Academia.edu no longer supports Internet Explorer.
To browse Academia.edu and the wider internet faster and more securely, please take a few seconds to upgrade your browser.
2021, arXiv (Cornell University)
…
6 pages
1 file
Uncertainty quantification (UQ) helps to make trustworthy predictions based on collected observations and uncertain domain knowledge. With increased usage of deep learning in various applications, the need for efficient UQ methods that can make deep models more reliable has increased as well. Among applications that can benefit from effective handling of uncertainty are the deep learning based differential equation (DE) solvers. We adapt several state-of-the-art UQ methods to get the predictive uncertainty for DE solutions and show the results on four different DE types.
arXiv (Cornell University), 2022
Uncertainty quantification (UQ) in machine learning is currently drawing increasing research interest, driven by the rapid deployment of deep neural networks across different fields, such as computer vision, natural language processing, and the need for reliable tools in risk-sensitive applications. Recently, various machine learning models have also been developed to tackle problems in the field of scientific computing with applications to computational science and engineering (CSE). Physics-informed neural networks and deep operator networks are two such models for solving partial differential equations and learning operator mappings, respectively. In this regard, a comprehensive study of UQ methods tailored specifically for scientific machine learning (SciML) models has been provided in [45]. Nevertheless, and despite their theoretical merit, implementations of these methods are not straightforward, especially in large-scale CSE applications, hindering their broad adoption in both research and industry settings. In this paper, we present an open-source Python library (github.com/Crunch-UQ4MI), termed NeuralUQ and accompanied by an educational tutorial, for employing UQ methods for SciML in a convenient and structured manner. The library, designed for both educational and research purposes, supports multiple modern UQ methods and SciML models. It is based on a succinct workflow and facilitates flexible employment and easy extensions by the users. We first present a tutorial of NeuralUQ and subsequently demonstrate its applicability and efficiency in four diverse examples, involving dynamical systems and high-dimensional parametric and time-dependent PDEs.
Discrete and Continuous Dynamical Systems - S
We develop a backward stochastic differential equation based probabilistic machine learning method, which formulates a class of stochastic neural networks as a stochastic optimal control problem. An efficient stochastic gradient descent algorithm is introduced with the gradient computed through a backward stochastic differential equation. Convergence analysis for stochastic gradient descent optimization and numerical experiments for applications of stochastic neural networks are carried out to validate our methodology in both theory and performance.
2020
Uncertainty quantification (UQ) plays a pivotal role in reduction of uncertainties during both optimization and decision making processes. It can be applied to solve a variety of real-world applications in science and engineering. Bayesian approximation and ensemble learning techniques are two most widely-used UQ methods in the literature. In this regard, researchers have proposed different UQ methods and examined their performance in a variety of applications such as computer vision (e.g., self-driving cars and object detection), image processing (e.g., image restoration), medical image analysis (e.g., medical image classification and segmentation), natural language processing (e.g., text classification, social media texts and recidivism risk-scoring), bioinformatics, etc.This study reviews recent advances in UQ methods used in deep learning. Moreover, we also investigate the application of these methods in reinforcement learning (RL). Then, we outline a few important applications ...
Information Processing and Management of Uncertainty in Knowledge-Based Systems
Artificial intelligence (AI) is nowadays included into an increasing number of critical systems. Inclusion of AI in such systems may, however, pose a risk, since it is, still, infeasible to build AI systems that know how to function well in situations that differ greatly from what the AI has seen before. Therefore, it is crucial that future AI systems have the ability to not only function well in known domains, but also understand and show when they are uncertain when facing something unknown. In this paper, we evaluate four different methods that have been proposed to correctly quantifying uncertainty when the AI model is faced with new samples. We investigate the behaviour of these models when they are applied to samples far from what these models have seen before, and if they correctly attribute those samples with high uncertainty. We also examine if incorrectly classified samples are attributed with an higher uncertainty than correctly classified samples. The major finding from this simple experiment is, surprisingly, that the evaluated methods capture the uncertainty differently and the correlation between the quantified uncertainty of the models is low. This inconsistency is something that needs to be further understood and solved before AI can be used in critical applications in a trustworthy and safe manner.
ArXiv, 2021
Neural ordinary differential equations (NODE) have been proposed as a continuous depth generalization to popular deep learning models such as Residual networks (ResNets). They provide parameter efficiency and automate the model selection process in deep learning models to some extent. However, they lack the much-required uncertainty modelling and robustness capabilities which are crucial for their use in several real-world applications such as autonomous driving and healthcare. We propose a novel and unique approach to model uncertainty in NODE by considering a distribution over the end-time T of the ODE solver. The proposed approach, latent time NODE (LT-NODE), treats T as a latent variable and apply Bayesian learning to obtain a posterior distribution over T from the data. In particular, we use variational inference to learn an approximate posterior and the model parameters. Prediction is done by considering the NODE representations from different samples of the posterior and can ...
2021
Reliable uncertainty from deterministic singleforward pass models is sought after because conventional methods of uncertainty quantification are computationally expensive. We take two complex single-forward-pass uncertainty approaches, DUQ and SNGP, and examine whether they mainly rely on a well-regularized feature space. Crucially, without using their more complex methods for estimating uncertainty, a single softmax neural net with such a feature-space, achieved via residual connections and spectral normalization, outperforms DUQ and SNGP’s epistemic uncertainty predictions using simple Gaussian Discriminant Analysis post-training as a separate feature-space density estimator—without fine-tuning on OoD data, feature ensembling, or input pre-procressing. This conceptually simple Deep Deterministic Uncertainty (DDU) baseline can also be used to disentangle aleatoric and epistemic uncertainty and performs as well as Deep Ensembles, the state-of-the art for uncertainty prediction, on s...
arXiv (Cornell University), 2023
Ordinary and partial differential equations (DE) are used extensively in scientific and mathematical domains to model physical systems. Current literature has focused primarily on deep neural network (DNN) based methods for solving a specific DE or a family of DEs. Research communities with a history of using DE models may view DNN-based differential equation solvers (DNN-DEs) as a faster and transferable alternative to current numerical methods. However, there is a lack of systematic surveys detailing the use of DNN-DE methods across physical application domains and a generalized taxonomy to guide future research. This paper surveys and classifies previous works and provides an educational tutorial for senior practitioners, professionals, and graduate students in engineering and computer science. First, we propose a taxonomy to navigate domains of DE systems studied under the umbrella of DNN-DE. Second, we examine the theory and performance of the Physics Informed Neural Network (PINN) to demonstrate how the influential DNN-DE architecture mathematically solves a system of equations. Third, to reinforce the key ideas of solving and discovery of DEs using DNN, we provide a tutorial using DeepXDE, a Python package for developing PINNs, to develop DNN-DEs for solving and discovering a classic DE, the linear transport equation. CCS Concepts: • Mathematics of computing → Differential equations; • Computing methodologies → Neural networks.
IEEE Transactions on Neural Networks and Learning Systems
In this article, a novel approach for training deep neural networks using Bayesian techniques is presented. The Bayesian methodology allows for an easy evaluation of model uncertainty and, additionally, is robust to overfitting. These are commonly the two main problems classical, i.e., non-Bayesian architectures have to struggle with. The proposed approach applies variational inference in order to approximate the intractable posterior distribution. In particular, the variational distribution is defined as the product of multiple multivariate normal distributions with tridiagonal covariance matrices. Every single normal distribution belongs either to the weights or to the biases corresponding to one network layer. The layerwise a posteriori variances are defined based on the corresponding expectation values, and furthermore, the correlations are assumed to be identical. Therefore, only a few additional parameters need to be optimized compared with non-Bayesian settings. The performance of the new approach is evaluated and compared with other recently developed Bayesian methods. Basis of the performance evaluations are the popular benchmark data sets MNIST and CIFAR-10. Among the considered approaches, the proposed one shows the best predictive accuracy. Moreover, extensive evaluations of the provided prediction uncertainty information indicate that the new approach often yields more useful uncertainty estimates than the comparison methods.
Cornell University - arXiv, 2018
We introduce a new family of deep neural network models. Instead of specifying a discrete sequence of hidden layers, we parameterize the derivative of the hidden state using a neural network. The output of the network is computed using a blackbox differential equation solver. These continuous-depth models have constant memory cost, adapt their evaluation strategy to each input, and can explicitly trade numerical precision for speed. We demonstrate these properties in continuous-depth residual networks and continuous-time latent variable models. We also construct continuous normalizing flows, a generative model that can train by maximum likelihood, without partitioning or ordering the data dimensions. For training, we show how to scalably backpropagate through any ODE solver, without access to its internal operations. This allows end-to-end training of ODEs within larger models.
Cornell University - arXiv, 2021
Deep neural networks (DNNs) are becoming more prevalent in important safetycritical applications, where reliability in the prediction is paramount. Despite their exceptional prediction capabilities, current DNNs do not have an implicit mechanism to quantify and propagate significant input data uncertainty-which is common in safety-critical applications. In many cases, this uncertainty is epistemic and can arise from multiple sources, such as lack of knowledge about the data generating process, imprecision, ignorance, and poor understanding of physics phenomena. Recent approaches have focused on quantifying parameter uncertainty, but approaches to end-to-end training of DNNs with epistemic input data uncertainty are more limited and largely problem-specific. In this work, we present a DNN optimized with gradient-based methods capable to quantify input and parameter uncertainty by means of interval analysis, which we call Deep Interval Neural Network (DINN). We perform experiments on an air pollution dataset with sensor uncertainty, and show that the DINN can produce accurate bounded estimates from uncertain input data.
Revista peruana de medicina integrativa, 2022
ArhIn. I. Medieval Changing Landscape. Settlements, Monasteries and Fortifications. Eds. Ioan M. Tiplic, Maria Crangaci Tiplic. Sibiu, editura ”Astra Museum””, 2016
Revista Judiciária do Paraná, 2023
Atatürk Dergisi, 2024
Economics Papers from University Paris Dauphine, 2009
Unlocking the power of data, 2020
Educacao (Porto Alegre), 2011
Marksist Araştırmalar (MAR), 2023
Psychological Bulletin
Tissue Engineering Part A, 2008
Iranian Journal of Cancer Prevention, 2015
Physical Review E, 2008
Neopirronismo clásico y contemporáneo. Discusiones en torno al legado escéptico., 2024
Cardiology Journal, 2013
Nature communications, 2015
Journal of Angiotherapy, 2024
Search-Based Software Engineering, 2021