g o le
b y th e H eston m o d e l, and 0 d en otes th e p aram eter space. A ltern atively, one
co u ld p erfo rm th e m in im iza tion in eq u a tion (13) usin g a dataset o f im plied
volatilities instead o f th e co rre sp o n d in g q u o te d o p tio n prices.
A different a p p roa ch is a d o p te d , for instan ce, in [1], and it is b ased o n the
M a x im u m L ik elih ood m e th o d . W e can im agin e th e sto ck p rice S t at tim e t as
a fu n ction o f a v e c to r o f state variables X t follow in g a m ultivariate stoch a stic
v o la tility d y n a m ic as in eq u a tion (1 0 ), i.e., S t = f ( X t ) for som e fu n ctio n f .
U sually, eith er th e sto ck price itself (o r its log a rith m ) is taken as on e o f the
state variables, h en ce we w rite X t = ( S t, Yt) T , w here Yt is th e rem ain in g set o f
state variables o f len gth N . In general, part o f th e state v e cto r X t ca n n o t be
d ire ctly ob served . In [1], th e idea is t o assum e th a t b o t h a tim e series o f stock
prices and a v e cto r o f q u o te d o p tio n prices are ob served . T h e la tter v e c to r at
tim e t is d e n o te d b y C t , and m ust b e used in ord er t o infer the tim e series for
Y t. I f Yt is m u ltid im en sion al th en a sufficient n u m ber o f different o p tio n prices
is n eeded.
R o u g h ly speakin g, there are tw o w ays to e x tra ct th e value o f Yt
from ob served data:
• T h e first m e th o d is t o c o m p u te o p tio n prices as a fu n ction o f S t and Yt,
for each p aram eter v e c to r con sid ered d u rin g th e estim ation p roced u re.
In this w ay it is p ossible t o iden tify the param eters b o th u n der the
ph ysical m easure and th e risk-neutral one.
• T h e secon d m e th o d con sists in using th e B S im plied v o la tility as a
p ro x y for th e instan tan eou s v o la tility o f th e stock . T h is is a sim p lifyin g
p roced u re, and it ca n b e app lied o n ly in the case o f a single stoch a stic
v o la tility state variable.
Since, in general, th e tran sition lik elih ood fu n ctio n for a s to ch a stic v o la tility
m o d e l is n o t k n ow n in closed form , th en an a p p ro x im a tio n m e th o d m ust be
used, see [2]. In this w a y it is p ossible to express, in an a p p rox im a te clo se d form ,
the jo in t lik elih ood o f X t . T h en , in ord er t o fin d th e lik elih ood o f (S t , C t ) T ,
w h ich is en tirely ob served , it is n ecessary to m u ltip ly th e lik elih ood o f the
v e cto r X t b y an a p p rop riate ja co b ia n term .
T h e last step is n o t n ecessary
w h en a p ro x y for Yt is used. For further details, see [1].
References
[1] A it-S a h alia , Y acin e and R o b e r t K im m el. 2007. M a x im u m lik elih ood es
tim a tio n o f sto ch a stic v o la tility m od els. J o u r n a l o f F i n a n c i a l E c o n o m i c s
8 3 (2 ):4 1 3 -4 5 2 .
[2] A it-S a h alia , Y acin e et al. 2008. C lo se d -fo rm lik elih ood exp an sion s for m ul
tivariate diffusions. T h e A n n a l s o f S t a t i s t i c s , 3 6 (2 ):9 0 6 -9 3 7 .
[3] B erg om i, L. 2015. S t o c h a s t i c V o l a t il i ty M o d e li n g . C R C Press.
[4] B lack, F . and M . Scholes. 1973. T h e p ricin g o f o p tio n s and co rp o ra te
lia bilities. J o u r n a l o f P o l i t i c a l E c o n o m y 8 1 (3 ):6 3 7 -6 5 4 .
[5] C o rd o n i, F . and L. D i P ersio. 2014. F irst ord er co rre ctio n for th e cha
racteristic fu n ctio n o f a m u ltid im en sion al and m u ltiscale stoch a stic v o
la tility m od el. I n t e r n a t i o n a l J o u r n a l o f P u r e a n d A p p l i e d M a t h e m a t i c s
9 3 (5 ):7 4 1 -7 5 2 .
V o la tility o f p r ic e s o f fin a n c ia l a s s e ts
15
[6] C o rd o n i, F . and L. D i Persio. 2015. Invariant m easure for the Vasicek interest rate m o d e l in the H e a th -J a r r o w -M o r to n -M u s ie la fram ew ork.
I n fin ite D im e n s io n a l A n a ly s is , Q u a n tu m
P r o b a b ility a n d R e la te d
T o p ics
18(3):1550022.
[7] C ox , J .C . and S. A . R oss. 1976. T h e valu ation o f o p tio n s for alternative
stoch a stic processes. J o u r n a l o f F i n a n c i a l E c o n o m i c s 3 (1 -2 ):1 4 5 -1 6 6 .
[8] D erm an, E . and M . B . M iller. 2016. T h e V o l a t il i ty S m ile . Joh n W ile y &
Sons.
[9] D i Persio, L., A . C ecch in , and F . C ord on i. 2017. N ovel app roa ch es t o the
en erg y loa d u n balan ce forecastin g in th e Italian e le ctricity m arket. J o u r n a l
o f M a t h e m a t i c s i n I n d u s t r y 7 (5 ).
10] D i Persio, L. and M . Frigo. 2015. M a xim u m lik elih ood a p p roa ch t o M ar
kov sw itch in g m od els. W S E A S T r a n s a c t i o n s o n B u s i n e s s a n d E c o n o m i c s
12:2 39 -24 2.
11] D i Persio, L. and M . Frigo. 2016. G ib b s sam p lin g a p p roa ch t o regim e
sw itch in g analysis o f financial tim e series. J o u r n a l o f C o m p u t a t i o n a l a n d
A p p l i e d M a t h e m a t i c s 3 0 0 :4 3 -5 5 .
12] D i Persio, L. and S. V ettori. 2014. M ark ov sw itch in g m o d e l analysis o f
im plied v o la tility for m arket in dexes w ith a p p lica tion s t o S & P 500 and
dax. J o u r n a l o f M a t h e m a t i c s .
13] E ngle, R o b e r t F . 1982. A u toregressive co n d itio n a l h etero sce d a sticity w ith
estim ates o f th e variance o f U n ited K in g d o m inflation . E c o n o m e t r i c a :
J o u r n a l o f th e E c o n o m e t r i c S o c i e t y 5 0 (4 ):9 8 7 -1 0 0 7 .
14] Fam a, E . 1965. T h e b e h a v io r o f sto ck m arket prices. J o u r n a l o f B u s i n e s s
3 8:3 4 -1 0 5 .
15] G ath eral, J. 2011. T h e v o l a t i l i t y s u r f a c e : a p r a c t i t i o n e r ’s g u i d e , vol. 357.
Joh n W ile y & Sons.
16] Harvey, A n d rew , E sth er R u iz, and Neil S hephard. 1994. M u ltivariate s to
ch a stic variance m od els. T h e R e v i e w o f E c o n o m i c S t u d i e s 6 1 (2 ):2 4 7 -2 6 4 .
17] Harvey, A n d re w C . 1990. F o r e c a s t i n g , s t r u c t u r a l t i m e s e r i e s m o d e l s a n d
th e K a l m a n f i l t e r . C a m b rid ge U n iversity Press.
18] H eston , S. L. 1993. A clo s e d -fo rm so lu tion for o p tio n s w ith stoch a stic vola
tility w ith a p p lica tion s t o b o n d and cu rre n cy op tio n s. R e v i e w o f f i n a n c i a l
s t u d i e s 6 (2 ):3 2 7 -3 4 3 .
19] H ull, Joh n and A la n W h ite . 1987. T h e p ricin g o f o p tio n s o n assets w ith
stoch a stic volatilities. T h e J o u r n a l o f F i n a n c e 4 2 (2 ):2 8 1 -3 0 0 .
20] Jacquier, E ric, N icholas G . P olson , and P eter E . R ossi. 1999. S t o c h a s t i c
v o la tility :
U n iv a ria te a n d m u ltiv a r ia te e x te n s io n s .
21] Jacquier, E ric, N icholas G . P olson , and P eter E R ossi. 2004. B ayesian
analysis o f sto ch a stic v o la tility m od els w ith fat-tails and correla ted errors.
J o u r n a l o f E c o n o m e t r i c s , 1 2 2 (1 ):1 8 5 -2 1 2 .
22] M a n d elb rot, B e n o it. 1963. T h e variation o f certain sp ecu la tiv e prices. T h e
J o u r n a l o f B u s i n e s s 3 6 (4 ):3 9 4 -4 1 9 .
23] N elson, D aniel B . 1991. C o n d itio n a l h eterosk ed asticity in asset returns:
A new a pp roa ch . E c o n o m e t r i c a :
5 9 (2 ):3 4 7 -3 7 0 .
J ou rn a l
o f th e
E co n o m e tric
S o c ie ty
16
L . D i P e r s io , N .
G u g o le
[24] P la ta n ioti, K ., E . J . M cC o y , and D. A . S tephens. 2005. A review o f s to
ch a stic v o latility :
u nivariate and m u ltivariate m od els. T ech n ical report,
w orkin g paper.
[25] Shepard, N. 1995. S tatistical a sp ects o f arch and stoch a stic volatility.
[26] T aylor, Steph en J. 1986. M o d e l l i n g f i n a n c i a l t i m e s e r i e s . W o rld S cientific.
[27] T aylor, S teph en J. 1994. M o d e lin g stoch a stic v o latility :
co m p a ra tiv e study. M a t h e m a t i c a l F i n a n c e 4 (2 ):1 8 3 -2 0 4 .
A review and