ECONOMIC
CEOLOCY
AND
BULLETIN
VOL.93
OF THE
SOCIETY
THE
OF ECONOMIC
GEOLOCISTS
August1998
Ore Depositional
Processes
in the NavanZn-PbDeposit,Ireland
I. K. ANDERSON,*
Department
of AppliedGeology,
University
of Strathclyde,
Glasgow
G1 1XJ,Scotland
J. H. ASHTON,
Outokumpu
TaraMinesLtd.,Knockumber,
Navan,CountyMeath,Ireland
A.J.BOYCE,
• A. E. FALLICK,
Scottish
Universities
Research
andReactorCentre,EastKilbride,Glasgow
G75OQF,Scotland
ANDM. J. RUSSELL
Department
of Geology
andAppliedGeology,
University
of Glasgow,
Glasgow
G128QQ,Scotland
Abstract
TheNavanZn-Pbdeposit
in Irelandishosted
bya lowerCarboniferous,
carbonate-dominated
sedimentary
sequence.
In excess
of 97 percentof theoreis hostedby a Courceyan,
shallow-water
succession
termedthe
PaleBeds.Theoreoccurs
ascomplex
strata-bound,
tabularlenses
oftendislocated
byfaulting
andtruncated
by a submarine
erosional
slidestructure.
Abovethissurface(unconformity)
liesthe economically
minor,
but genetically
importantConglomerate
Groupore hostedby a complex
debrisflowtermedthe Boulder
Conglomerate.
Timingconstraints
on the mineralization
canbe definedby the relationship
to the erosion
surface
andstyleof mineralization,
suggesting
a lateChadian
or earlyArundian
age(•345 Ma).Thebulkof
the ore formed below the erosion surface in the semilithified to lithified Pale Beds ore.
The mineralogy
of theeconomic
oresis relatively
simple,beingdominated
by sphalerite
andgalenain a
5/1 ratio.Pyriteandmarcasite
arepresentin subordinate
amounts
in themajority
of thePaleBedsorebut
dominatethe Conglomerate
Groupore andthe PaleBedsore immediately
belowthe erosionsurface,
particularly
lens2-1. Gangueminerals
aredominated
by calcite,dolomite,
andbarite.
Themorphology
of themineralization
reflects
subsea-floor
emplacement.
Theorebody
occurs
asnumerous
strata-bound
horizons,
ranging
fromintense,
high-grade
massive
sulfides
tolowergradesulfide
layers
separated
by barrenlimestone.
In all cases,thereis strongevidence
for tectonicdisruption
duringore deposition.
Sulfides
weredominantly
deposited
asopen-space
growthandreplacement
of hostrock.Open-space
textures
includedendritic-skeletal,
stalactitic,
internalsediment,
geopetal,
andcoarse-bladed
forms.The generalabsenceof coarse,
euhedral,
cavityliningtextures
or substantial
collapse
brecciation
suggests
thatlargecavities
werenotpresent
priortomineralization.
Replacement
textures
rangefromdelicate
pseudomorphs
ofbiodasts
to moredestructive
granularstyles.
Sulfide
sulfurisotope
analyses
exhibittwodominant
groupings
of 6a4sfromaround-23 to -5 and0 to
15 per mil, respectively,
anda thirdminorgrouping
around-32 to -28 per mil. At leasttwosources
of
sulfurare invoked.Valuesaround-23 to -15 per mil are considered
to be the resultof bacteriogenic
reductionof lower Carboniferousseawatersulfate(•20%o), with a characteristicfractionationaround35 to
45 permilawayfromsulfate;
thisisthemostcommon
rangeof 634S
in thedeposit.
Values
around
8 to 15
per mil areinterpreted
to be hydrothermal
sulfidetransported
withthemetal-bearing
fluid.Mixingof these
twocomponents
is inferredfromtheisotopic
dataandtrendsin themineralparagenesis.
Baritehasa mean
of6a4S
= 21 _+2 permil,whichfallswithintherangegenerally
recognized
forlowerCarboniferous
seawater
sulfate.
We consider
thatcontemporaneous
seawater
sulfatewasthedominant
source
of sulfurin the barite
at Navan,implyingthatseawater
accessed
the PaleBedsat the timeof mineralization.
Presentaddress:
NavanResources
PLC, KennedyRoad,Navan,CountyMeath,Ireland.
Corresponding
author:
emafi,
[email protected].
ac.uk
0361-0128/98/1984/535-2956.00
535
NO.5
536
ANDERSON ET AL.
O
o
/------
o/--
o
o
0
--v
o
o
I• 0 0 0 0 0 0 0 0 0
o
v ....
v ....
v-v--
v ....
v ....
v ....
v--
v-v ....
v--
--•'-- LONGFORD-DOWN
--
o
o
v ....
v ....
v ....
____ LOWER PALAEOZOIC
"--v
....... v .... ,,.......
v ....
INLIER
--v ....
i-
--v
o
o
....
....
....
....
--v ....
--v
o o ',----
ff
01
0
--v
!......
o
o
o /--
o
o
0
--v
o
o
o
0
o
o
o
o
o
o
o
o
o
o
o
o
o
o
0/--0--•--•
0 0//--LP-
O
o
o
o
o
o
0
0
....
--v ....
--v
....
v ....
v ....
v ....
v ....
v ....
v ....
v--
v ....
v ....
v ....
v ....
v ....
v ....
.....
v--
v-v ....
v--
o
+
I•TATEoSTONN-SCANL%NSTON%
O
, __v__ORDOVICIAN
SEDIMENTS
g VOLCANICS
+ • o
o
+
O
+
o
o
•
+ •1O
+
O
O
TATESTONN
O
O
O
O
--v....--v....v.... v....v.... v....v.... v....v.... v....v-- v-~
--v....
v....
v....
v....
v....
v--
FAUL1
o
+•O
+
+
+
+
+
+
4- 4- +
•
+
+
+
+
+
+
+
+
+
+
+
•
+
+
+
+
+
+
o
o
o
O
o
a--v-- LP
•
y-v--
--v--
--v....
--v--
LP
DiP OIRECTION
v--
FAULT
SHOWING
OIP
OIRECTION
o
0
o
o
o
o
o
/
o
o
o
INTERSECTION
•
o
o
+
WITH
OUTLINE
OFMINERALIZED
ZONES
+
+W
+
+
LOCATION
OF
SECTION
LINES
+
+
+
+
OF FAULT
BASEOF PALEBEDS
•
+
+
+
+
+
0
O
• .•o
+
+
+
+
--\
+
+
+
O
O
+ "•%
o
%0
+
+
O
o
+
+W
+
0
x
+
+
+
.•x
+
+
+
O
•,, O
__ GEOLOGICALCONTACTWITH
---r
• --v--
O
+
W
FINGAt
+
GROUP
ARUNOIAN
•
(UPPER
DARK
LIMESTONES)
+
+
CHADIAN
'•
• • •
EROSION
SURFACE
ABL
g BOULDER
CONGLOMERATE
GROUP
CHADIAN
• +•-• WAULSO•TIAN
MUDBANK
LIMESTONES
(W)
ANO
COURCEYAN
ARGILLACEOUS
BIOCLASTIC
LIMESTONES
PALE
BEDS • SHALEYPALES
;•--• MIXEO BEOS.
NAVAN
GROUP
COURCEYAN
MAJOR UNCONFORMITY
0
•.
8 KM
SILURIAN
UNOIFFERENTIATED
VOLCANICS
ORDDVICIAN• •_•
INTRUOEO BY LATE SEDIMENTS
CALEDONIAN •SYENITES
FIG. 1. Location
andgeologic
settingof the Navandeposit(afterAshton,1995).
Introduction
complex
submarine-slide
structure
knownasthe"erosion
surface"
in
the
southeastern
section
of
the
orebody
(Boyce
et
THEN^V^NZn-Pbdeposit,
located30 kmnorthwest
of Dubal., 1983a;Andrew and Ashton,1985; Philcox,1989, Ashton
lin (Figs.i and2), isa strata-bound
orebody
hostedbylower
bya debris-flow
BoulderConglomCarboniferous
carbonates.
The depositwas discovered
in et al.,1992).It iscovered
erate
which
hosts
the
remainder
of
the
ore
in pyriticmassive
1970by Tara Prospecting,
2 km northwest
of the townof
knownasthe Conglomerate
Groupore.
Navan (O'Brien and Romer, 1971), with initial reservestotal- sulfides
Thispaperoutlines
thestratigraphy,
structure,
andaspects
ing 69.9 millionmetrictons(Mt) grading10.1percentZn
of the deposit.Closeattentionis paid
and2.6 percentPb. Due to actions
of thirdparties,oreon of the mineralization
ore texturesand highlighting
the correlation
the northeast
sideof the deposit
becameunavailable
to Tara to describing
between
texture
and
sulfur
isotope
composition.
Prospecting,
leavingsome60.9 Mt grading10.1percentZn
and2.7 percentPb available
for mining.Production
comStratigraphy
mencedin 1977andupto theendof 1996amounted
to some
The Navanorebodyoccurswithina sequence
of lower
44 Mt. Currentore reserves
total 17.1Mt at 8.2 percentZn
Carboniferous
shallow-water
carbonates
lying
unconformably
and2.5 percentPb,withmineralresources
totaling18.6Mt
outcropof the Longfordat 7.2 percentZn and2.4 percentPb (Outokumpu
Annual on andjustwestof the southwest
inlier(Fig.1).A stratigraphic
section
Report,1996).Currently,
Outokumpu
TaraMinesLtd.pro- DownLowerPaleozoic
in Figure3 anddiscussed
in the following
secducesaround2.6Mt oforeperannumgrading
8.0percentZn is presented
tion.
and2.0percentPbfromanunderground,
highlymechanized,
trackless
operation.
Lower Paleozoic basement
Of the69.9Mt reserves
initiallydelineated
northandsouth
LowerPaleozoic
rocks
belowtheregional
basalCarboniferof the Blackwater
River,in excess
of 97 percentis hostedby
comprise
a structurally
complex
andvaried
Courceyan
shallow-water
carbonate
lithologies
termedthe ousunconformity
andSilurian
lithologies.
ThebasicstrucPaleBeds.The ore occursin complexstrata-bound
tabular seriesof Ordovician
lenses,oftendislocated
by faulting,and is truncatedby a ture consists of a fault-bounded belt of Ordovician meta-
NAVAN ZN-PBDEPOSIT,IRELAND: ORE DEPOSITIONALPROCESSES
537
ß
ß'
ZONE
ß
/
ß
ß
ß
ß
ß
ß
ß
ß
ß
500
METRES
•
- CONGLOMERATE
GROUP
ORE
PLAN
SHOWING
LOCATION
OF
MAIN
ORE
I• - FAULT
AT
BASE
OF
5LENS
LENSES,
MAJOR
FAULTS
AND
/4"/ - FAULT
ATBASE
OF5 LENS •
- OUTLINE
OF4,3 C 1 LENSES
FACIES
CHANGES
INTHE
• - WRENCH
COMPONENT
PALE
BEDS
(REVERSE
THROW)ß ßß - OUTLINEOF 5 LENSORE
(NORMAL THROW)
FIG.2. Ore lenses,
mainfaults,andfacieschanges
in the PaleBeds(afterAshton,1995),
sediments
andmeta-volcanics
up to 5 kmwiderunningin a Limestone
isthefirstcarbonate
horizon
ofsignificance.
These
northeast direction enclosed to the northwest and southeast argillaceous,
crinoidal
limestones
arethoughttobeof shallow
bySilurian
sediments
(Vaughan,
1991).TheOrdovician
rocks marinelagoonal
origin,butto thewestof themine,limestone
comprise
shales
andsandstones,
with significant
tuffaceousconglomerates
occuras channeldeposits
andcut into the
material,tuffs,lavas,andvolcanic
conglomerates
(Romano, underlying
Laminated
Bedssequence
(Anderson,
1990;Rizzi,
1980;Vaughan,
1991).The Silurianrockscomprise
varied 1993;Fig.3). AbovetheMuddyLimestone
lie thePaleBeds
graywackes,
sandstones,
siltstones,
and mud rockswhich comprising
a variedsequence
of shallow-water
carbonates,
Vaughan(1991) hassubdivided
into severalfault-bounded dolomitichorizons,and subordinatesandstonesand shales.
terranes.
ThebasalunitofthePaleBedsisa distinctive
fine-grained,
usually
pale
gray
micritic
limestone,
containing
oncholites
LowerCarboniferous
andbird'seyetextures,
termedtheMicriteunit.Several
pale
TheLowerPaleozoic
metamorphic
pileis unconformablydolomitichorizonsoccurwithin the Micrite unit, one of which
overlainby lowerCarboniferous
(Courceyan)
impurered formsa prominent
bedsome10m thickandis animportant
sandstones
andpolymict
pebbleconglomerates,
whichcon- controlto orelocalization
in thewestern
partof the deposit.
rain local caliche horizons and are termed the Red Beds. TheMicriteunitrepresents
deposition
in a dominantly
interIntense
hematization
oftheLowerPaleozoic
rocks
commonlytidalenvironment
(Strogen
et al.,1990;McNestry
andRees,
occurs
immediately
beneath
theunconformity.
Theysharply 1992).
passupwardinto the LaminatedBeds,a variedsuitedomiThe Micriteunitpasses
upwardintoa variedsequence
of
natedbythinlybedded,oftenbioturbated,
darkargillaceouspaletomedium
gray,frequently
oolitieandbioelastie
ealearesiltstones
andmudstones.
A horizon
ofchalcedonic
silicarep- nites(grainstones).
Distinctivemarkerhorizonshavebeen
resents
a replaced
anhydrite
horizon.Thesebedsrepresent definedwhichareusedto subdivide
thedeposit
intovarious
the onsetof marinetransgression
(Strogenet al., 1990; ore lensesandact asvaluableguidesto detailedstructural
McNestry
andRees,1992;Rizzi,1993).Theoverlying
Muddy interpretation
of the orebody(Philcox,1984,unpub.data;
538
ANDERSON ET AL.
SE
AGE
GROUP
•
FI NGAL
LOCAL
NOMENCLATURE
UPPER
DARK
L litESTONES
•{• GROUP
(CALP
)
....
TCBER
EROSION
COLLEEN
MUDSTONE.
SURFACE
CHAD I AN
WAULSORTIAN
ABL
LIMESTONES
GROUP
ARGILLACEOUS
BIOCLASTIC
LIMESTONES
i
SHALE'%' PALE
L IMESTONES
NAVAN
UPPER
SHALEY
PALES
i
MIDDLE
SHALEY
PALES
LOWER SHALEY
PALES
UPPER
OARK NARKER
z
PALE
NOOULAR MARKER
BEDS
i,i
GROUP
BEDDED
/
UN['
LONER SANDSTONE NARKER
LOWER
DARK
CHANNEL
MICRITE
MUDDY
LIMESTONE
MIXED
BEDS
MAJOR
UNCONFORMIT¾
LAMINATED
BEDS
RED BEDS
CHANNELING
,C• ,•
.....
IN
NARKER
NIC•ITE
UNIT
MUDDY
LIMESTONE
LAMINATED
BEDS
RED BEDS
.......
-V -V- V--V- -V-V--V- -V-VIV-V-
ICa
50
METF•ES
LOWER
PALAEOZOIC
SILURIAN]
ORDOVI
CIAN
Fig. 3. Stratigraphic
sequence
in the Navanminearea(afterAshton,1995).
considered
to haveformedin
Figs.3-5). The markerhorizons
aregenerally
a fewmeters ism).The latteris generally
(Strogen
et al., 1990).
thick,characteristically
exhibitgreatersand,silt,orshalecon- relativelydeepwaterenvironments
tentthanthe enclosing
limestones,
andare oftendolomitic. In thevicinityofthemineanunconformity,
locallytermed
There is substantial lateral variation in both the nature of the
the "erosion
surface,"
of probable
lateChadJan
age,hasremarkerhorizons
andthe enclosing
PaleBeds.At leasttwo movedsubstantial
partsof the Courceyan
succession,
downsignificant
erosional
episodes
havebeenidentified
withinthe cuttingin a southerly
direction
andtruncating
LowerPaleoPaleBeds,definedby distinctive
linearfaciesbeltswhich zoicrockssouthof Navan(Philcox,1989).The erosionsurface
trend in a north to northwestdirection (Andrew and Ashton, isconsidered
to be theresultof anepisode
of complex,
com1985;Anderson,
1990;Rizzi,1993).Theseincludea major posite,low-angle
gravitysliding,resulting
frommajorextenchannel-likefeature, which has removed most of the Micrite sionandgrowthfaulting
in the NavanareaduringtheChadunit in the easternpart of the deposit,anda laterseriesof ian,andwasprobably
accompanied
byscouring
of contempolimestone
microconglomerate
channeldeposits,
whichoccur raneousfault scarps(Boyceet al., 1983a;Philcox,1989;
between the Lower Sandstone and Nodular Markers someAshtonet al., 1992).The erosionsurfaceis overlainby a
whatfartherto thewest(Fig.3).
debris-flow
breccia
conglomerate
knownastheBoulderConTheoverlying
ShaleyPalesconsist
of thinlybeddedealear- glomerate,
varying
from<1 to >50 m in thickness
andcompolymict,
limestone-dominated
clasts
which
gilliresandealearenites
with localbryozoan-rieh
andthinly prisingchaotic,
beddedcalcareous
sandstones
consideredto representa displayconsiderable
variationin size,shape,and packing.
in thickness,
texture,andcomposition
are
deeperwateroffshore
depositional
equivalent
ofthesandand Rapidvariations
debris
oolitelithologies
of the Pale Beds(Philcox,1984, 1989). commonandthe unit is clearlya typeof submarine
AbovetheShaley
PalesliestheArgillaeeous
Bioelastie
Lime- flow(Boyceet al., 1983a;CookandMullins,1983;Binney,
arefrequently
subangular
to angular
in outline,
stoneconsisting
of dark,well-bedded,
andstrongly
erinoidal 1987).Clasts
ofupto8 m,andareusually
composed
ofPale
argillaeeous
limestones.
Towardthetoptheybecome
increas- havediameters
Limestone
lithologies,
inglyerinoidal
andpalerastheypassintotheoverlying
Waul- Beds,ShaleyPales,andWaulsortian
in a darkargillaceous
matrix(Fig. 6B). Clastsof
sortianLimestone
(probably
with significant
localdiaehron- enclosed
NAVAN ZN-PB DEPOSIT, IRELAND: ORE DEPOSITIONAL PROCESSES
539
NN SECTION B17NN
SE
SURFACE
•'
I
I
I
I
I
]
I
I
I
I
I
IIIIlllllli
iIiIiIiIi1111•
tlllllllllllll
i11111111111II
•r,
CONGLOMERATE
F•
ZONE
2
I
ARUNDIAN•-•UPPER DARKLIMESTONES
r•BOULOER CONGLOMERATE
NN-SE
STRIKE
SECTION
CHADIAN ,•EROSION
ACROSS
NAVAN
OREBODY
•SHALEY
PALES
i
iUSM- UPPER
SANDSTONE
UDMUPPER
DARK
•BOULOER
•PALE BEDS- WITHMARKER
HORIZON•NODNODUL•R
COURCEYAN
r"•-]MUDDY
LIMESTONE
I LSM LOWER
LOWER
SANOSTONE
--LDM
OARK
I•ILAMINITED
CONGLOMERATEGROUP ORE (>5% ZN+PB)
MOSTLY
SURFACE
BEDS
MAJOR
•LONER
50
UNCONFO•M•TY
PALAEOZOICS
[]
MASSIVE
SULPHIOES
CONGLOMERATE
PALEBEDSORE(>5%ZN+PB)
I•IREO BEDS
v•w/
PYRITIC
100
150
200
250
ß METRES
TERTIARYDOLERITEDYKE
FID.4. Typicalnorthwest-southeast
cross
section
through
the Navandeposit
(afterAshton,1995).
LowerPaleozoic
lithologies
occurintheBoulder
Conglomer-per Dark Limestones,
rangingfromArundianto Asbianin
ateto thesouthof theorebody
wheretheerosion
surface
has ageandcomprising
thin darkmudstones
with well-bedded
removed
virtually
theentireChadJan
andCourceyan
section ealearenites
andealeirudites
exhibiting
turbiditieaffiliations
(>500 m thick).TheBoulder
Conglomerate
isoverlain
bya (Rees,1987;Strogenet al., 1990).The natureof the basal
thicksequence
ofwell-bedded
limestones
knownastheUp- contactwiththe BoulderConglomerate
is variable:
in some
•"•CONGLOMERATEGROUPORE (>5% ZN+P8)
MOSTLY
PYRITIC
MASSIVE
CONGLOMERATE
USM - UPPER S•NDSTONE
[•SHALEY PALES
UOH- UPPERDARK
E•PALE
SULPHIOES
COURCEYAN
r•BOULOER
•'6•UPPER DARK LIMESTONES
•80ULOER
CONGLOMERATE
,vv, EROSION SURFACE
BEDS - WITH MARKERHORIZONS NOD - NODULAR
•HUOOYLIHESTDNE
F•]LAHINATED
BEDS
F•-lRED eEOS
PALEBEDSORE(>5%ZN+PB)
•
MAJO•
LSH
- LOWER
SANDSTDNE
LDH - LOWER DARK
-,-'•'•--TOPOFHICRITE
UNIT
UNCONFO•MIT¾
•C•LDWER
PALAEOZOICS •TERTIA•Y 00LERITE
DYKE
FIG.5. Typical
east-northeast-west-southwest
longitudinal
section
through
theNavandeposit
('after
Ashton,
1995),
540
ANDERSON ET AL.
Fic. 6. A. Micriteunitwithpale,stylolitic,
birdseyes
micritesovedainby a massive
dolomitic
horizon.Contactbelow
thecoin.B. BoulderConglomerate
comprising
poorlysorted,subangular
clasts
of paleWaulsortian
Limestone
anddark
PaleBeds.C. Massive,
high-grade
mineralization
in lens2-5,withpalemassive
sulfide
toward
thetoprightandbrecciation
ofthedarkerhostcalcarenites
in thebottom
center.D. Irregular
mineralization
(palegray)in lens1-5in theMicriteunit.
locations
it isquitesharp,butin othersit isgradational,
with the erosionsurfaceanddoesnot penetrate
the UpperDark
alternating
mudstone
andthin pebbleconglomerate
layers Limestones in the main mine area. The T fanlt exhibits evidence
succeeded
by a thinlybedded,usually
pyriticmudstone
up of several
stages
of movement
beforeandduringtheformation
to 20 m thick, termed the Thin Bedded unit.
oftheBoulder
Conglomerate
andparflyduringlaterHercynian
activity.
It displaces
the erosion
surface
locallyby morethan
Structure
50 m andextends
intothe UpperDarkLimestones
(Fig..4).
Conglomerate
thickens
noticeably
onthehangingThe localstructure
is dominated
by a complex,
fanlted, TheBonlder
thepresence
of a
broadly
antiformal
structure
whichplunges
gentlysouthwestwall(south)sideof theT fanltandindicates
faultscarp
duringthedeposition
of thisdebrisfromthewestern
apexoftheLongford-Down
inlierjusteastof syndepositional
the mine(Fig.1). Theorebody
is cutby a series
of fanits:an flowunit. Boththe B andT fanitscutthe PaleBedsore (Andrew
earlyeast-northeast-trending
anda laternortheast-trending
set, and Ashton,1985;Ashtonet al., 1986).
tectonism
resulted
in thelater,north-east
trendwhichareregarded
asproducts
of reactivation
of majorbase- Hercynian
faults(Fig.2). The A
mentfaultzones
during
lateCourceyan
toChadian
andHercyn- ingA, C, D, Castle,andRandalstown
theoreandtheUpperDarkLimestones
(Fig.
iantimes,respectively.
Theearliest
structures
to affecttheCar- fanltdislocates
boniferoussuccession,
the B and T fanits,and smallersimfiar 4) with a dextralstrikeslipon the orderof 180 m anda
component
of up to 80 m. The C faultzoneis more
structures
(e.g.,F1, F2, Fzs,F26,Fs7,etc.;Fig. 4) strikeeast- reverse
thantheA faultandpossibly
represents
reactivation
northeast
andusually
dipat moderate
angles
to thesoutheast.complex
Several
of thesefaultsexhibita listticprofileanddownthrowalongan eadierstructure;
it displays
an apparentnormal
southward--the
B faultbyabout70 m andtheT faultbyup throw (<100 to >150 m) but with local reversemovement
to 200 m. Both the B and T faults are considered to be late andis alsoconsidered
to havea component
of dextraldisCourceyan
to Chadian
in age,since
theB fanltistruncated
by placement
(--•200m). The D and Randalstown
faultsare
NAVANZN-PBDEPOSIT,IRELAND:ORE DEPOSITIONALPROCESSES
largerwrench-style
structures
with reversecomponents
of
movement
exceeding
100m. North-trending,
oftentight,en
echelon
foldsoccurwithintheUpperDarkLimestones
and
theseincrease
in intensity
toward
theA andC faults.Finally,
several
transgressive
doleritesillswereintrudedduringthe
Tertiary,striking
in a north-south
direction
anddipping
westwardat angles
from20øto 65ø (Turneret at.,1972).
Carbonate
Diegenesis
andDolomitization
Petrographie
studiesutilizingeathodolumineseenee
and
staining
techniques
indicate
thatseveral
stages
of eelciteeementationanddolomitization
are presentwithinthe Pale
Bedscarbonates.
Theseareillustrated
in Figure7.
541
summarized
asan earlydarkluminescent
fringingcement,
followedby well-zoned,
dull to brightyellowluminescent
crystalovergrowths,
andsubsequent
mediumyellow,blocky
cement.Thissequence
is similarto thatdescribed
by Miller
(1986)asrepresenting
precipitation
frommarineporewaters
in a shallowburial environment.In some limestones,such
calcitecements
arepostdated
by well-developed
rhombsof
nonluminescent,
ferroandolomite
witha brightredluminescentzoneprecipitated
asa cementin remnant
porosity.
Dolomites
Dolomitielithologies
in the PaleBedsgenerally
occuras
0.5to
4.0-m-thick
bedding-parallel
horizons,
such
as the
Limestones
LowerSandstone
Marker.Animportant
characteristic
feature
Under cathodoluminescence,
the limestonesin the Pale is thepresence
of a higherdetritalcontent(siltto finesand)
Bedsgenerally
exhibitthreestages
of calciteeementation,relativeto typicallimestones
in thePaleBeds.In eathodoluCATHODOLUMINESCENCE
TRANSMITTED
LIGHT/STAINING
stage 4 dolomite cement (essentially non-luminescent
with a bright red zone in places)
.-• late-stage
ferroan
dolomite
";'•
"':"•'•
• W
•"e='
blocky
celclte
becoming
more
ferroan
in
later
sieges
• early
bladed
calcite
cement
:•
,,,:.,,carbonate
allochems
stage 3 blocky calcite cement (medium luminescent)
stage 2 zoned calcite cement (dull-brightluminescent)
,stage I calcite rimmingcement (dark to non-luminescent)
carbonate
allochems
FIG.7. Diagram
illustrating
carbonate
cements
(stained)
in typical
PaleBedscalcarenites
undertransmitted
lightand
eathodolumineseenee.
542
ANDERSON ET AL.
minescence,
threestages
of dolomitization
canbe observed. Bedsore(1-3% Fe) butincrease
substantially
in the2-1lens
The earlieststageis a fine-grained
(<50 •m), dull brown belowtheConglomerate
Groupore.Gangue
minerals
include
luminescent,
mosaic-type
replacement
of thecarbonate
allo- barite, calcite, and dolomite.
ehems,formingup to 75 percentof the rock,with dolomite The PaleBedsmineralization
exhibits
a complex
varietyof
rhombsfrequently
displaying
corroded
margins.
Thisis fol- stylesandrelationships
with the hostrockswhichare now
lowedby a darkto nonluminescent
cementoccurring
both described
withreference
to well-exposed
underground
headin veinsandasovergrowths
ontheearliercorroded
rhombs. ings.The dominantsulfidedepositional
mechanisms
are
Sphalerite
islocallypresentin veinscontaining
thisdolomite open-space
precipitation,
veining,
andreplacement.
Theyare
stage.
Thethirdstageofdolomitization
occurs
ascoarse,
well- represented
bya complex
rangeof oretextures
andmorpholdeveloped
nonluminescent
rhombswith a brightred zone, ogies,
whichexhibitconsiderable
variation
dependent
onthe
of mineralization.
The degreeof
preferentially
deposited
in veinsandsmallpockets
andvugs localhostrockandintensity
as a cement,and appearsto correlatewith the late-stage development
of thesemechanisms
cangivethe orea signifidolomitein the limestones.
The laststageof eementation
in cantlyvariableappearance,
throughstrata-bound,
massive,
vein,breccia,anddisseminated
morpholotheserocksis a brightyellow,blotehyluminescent
calcite bedding-parallel,
of the mineralization
andhostcement,usuallyoccurring
in veinsandvugscontaining
the gies.The grossmorphology
third-stage
dolomitecement.
rockrelationships
is described
first,beforewe consider
the
Thefine-grained
replaeive
natureoftheearliest
stagedolo- complex
texturalassemblages
withinthe ores.
mite is consistent with formation in a shallow burial environ-
Geometry
of mineralization
andhost-rock
relationships
in
ment (Bumsand Baker,1987;Hird et al., 1987).It is pro- the
Pale Beds
posedthat the detritalelasticcomponentenhancedthe
permeability
of certainhorizons,
whichwereselectively
doloOnthebasisof gross
geometry
andrelationships
withhost
mitized.Latereoarser
graineddolomitecements
wereintro- rocks,these can be subdividedas follows.
ducedin veinssynchronous
with,andpostdating
themineral- Massive,
high-grade
mineralization
(5 lens;Fig.6C):This
ization.
styleof mineralization
occurswithincalcarenites
andlesser
in the 5 lensin the easternpart of the deposit,
A moreverticallyextensive
zoneof dolomitization
in the dolomites
horizonare
westernmineareahasa pittedor vuggyappearance
in drill wheremicritesmoretypicalof thisstratigraphic
coreandisthesubject
of recentlycompleted
research
(Rizzi, removed
bychanneling.
Thismineralization
isbestdescribed
1993).
asmassive
conformable
lenses,
formingsomeof the highest
grade
ore
in
the
mine,
with
vertical
intersections
of up to
Mineralization
and Ore Textures
15 m >40 percentZn + Pb. Due to the intensityof the
relationships
withthehostlithologies
areless
The Navanorebodytakesthe form of numerous
strata- mineralization,
thanin the otherstylesof mineralization.
boundorehorizons
occurring
in anareaof some3 km2 and well constrained
of
trendingin a northeast
to east-northeast
direction,
approxi- However,sulfideveiningof the hostrockat the margins
sulfideis observed,
andzonesof high-grade
ore
matelyparallel
tothemajorfaulting.
Themainfaultsnaturally the massive
dividethe orebodyinto threezones:northof the B fault arefrequently
connected
byloxver
grade,high-angle
veining.
(zone 1), betweenthe B and the A and T faults(zone2), and
Strata-bound
mineralization
in the micrites(5 lens;Fig.
the massive
high-grade
mineralizasouthof theA fault(zone3; Fig.4). Smallersatellite
deposits 6D): Movingwestward,
are known to the northwestat Lisearton,Tatestown-Seallans- tiontendsto breakup intoseveral,
smallertabularto lensold
town (Andrewand Poustie,1986),and Clogherboy
to the layers,
wherethe5 lenshostrocksaredominated
bymicrites.
apsoutheast
(Fig.1). Mineralization
bothin themainorebody Theselensesfrequentlyextendoververticaldistances
20 m andcomprise
the mostlaterallyextensive
andin the surrounding
satellites
is mostlaterallypersistent proaching
dose to the base of the Pale Beds in the basal Mierite unit.
mineralization
atNavan.A prominent
dolomite
horizon
forms
concordant
hanging
walltooneofthelargest
ofthese
Mineralization
in the stratigraphically
highergrainstone
li- a sharp,
sharp,discordant,
often
thologies
in the PaleBedsis largelyconfined
to the central lenses.The ore typicallydisplays
irregularcontacts
withthe hostmicrite,witha
areaoftheorebody,
withtheexception
of orein the 1-4lens, high-angle,
thickening
andthinningof the mineralization.
lyingnorthof theB faultin zone1, andrecently
delineated pronounced
headings
ananastomosing
appearance
mineralization
in theupperpartofthePaleBeds,lyingsouth- In manyunderground
is evident,withsulfides
occurring
asan
westof the maindeposit,termed"lensU" (Ashtonet al., to the mineralization
Sulfides
are typically
1995;Fig. 2). Similarly,Conglomerate
Groupore hosted irregularnetworkwithinthe micrites.
oftenoccurring
asa complex
melange
ofclasts
and
withintheBoulderConglomerate
is restricted
to thecentral disrupted,
layers.Darkquartz+ feldspar-dominated
argillite
andsoutheastern
partof theorebody
wheretheerosion
sur- disrupted
commonly
occurs
withinthe sulfides,
anda discontinuous
1facecutsdeeplyintothe PaleBedssuccession
(Fig.4).
seamis oftenpresent
at theconThe mineralogy
of the PaleBedshostedore is simple, to 3-cm,blackargillaceous
the economic
minerals
consisting
of sphalerite
andgalenain tactswith the micrite(Fig.8).
Bedding-parallel,
ore horizons
(1 to 4 lenses;
Figs.9Aoverallproportions
of around5/1, with smallquantities
of
highersulfidehorizons
silver(ca.10-15 g/tin millfeed).Freibergite
andpyrargyrite D and 10,):Thesestratigraphically
several
relatedstyles
of stratiform
sulfideandvary
are the principalsilverminerals;
boumonite
andsemseyitecomprise
Sulfidesare preferentially
havealsobeenreported(G. Steed,unpub.data).Pyriteand from 0.3 to 4.0 m in thickness.
atthecontact
between
a ealearenite
andanoverlymamasiteare presentin subordinate
amountsin the Pale developed
NAVANZN-PBDEPOSIT,IRELAND:ORE DEPOSITIONALPROCESSES
543
t pO'ltmmerahzalian•
NWtrending
calciteflllldlamt
/sharp,
cross-cutt•ng
contacts
! j
between
massivelUll)hide
m•cr•te
I horizon
and
the
micrite
m.r,t.
,
•. ••
::2:
.... '"'""':
F•G,8. Drawingof anunderground
heading
in the Micriteunit,rite1-5lens,illustrating
thethickening
andthinning
of themineralization,
high-angle
contacts
in places
betwveen
sulfide
andmierite,anddarkargillaeeous
material
commonly
occurring
at thesecontacts.
ingsilty,dolomitized
lithology.
Thehanging-wall
andfootwall veinsoftenextendup intothe NodularMarker,andfunnelcontacts
withinan individual
horizonare sharpandconsist shaped
features
areobserved
in the footwall(Fig.11B).
of an essentially
planarcontact
withthe overlying
dolomite Crosscutting
sulfide
veins(Fig.11C):Veinsranging
froma
to 0.5 m thickoccurthroughout
thedeposit,
butanirregular,
undulating
contact
withtheunderlying
lime- fewcentimeters
sphalerite,
galena,ironsulfides,
andbarite.The
stone,generally
resultingin a pronounced
thickening
and containing
veiningoccurs
asa largeeast-northeast-trendthinningof anorehorizon(Fig.9A).Diffuse,narrow,sulfide mostextensive
however,thisstyleof
stringers
aredeveloped
in dolomites
overlying
ore,andeco- ing swarmin the 9.-5and9.-4lenses;
nomic mineralization can extend into the dolomite as sulfidevein mineralization
is quantitatively
a minorcomponent
of
cementedbrecciazones.In someareas,dark argillaceousthe ore. Sulfidetexturesin the veinsare usuallysimilarto
sediment
is locallypresentin the basalsections
of the hori- those observed in the massive sulfide horizons which are
in the following
section.
zons,preferentially
developed
withindepressions
in thefoot- described
wall contact.
Breccias
(Fig. 11D): Angular,breeeiamineralization
is
developed
in the siltydolomitie
lithologies.
In
Sections
of moremassive
andcomplex
mineralization
pass preferentially
verticalto subvertical
breeeiazonescomprislaterally
intoseveral
narrow(5-30 cm)bedding-parallel
lay- someexamples,
ing
angular
elasts
of
host
rock
cemented
by sulfides
connect
ers,separated
by unmineralized
hostrock(Figs.9B-D and
narrow,bedding-parallel
sulfidehorizons.
10).Theselayerstakethe formof sharp,bedding-parallel
Disseminated
sulfides:
Thisstylecommonly
occurs
aslowandanastomosing
sulfide
veinsandbandsofsulfide
withmore
in calcareous
sandstone
horizons,
dolodiffuseandirregularhostrockcontacts.
More diffuseand grademineralization
mites,
and
local
bioelastie
bands
(Shaley
Pales)
where
sphalerirregular
sulfidebandscomprise
laterally
discontinuous
and
itc replaces
bioelastie
components
andfragments.
It isparticdisrupted,
sphalerite-rich
layers(Figs.9C-D and10).
in dolomites
associated
withthe5 lens
Bedding-parallel,
podiform,
high-grade
orehorizons
(e.g., ularlywelldeveloped
and dolomites
of the U lens
2-2 lens;Fig. 11A):In the centralportionof the deposit,
a ore andin sandyealearenites
(Ashton
et
al.,
1995).
particularly
distinct,
massive
orehorizonoccurs
immediately
beneath
theNodularMarker.Although
thesemassive
sulfides
are broadlybeddingparallel,theyexhibithighlyirregular Sulfidetextures
boundaries
andareoftendiscontinuously
developed.
TheupThe sulfidemorphologies
previously
described
exhibita
perandlowercontacts
withthehostrockaresharp;
however, complex
varietyof intimately
associated
oretextures.
Varia-
544
ANDERSONET AL.
c
!)
FIG.9. A.Bedding-parallel,
massive
sulfide
inthe2-1lens.Notetheundulating
footwall
andtheplanar
hanging
wall.
B. Bedding-parallel,
sphalerite
layering
(palegray)in the2-1lens.C. Bedding-parallel
layering
of sulfide
(palegray)in
the2-1lens.D. Bedding-parallel
layering
of sulfide
(palegray)in the2-3 lens.Sulfide
brecciation
occurs
to thebottom
left of pen.
tionin theproportion
anddistribution
of thediffering
tex- gradeandmassive
sulfides
istheoccurrence
ofsphalerite
geoturescommonly
reflects
thedegreeandintensity
of mineral- petaltextures.
Thesecomprise
basal,finelylaminated,
pale
ization,
aswellastheprincipal
oredepositional
processes
and brown,microcrystalline
sphalerite
layersandcoeval,
rhythmithenatureof thehostrock.Thefollowing
distinct
styles
are cally
banded
orcolloform
sphalerite
onthecorresponding
upper
the majorcomponents.
surface
(brown-orange).
Galenacommonly
formssmall,upReplacement
of carbonate
by sphalerite:
Oneof the sim- wardly
growing,
bushlike
skeletal
tocubicgrowths
nucleated
on
plesttextures
occurs
inbedding-parallel
layering
inthecalcar- thelaminated
sphalerite
(Fig.12C).Occasional
laminae
comenites,wherethinsection
petrography
indicates
thatmuch prisingsfit-sized
quartzgrainsareobserved
interbedded
with
of the sphalerite
comprises
a fineamorphous,
palebrown, thesphalerite,
withauthigenic
quartz
overgrowths
onthedetrital
granular
texture,
oftenafteroolitesandbioclasts
(Fig.12A grains.
Although
individual
geopetal
structures
are of limited
andB). Geopetal
sphalerite
sediments
andcoeval
rhythmi- extent,
theyfrequently
occurascomplex,
composite
sequences,
callybandedtexturesoftenoccurwithinnarrow,horizontal whereconsiderable
disruption
isevident
contemporaneous
with
veinsassociated
withthisreplacement.
mineralization
(Fig.12C).
Geopetal
sphalerite:
A characteristic
featureof bothlower Layeredsphalerite
sediment:
Largerscale,palebrown
NAVANZN-PBDEPOSIT,IRELAND:OREDEPOSITIONAL
PROCESSES
'""'
$phalerltedisruptedIntoclaili
'•
545
/--
/..
FIG. 10. Sketchof bedding-parallel
mineralization
in the 2-3 lens.
(Fig.13C).The bestexamples
comprise
sphalerite
sediments
are evidentin bedding-parallel,
high- ent-daystalactites
bandedpyritecorewithaeieular
mareasite
gradehorizons,
interbedded
with subordinate,
quartz-domi- a eoneentrieally
andsubsequent
overgrowths
ofgalena
andcolornatedargillitein places(Fig. 1œC-F).In someeasesthe overgrowths
sphalerite.
Geopetal
sulfide
sediments
dominated
by
sediment
layers
canbetracedlaterally
fora fewtensofcenti- banded
frequently
occurbeneath
thestalaetitie
growths.
meters,andthinningof indixddual
layersat theirlateralmar- sphalerite
galena:Coarse-grained
galenabands(Fig.
ginsislocallyobserved.
Gradedbeddingwithinthesediment Coarse-bladed
occurwithinmassive
sulfidehorizons
impliescurrentactionduringdeposition,
a process
supported 13D) andaggregates
veinsandarebestdeveloped
in high-grade
by the localpresence
of asymmetrical
growthfolds.Other andhigh-angle
Galenabandscanbe fiat lyingandlayered
sedimentary
structures
includeslumping
anddraping
features mineralization.
crosscutting
(e.g.,2-5
(Fig.iœEandF). In thinsection,
the sphalerite
comprises
a (e.g.,2-2 lens)throughto high-angle,
disrupted
andbreeeiated.
Individual
microcrystalline
to granularform,with sporadic
porphyro- lens)andarecommonly
galenabandsvaryfrom a few millimeters
up to 5 em in
blastiegalenagrowths
withinthe sphalerite.
Dendritic-skeletal
galenaand colloformor rhythmically thickness and often exhibit a bladed texture which coarsens in
ofcrystal
growth.
In podiform,
bedding-parallel
bandedsphalerite:This texture featuresa complexin- thedirection
galenacommonly
occurs
asenerustations
withina
tergrowth
of galenaandsphalerite,
whichis bestdevelopedhorizons,
of smallirregular
cavities
or pods,exhibiting
cocksin bedding-parallel,
laterallyextensive
high-grade
horizons network
and in the strata-bound mineralization in the micrites. The
combtextures.
In the vertically
extensive
mineralization
in
galenainvariably
occursearlyin the paragenetic
sequencethe central2-5 lens,similarlytexturedgalenaoccursasan
breeeiated,
high-angle
vein network.Crustiform
andformsdendritic-skeletal
andcubiccrystals,
commonly
as intensely
overgrowths
commonly
postdate
thebladed
galena.
a crystalmesh(Fig. 13A).Thesecrystals
formnucleithat sphalerite
Similartextured,coarse-bladed
mareasite
is locallydevelarecoatedandovergrown
by concentric,
rhythmically
colorbandedsphaleritecomprising
microscopic
bandsvarying opedin the footwallof the T faultin the 2-5 lens,occurring
veins(Fig. 11C).
frompaleorangethroughto darkbrown-red
in color(Fig. asan intensenetworkof crosscutting
granular,
coarse-zoned
sphalerite:
Thisisfre13B).The geometry
o.fthe bandedsphalerite
is essentially Fine-grained,
associated
withthecoarse
galena,
bothreplacing
the
controlled
bythe shapeof thegalenanucleus,
andadjacent quently
hostsurrounding
the galenabandsand forming
nucleifrequentlycoalesce
duringdeposition
of the later carbonate
selvages
predating(below)the galena.In hand
sphalerite.
In thiswayan interconnected
grapelike
textureis well-zoned
the sphalerite
hasa variable
brown-orange
colordeveloped.
In iron-rich
partsofthe2-1lens,eolloform
pyrite specimen
ationandis veryfinegrained.In thin section,
granular
to
occurs
withinthistexturalassemblage.
are commonandfrequently
intergrown
with
Stalactitic
growths:
Rodliketextures
aretermedstalactitic zonedcrystals
sulfidedueto theoverallmorphological
resemblance
to pres- subordinate barite laths and rosettes.
546
ANDERSON ET AL.
D
FIG.11. A. Podiform,
massive
sulfide
(palegray)in the2-2lens.B. Funnel-shaped
features
filledwithmassive
sulfide
in thefootwall
ofthe2-2lens.C. High-angle
marcasite
veining
in the2-5lens.D. Breccia-style
mineralization
in the2-5
lenswithpalesphalerite
cementing
dolomitic
clasts.
Complex,
chaotic
clasts:
Thistexturecomprises
complex,developed
at reentrant
angles
in thecolloform
textures.
Rare
matrix
toclast-supported,
poorly
sorted
assemblages
ofangu- bournonite
maybe associated
withthecoarse
barite.
lartosubangular
polymict
fragments
ranging
fromafewmfilimetersto 15 cm in size,withina detritalquartz-feldsparInterpretation
mud(Figs.14Aand15).Thistexturefeatures
strongly
in
Delicate
replacement
ofhostcarbonates
isclearly
evidenced
the micrite-hosted
mineralization.
Clastscomprise
sulfidesbytheallochem
pseudomorphs,
withmoreintense
replacement
exhibiting
manyof the textures
described
aboveaswell as generally
resulting
intheobliteration
oftheseallochem
compounmineralizedhost rock (abundantmicrite clastsin the 1-5 nents
anda moreamorphous,
grannlar
texture.
lens mineralization).Micrite clastswithin the sulfideshave
Textures
including
dendritic-skeletal,
stalactitic,
geopetal,
sharp,
rounded
to subrounded
margins
thatappear
tobethe colloform,
coarse-bladed
growths,
and sphalerite
sediment
result of dissolution.None of the micrite clastsstudied exhibit areinterpreted
to represent
snlfidedeposition
in openspaces
replacement
bysulfides.
Dark,discontinuous
argillite
layers withinthecarbonate
hostrocks.
Thegeneral
absence
ofeuhearedeveloped
withthismineralization
andare commonlydral,coarse-grained,
cavity-lining
textures
orsubstantial
brecdeformed
bysulfide
dasts(Fig.15).
ciation(collapse)
of theencompassing
hostrocksuggest
that
Honeyblende
sphalerite
_ calcite-dolomite-barite:
This is largecavities
werenotpresent
priorto themineralization.
It
commonly
thelaststage
of mineralization
andbestdevelopedis, therefore,
morelikelythatopenspacewascontinually
infilling
porositywithin
thedendritic
galena
andcolloform
sphal- developed
duringthemineralization.
Theinternalsulfide
sederite(Fig.14B).It consists
ofcoarse
yellow
honeyblende
sphal- imentsprobablyformedby rapidnucleation
of sphalerite
eritecrystals
associated
withcoarse,
whitebariterosettes
and withintheorefluidandsubsequent
deposition
outofsuspenlaths
andcalcite-dolomite,
commonly
brecciafing
allpreviously
sion.Textures
suchasdendritic,
stalactitic,
andrhythmically
deposited
sulfides.
Thecalcite
also
replaces
portions
ofthecollo- banded
formscanalsoindicate
rapidprecipitation
of sulfides
form,rhythmically
banded
sphalerite
andisoftenpreferentially
on mixingof two solutions
bringingaboutsupersaturation
NAVANZN-PBDEPOSIT,IRELAND:ORE DEPOSITIONALPROCESSES
D
E
F
0
cm 5
Fie. 12. A. Bioclasts
in a calcarenite
are replaced
by sphalerite
(horizontal
dimension
= 2.0 ram).B. Oolitesin a
calcarenite
arereplaced
bysphalerite
(horizontal
dimension
= 0.5ram).C. Geopetal
sphalerite
(finelayering)
withbushlike,
skeletal
galena,
deformed
anddisrupted.
D. Layered
sphalerite
atthetopofthe2-4lens.E. Sphalerite
sediment
interbedded
withquartz-rich
material,
illustrating
soft-sediment
deformation.
F. Sphalerite-argillite
sediment
draping
sulfide
clasts.
547
548
ANDERSON ET AL.
FIG.13. A. Dendritic
galena
(horizontal
dimension
= 10ram).B.Colloform,
rhythmically
banded
sphalerite
(horizontal
dimension
-- 1.0ram).C. Stalactitic
pyritegrowths.
D. Bedding-parallel,
coarse-bladed
galena.
(Roedder,
1968;HonjoandSawada,
1982;Garcia-Ruiz,
1986; disruption
of previously
deposited
sulfides,ultimatelyresultingin a complex
assemblage
of clasts.
beenproduced
experimentally
by chemical
gardengrowth Howdid theopenspacein whichsulfides
weredeposited
withrapidprecipitation
bymixing
ofanacidic
andanalkaline form? In the micrites, discordant contactsbetween sulfide
solution
(Russell
et al., 1984).Rapidlyprecipitated
oretex- andhostrocksuggest
thatfracturing
mayhavecontributed
turesmaybe explained
by mixingof the ore-bearing
fluid significantly
to the iuitialgeneration
of space.However,
witha second
fluidat thesiteof oredeposition
(seebelow). sharp,solutional
contacts
suggest
thatthesefractures
localCrosscutting
veinscontaining
coarse-bladed
galena
ormar- izeddissolution
andcreation
ofopenspace
duringmineralizacasiteare interpretedas extension
fractureswhichallowed tion. Suchdissolution
is supported
by the presenceof
theacidic
metal-bearing
fluids
toascend
tocontinually
higher rounded clasts of micrite within the massive sulfides and trunlevelsin the carbonate
hostrocks:
thepresence
of coarse- cationoflayeredbirdseye
fabrics
andstylolites
in themicrites
bladedmarcasiteindicativeof an acidsolution(Murowchick by the sulfides
(Fig. 16).The micrites,
beingmechanically
and Barnes,1986).
weakerandmoresusceptible
to dissolution
thancalcarenites
The complex
chaoticclasts
areindicative
of continual
dis- and dolomites,formed an ideal host for mineralization.
ruptionof the sulfides
duringthe mineralizing
event.This
Openspacein the calcarenites
mayhavedeveloped
by
couldarisefromseismic
activity
relatedtoongoing
extensionsimfiarprocesses
but commonly
occurredat preferential
duringmineralization.
The presence
of featuressuchasin stratigraphic
horizons,
wheredissolution
wasaccompanied
situdisrupted
andbrecciated
veinsandgeopetal
sedimentsby substantial
replacement,
Thelocation
of particularly
high
on the uppersurfaces
of clastsis consistent
with continual gradesulfides
beneath
dolomite
horizons
reflects
localization
passage
of hydrothermal
fluidsthrough,
andsulfide
deposi- of mineralization
at a markedchangein the chemicaland
tionwithin,the accumulating
melange
of clasts.
Thiscould mechanical
properties
of thehostrocks.
arisein a continually
enlarging
system
of openspaces,
with
The originof siliciclastic
argillites
withthesulfides,
parRussellet al., 1989). Stalactiticand rodlike structureshave
NAVANZN-PBDEPOSIT,
IRELAND:OREDEPOSITIONAL
PROCESSES
549
14. A. Chaoticsulfideclastsin the micrite-hosted
1-5 lensmineralization.
B. Coarsehoneyblende
sphalerite
brecciating
dendritic
andcolloform
sulfides
(horizontal
dimension
= 5 ram).
Conglomerate,
pyrite-deficient
areasof
ticularlyin themicrites,is unclear.Petrography
of themi- baseof the Boulder
andgalena
occur
withinthematrix
andasa replacecritesindicatesonlya minorsiliciclastic
component(1- sphalerite
Rareclasts
andnodules
of silica2%). However,discreteargillitebedsare presentin the mentof theconglomerates.
havebeenrecorded
fromtheBoulder
Conglomerate
Micrite unit. Two possible
explanations
are considered.hematite
Argillitelayerspresentin theMicriteunitcouldhavebeen close to the mineralization.
Thelaminated
pyriteoftenexhibits
soft-sediment
deformaassimilated
duringthe mineralization.
Alternatively,
an exandisdominated
byframboidal
growths.
These
oticclastic
inputmayhavebeensupplied
duringtheminer- tionfeatures
framboids
locally
coalesce
toformsmallconcretions.
Sphaleralizingevent.
itcandgalena
occurwithintheironsulfides
asmassive
bands,
Conglomerate
Groupore
disseminations,
andcrosscutting
veins,andit is clearthata
M'meralization
in the BoulderConglomerate
occurs
almost substantial
amountof theZn-Pbsulfides
postdate
thepyrite
exclusively
in the southeastern
areaof theorebody
occupyingandformedbyreplacement.
Thisis a similarparagenesis
to
two areason either side of the A fault (Ashtonet al., 1992). the Fe-richpartsof the 2-1 lensimmediately
beneaththe
Thethickest
andmostlaterally
persistent
intersections
of Con- Conglomerate
Groupore.The breccias
withinthe massive
glomerate
Grouporearefoundin zone3 between
theA and sulfides
occurin a varietyofforms.Clasts
dominated
byironC faultsystems
whereoreextends
overa 40-m-vertical
interval. rich(pyriteandmarcasite)
massive
sulfides
andangular
ripup
It is typically
a highlypyriticmassive
sulfidewitha vagueto clasts
of argillitearecommonly
intercalated
in themineralmoderately
welldeveloped
bedding-parallel
layering,
a highly izedconglomerates
(Fig.17A).In places,
pyriteandsphalerite
variable
composition
withrespect
to theproportion
of Fe to form the matrix to clasts of Pale Beds and Waulsortian LimeZn-Pbsulfides,
andsubstantial
variation
in the grainsizeand stone(Fig.17B).Rareclasts
ofiron-deficient
sulfides,
simfiar
texture
ofthesphalerite
andgalena.
Several
styles
ofmineraliza-to PaleBedshostedore andshowing
truncation
of layering
tioncanbe recognized.
Thebulkof theorecomprises
high- at dastmargins,
arepresentin the BoulderConglomerate.
grademassive
sulfides
ascomplex
breccias
andintergrowths
of In othercases,
however,
it is.evident
thatsphalerite
haslocally
themargins
of PaleBedsclasts.
marcasite-pyrite,
sphalerite,
andgalena.
Layers
andpatches
of replaced
TheConglomerate
Grouporeisinterpreted
tohaveformed
massive
andlaminated
pyritecontaining
onlyminorZn or Pb
of theBoulder
Conglomerate,
occurwithor adjacent
to theore.Locally,
especially
nearthe duringandaftertheformation
550
ANDERSON ET AL.
concentration
of dark
orgillite at the contact
between •lphides and
host rock
micrite
org•lhte appears to be squeezed up into
and along bedding in the miCrite
complex• choataC clast• locally
deforming the orgillite
micr•te
dark argillite
FIG.15. Drawing
ofanunderground
heading
in the1-5lensshowing
a matrix-supported,
poorlysorted,
chaotic
sulfide
clastassemblage
hosted
bymicrites.
Notethecommon
occurrence
ofdarkargillite
in thesulfide
horizon,
inplaces
deformed
by sulfideclasts,
andsimilarmaterialat the contacts
withthe hostmicrites.
withsphalerite
andgalena
superimposed
onearlierironsulfides the purityof the separates.
Although
not all samples
were
onlyonesulfur-bearing
phase.
(Ashton
et al.,1992).Layered
framboidal
pyritesuggests
early pure,all contained
SO2gases
wereproduced
fromthe separates
usingstandiagenetie
growth
ofironsulfides.
Sulfide
elasts
exhibiting
trunprocedures
(afterRobinson
andKusakabe,
cationof Zn-Pblayering
at the elastedgesindicate
thatpre- dardcombustion
viously
deposited
sulfides
wererippedupduringtheformation 1975, for sulfides;after Coleman and Moore, 1978, for sulanalyzedon an Isospee64 or VG
of the BoulderConglomerate
andrepresent
criticalevidence fates)and subsequently
forthetimingof themineralization.
Thepresence
of elasts
of 602mass
spectrometer.
Reprodueibility
based
onfullrepeat
PaleBedswith sphalerite
replacement
restricted
to the elast analyses
(including
combustion)
wasbetterthan___0.2
permil
resultsareexpressed
in conventional
margins
indicates
thatat leastpartof the mineralking
event (l•r). All sulfurisotope
asperrail(%•)deviations
relativeto Cation
occurred
afterdeposition
ofconglomerate.
Thepresence
ofthin delta(•5)notation,
stratiform
bandsof sphalerite
andgalenain the Thin Bedded Diablo trollire (CDT).
unitnearthebaseof theUpperDarkLimestones
dearlyattest Results
thatthemineralizing
eventcontinued
aftertheformation
of the
Sulfurisotope
results
aregivenin theAppendix
andillusBoulderConglomerate.
tratedin Figures18 to 24.
Rapidprecipitation,
open-space
textures:
Thesesulfide
texSulfurIsotopes
turesexhibit/•34S
valuesfrom-32.6 to 11.3per mil (Figs.
19-21). However,
themajority
of theresults
arelessthan0
Afterdetailed
petrographie
andparagenetie
relationships
had permil.Thereisa tendency
forisotopically
lightervalues
to
beenestablished,
a sulfurisotope
study
wascarriedoutonsul- beassociated
withparagenetieally
latersulfides
withina given
fideandbaritesamples,
representing
thediffering
oretextures sample(Fig.21).
andstyles
of mineralization.
Theobjective
wasto elucidate
the
Coarse-bladed,
zonedandgranulartextures:
Thisinchides
origin(s)
of thesulfurandoredepositional
processes.
bothbedding-parallel
(e.g.,2-2 lens)andcrosscutting
(e.g.,
In mosteasessulfideandsulfateminerals
wereseparated 2-5 lens)styles.
With the exception
of oneanalysis
of -15.7
frompolished
handspecimens
usinga fine,diamond-tippedper mil, thesesulfidetextures
arecharacterized
by a range
from -1.1 to 14.9 per mil,
dentaldrill.RoutineXRD analyses
wereperformed
to cheek in sulfurisotopecompositions
Techniques
NAVANZN-PBDEPOSIT,IRELAND:OREDEPOSITIONALPROCESSES
551
Fro. 16. Drawingof anunderground
heading
in the 1-5lens,showing
layeredbirdseyes
in theMicriteunittruncated
by thefootwall
of theoverlying
massive
sulfide.
dominated
byhigh•34Svalues
(Figs.19,22,and23).This A raresample
of celestite
foundin late,crosscutting
barite
is exemplified
bythe coarse-bladed
galena,
which,withthe veinsin the2-3lens,neartheB fault,gave39.1perrail.Two
exception
oftwoanalyses
of- 1.1and-0.7 perrail,ischarac- samples
of gypsum
fromtheLaminated
Bedsgaveresults
of
terizedby values>0 per rail (Fig. 22). Again,thereis a 21.0and22.5per rail.
trendtowardisotopically
lightervalues
inparagenetically
later
sulfides
withina givensample(Fig.23).
Interpretation
Bedding-parallel
replacement
of carbonate:
Sulfurisotope
All resultsare plottedin Figure18. Sulfides
results
fromsamples
ofthismaterial
exhibita rangeofvalues Summary:
threemaingroupings,
with the two major
from-23 to -14.5 per rail (Fig. 19).The resultsfall into showessentially
at -15 to -23 and8 to 12perrail,together
with
twogroups
withsamples
fromthe 1-2and1-4lenses
having peakranges
have
lower•34Svaluesthanthosefromthe 2-2 and2-4 lenses(-23 a smallpeakaround-30 to -32 perrail.Sulfateresults
a tightmeanat 21 _+2 perrail (1or).
to - 19.2%ovs.- 16.6to - 14.5%o,
respectively).
Sulfate:
Thebaritemeanwitha 634S
= 21 ___
2 perrail,falls
Framboidal
pyritein the Conglomerate
Groupore and
recognized
forlowerCarboniferous
colloform
pyrite-marcasite
in lens2-1:Onlya limitednumber withintherangegenerally
sulfate:
14 to 22 perrail (Claypool
et al., 1980).We
ofanalyses
werecarriedoutonthismineralization.
Pyriteand seawater
thatcontemporaneous
seawater
sulfate
wasthedomimarcasite
in the Conglomerate
Grouporeandimmediatelyconsider
of sulfurin thebariteat Navan.Thisinterpretation
underlying
a portionofthe2-1lensexhibitsimilar,
extremely nantsource
withstudies
ofotherIrishdeposits
atTynagh
(Boast
negative
isotopic
compositions,
ranging
from-37.3 to -28.2 isconsistent
perrail(Fig.19).In bothcases,
theironsulfides
predate
Zn- et al., 1981) and Silvermines(Cooruerand Robinson,1978;
Pb mineralization.
Boyceet al., 1983b;Boyce,1990).It should
be notedthatthe
valueat Navan
issomewhat
34Senriched
compared
Sulfates:
Baritesamples
exhibit
a range
of•34S
values
from mean634S
17.7to 35.0 per rail,with the bulkof the databetween18 totheothertwodeposits
(•18%oforSilvermines;
Boyce,
1990;
forTynagh;
Boastet al.,1981),possibly
reflecting
and24 per rail (Figs.18 and19).Excluding
threeoutlying and19.4%o
heavyvalues
themeanbarite•34Svalueis 21 ___
2 perrail a distinction
in ageand/orsetting
between
the deposits
(see
(1or,n = 23).
below).Claypool
et al. (1980)alsonotethatinterbasinal
differ-
552
ANDERSON ET AL.
makesit unlikelythat bacteriogenic
reductionof evaporites
couldhaveprovidedthe quantities
of bacteriogenic
sulfur
invokedin the formation
of the deposit.
Gypsum
is present
in the Pale Beds some 45 to 50 km west of Navan at Keel
andfartherwestat Strokestown,
presenting
thepossibility
of
a sulfate-rich
brinebeingderivedfrom dissolution
of such
evaporites
andmigrating
duringdiagenesis.
Thispossibility
isdifficult
to assess,
buttherearegeological
andgeochemical
arguments
to thecontrary.
First,thebrineswouldhavebeen
requiredto migrateacrossthe northeast-trending
strikeof
the structural
grain,whichseemsunlikely.Second,
thereis
the problemof massand isotopic
balancefor sulfur.The
sulfide
andsulfate
6a4S
dataforNavansuggest
bacteriogenic
reductionin a systemopento sulfate.A sulfursourcevia
transported
evaporite-derived
brineswould,therefore,requireunrealistic
volumesof fluidto resultin the observed
quantity
of oresulfur.Contrast
thiswiththesituation
at Pine
Point(Rhodes
et al.,1984)whereclosed-system
reduction
of
transported
evaporite
brineresults
in sulfide
6a4S
values
directlycomparable
to theoriginalevaporite
value,i.e., • 20
permil.Reduction
of sulfatein lowerCarboniferous
seawater
is favored at Navan.
The replacivenatureof the PaleBedsore incorporating
biogenic
sulfurimpliesthatlocalcirculation
musthaveeither
transported
reducedsulfurto the siteof ore deposition,
or
introduced sulfate for in situ bacterial reduction. Anderson
(1983)notedthatthe amountof bacteriogenic
sulfurin an
economic
Zn-Pbdepositistoogreatto havebeenpresentin
a staticfluidpriorto introduction
of the metals,andit is
essential
to havea continuous
supply
of reduced
sulfurto the
metalsto producethequantities
of oreobserved.
Thiscould
be achieved
by continuous
in situreduction
of sulfateat the
Fluidinclusion
temperatures
at Navan,
Fie. 17. A. Clasts
of sulfide(palegray)in theConglomerate
Groupore siteof mineralization.
(lens3). B. Clasts
of PaleBeds(darkgray)cemented
bysulfide
(palegray) whichrangefrom 150ø to 258øC(Probert,1983;Everett,
in the Conglomerate
Groupore(3 lens).
1997;commensurate
withfluidinclusion
temperatures
at Silvermines
andTynagh:
seeSamson
andRussell,
1987;Banks
andRussell,
1992)suggest,
however,
thatthishot,hydrotherences
during
thelowerCarboniferous
weregreater
thanatother mal environment would not be conducive to in situ sulfategeologic
periods.
reducing
bacterial
activity.
However,
thebacteriogenic
reducSulfide-bacteriogenic
sulfur:Thegrouping
of thenegativetionneednottakeplacein the hottestpartsof the deposi6a4S
datafrom-23 to -15 permil(Fig.18)isinterpretedtionalsite.Recentworkin the Guaymas
basinhasconfirmed
asresulting
frombacteriogenic
reduction
of the lowerCar- thatsulfatereducers
canactively
producesulfideat temperaboniferous seawater sulfate source indicated above. This com- turesbetween
80øand102øCandperhaps
to temperatures
as
ponentisparticularly
evidentin allochem
replacement
(Fig. greatas120øC(Elsgaard
et al.,1994).Petrographic
evidence
19)andtherapidprecipitation,
open-space
textures
(Fig.20). indicates
theinitiation
of carbonate
diagenesis,
including
doIt represents
a bacteriogenic
fractionation
of some35 to 45 lomitization,
priorto mineralization;
open-system
bacterioper mil, typicalof naturallyoccurring
opensystems
(e.g., genicsulfatereduction
in the limitedremaining
porespace
Goldhaber
andKaplan,1975;FisherandHudson,1987).A seemsunlikely.Sulfides
in largeveinsin the 2-5 and 2-4
substantial
negative
6a4S
component,
attributed
toopen-syslensesincorporated
a dominant
component
of bacteriogenitembacteriogenic
reduction,
is typicalof othermajorIrish callyderivedsulfur.The sizeof theseveins(up to 0.5 m
deposits
(Coomerand Robinson,
1976;Boastet al., 1981; wide)impliesmajorextensional
forces,presumably
allowing
Boyceet al.,1983b).Theoriginof a second
modeof -10 to bacteriogenic
sulfide-bearing
fluiddownintofractures
which
-6 per mil in Figures18 and19 will be discussed
below. werealsoaccessed
by the ascending
hydrothermal
fluids.In
Interpreting
thelow6a4S
valueasbacteriogenic
reductionaddition,the presenceof barite within massivesulfides
of sulfate
witha lowerCarboniferous
seawater
compositionformedby open-space
infill,with an isotopic
composition
suggests
either reductionof seawatersulfateor sulfatede- indistinguishable
from contemporaneous
seawatersulfate,
rivedfromevaporites
precipitated
fromlowerCarboniferousimpliesthatseawater
gainedaccess
to themineralizing
zone
seawater.
Thelackof evidence
forthepresence
of substantialandmayhavebeenthemediumfortransport
ofbacteriogenic
quantities
of evaporites
in thestratigraphy
in theNavanarea sulfur.Subsea-floor
penetration
byfluidscarrying
contempo-
NAVAN ZN-PB DEPOSIT, IRELAND..ORE DEPOSITIONAL PROCESSES
553
Sulfides
Barite
FIG.18. Histogram
showing
the sulfurisotopes
results
of all sulfides
andsulfates.
raneous
seawater
sulfateis alsonotedat Silvermines
andTy- the Conglomerate
Groupore(Figs.18 and19).Giventheir
nagh(Coomer
andRobinson,
1976;Boast
et at.,1981;Boyce, similarisotopic
compositions,
oretextures,
parageneses,
and
1990).It isconcluded
thatthebacteriogenically
derived
sulfur closespatial
relationship,
it isreasonable
to assume
thatdepowastransported
to thesiteof oredeposition.
sitionof theseironsulfides
wascontemporaneous.
TheisotoThereisa significant,
if minor,•534S
component
lowerthan picdistinction
betweensuchpyrite-marcasite
andsphalerite
-28 per mil in pyriteandmamasite
fromthe 2-1 lensand andgalenain the PaleBedsmaybe attributed
to a different
timingand/orsulfidedepositional
environment.
A similar,
•34SCDT
(%0)
I I I I I I I I I •1
I I I I I I I I
I
Framboidal
(Fe Sulfides,CGO) Colloform
(Fe Sulfides,2-1 Lens) -
ReplacedAllochems
(ZnS) Laminated
(ZnS) Dendritic
(PbS) Honeyblende Stalactitm
(Fe Sulfides) Cubic
(PbS) Granular
(ZnS)
RhythmicallyBanded
(ZnS) Zoned
(ZnS) Coarse Bladed
(PbS,Marcasite)Coarse Bm'ite -
almost
exclusively
pyriticcomponent
of low634S
wasalso
notedat Silvermines
(Boyceet at., 1983b;Boyce,1990).A
distinction
betweenmain-stage
sulfideandpyritehasalso
been notedin the basemetaldepositsat Mount Isa and
Rammelsberg
by Eldridgeet at. (1986).A bacteriogenic
sourceis favoredat Navan,althoughthe mechanism
of
achieving
the additional
fractionation
is notwellunderstood
(Boyceet at.,1983b;Fallicket al., 1990).It isplausible
that
an environment
of bacteriogenic
reductionin the Boulder
Conglomerate
andimmediately
underlying
Pale Bedswas
moreoxidizing
in proximity
to the lowerCarboniferous
sea,
relative
to thedeeperPaleBeds,resulting
in additional
fracrionation
(through
reoxidation
of reducedsulfurspecies,
followedby furtherbacteriogenic
reduction)
andpredominant
deposition
of ironsulfides.
Notethatthe extentof bacteriogeniefractionation
isgoverned
bytheconditions
underwhich
thebacteria
operated,
andeventhetypeof bacteria
caninfluenee
thefractionation
(Kaplan
andRittenberg,
1964;GoldhaberandKaplan,1975);furtherspeculation
asto thebacteriogenie
environment
anditsrelationto isotopic
fractionation
is,therefore,
beyond
thescopeof thispaper.
On the basisof semiquantititative
assessment
of texture
andisotopic
compositon,
wepointoutthatbacteriogenic
sulfidedominates
in thedeposit.
Sulfide-hydrothermal
sulfur:Figures18 and22 showa dis-
tinctpeakin 6a4S
values
around
10permil,withina range
FIc. 19. Summary
of the ranges
of sulfurisotope
results
fromdifferent
minerals and textures.
spanning
•0 to 15permil.Thesevalues
wereobtained
largely
fromcoarse-bladed
growths.
Theyareinterpreted
to be froma
separate
sourceof sulfurfromthe bacteriogenic
supply.
The
554
ANDERSON ET AL.
10
8
i----I Rhythmically
Banded
•
F•c.
20.
Cubic
•
Stalactitic
•1
Honeyblende
•
Denddtic/Skeletal
I
Laminated
Histogram
of sulfurisotope
results
fromsulfides
interpreted
to haveformedbyrapidprecipitation.
twomostlikelycandidates
fortheisotopically
heavy
componentis foundat or exceeding
thevalueof thesulfate
reservoir,
viz.
are thermochemical reduction of lower Carboniferous seawater 22 permil (of.Ohmoto
andRye,1979;Ohmoto,
1986;Naylor
sulfate
orsulfate
transported
withthemetals,
byorganic
matter et al., 1989). Furthermore,thermochemicalsulfatereduction,
orhydrocarbons
atthesiteof oredeposition;
anda componente.g.,byCH4,wouldhaveresulted
inproduction
ofbicarbonate,
of hydrothermal
sulfide
transported
withthemetals.
Thepres- resulting
in distinctively
low613Cvaluecarbonate
cements
enceof significant
quantities
of baritein the deposit
militates (Krouseet al., 1988);suchvalueshavenotbeenfoundat Navan
against
the transport
of appreciable
amounts
of sulfate
in the (Braithwaite
andBi7.7i,1997).We advocate
a hydrothermal
orefluid,giventhe insolubility
of bariumsulfateevenin acid component
of HzStransported
withthemetals,
asrecognized
solutions.
Thereduction
of seawater
sulfate
isiraplausible
since in manyIrishdeposits
(e.g.,Coomer
andRobinson,
1978;Boast
thedistribution
ofthe634S
valueisnotthatexpected
ofthermo- et al., 1981; Caulfieldet al., 1986). This is consistentwith the
chemical
sulfate
reduction.
Forexample,
nosulfide
634S
value isotopically
heavysulfurbeingdominant
in paragenetically
earlier stages
of mineralization
(seebelow).Interpretation
of a
component
of HzStransported
withthemetals
implies
anacid
orefluid,consistent
withprevious
observations.
Regarding
the sourceof thehydrothermal
sulfide,
the ab2-4 Lens/massive
sulphide
senceof igneous
activitycontemporaneous
withthemineralizationand the isotopiccomposition
itselfare inconsistent
withanigneous
origin.LowerCarboniferous
diagenedc
pyritehasa substantially
morenegative
634S
signature
(Boyce,
1990);remobilization
of this sulfideis unlikelyto be the
sourceof the hydrothermal
sulfide.
Analternative
originistherelease
ofsulfurfromaliagenetic
sulfides
duringhydrothermal
metamorphism
(Bischoff
et al.,
1981)asaqueous
fluidsconvect
withintheunderlying
Lower
Paleozoic
rocks(Anderson
et al., 1989).Thishydrothermal
sulfurthenshares
an originwiththe metals(Russell,
1978,
1986;Mills et al., 1987).Were suchdiagenetic
sulfides
to
haveprovided
the inferredhydrothermal
sulfurcomponent,
thentheirrespective
weighted
meansulfurisotope
compositions
would
be
broadly
similar.
Diagenetic
pyrite
disseminaFIG. 21. Diagramillustrating
morenegativesulfurisotoperesultsin
paragentically
latersulfides.
tions,concretions,
andblebsoccurring
in drillcorethrough
NAVANZN-PBDEPOSIT,
IRELAND:
OREDEPOSITIONAL
PROCESSES
555
10
Coarse Bladed
Zoned
Granular
Fic.
22.
Histogram
of sulfurisotope
results
fromcoarse-bladed
andassociated
textures.
LowerPaleozoic
mudstones
beneaththe deposithavebeen
sampled
in detailto testthishypothesis
(Boyeeet al., 1993,
1994).A strong
modeof •534S
values
around5 to 10 permil
is seen,in agreement
withthehypothesis.
Mixingofthetwosulfursources:
A striking
featureof the
isotopic
results
is thedosecorrelation
between
textureand
•534S
values.Galenadearlyillustrates
thiscorrelation,
with
ing of sulfidein Ordovician
graywacke
(sampled
100km
southwest
ofNavan)
byseawater
andbrine,at200øC
contributedlittledissolved
sulfidetothefluid,anda limitedsupply
at
350øC(a temperature
substantially
higherthan150ø-258øC
recordedfromthe Navandeposit;Probert,1983;Everett,
1997).Closed-system
baeteriogenie
reduction
ofseawater
sulfatecouldgivea largespread
in •534S
of sulfide
produced
andBurnie,1973);however,
it wouldbe expected
coarse-bladed
textures
exhibiting
positive
ornearpositive
•534S(Sehwarez
wouldbe toward
isotopically
heavier
results
values,
compared
to dendritie
varieties
whichhavenegative thatanytrends
with
time,
which
is
the
opposite
of
that
observed
in
the
miner•5•4S
values.
Similarly,
alls•h•alerite
alloehem
replacement It is,therefore,considered
unlikelythatthe spread
textureshave negative•5 S values(-23 to -15%o). alization.
bya singlesulfursoume.
Furthermore,
thereisanoverall
trendtoward
isotopically
lighter in thedatacanbe explained
fluidscouldexplain
thevaria•534S
values
inlaterparagenetie
stages
ofsulfide
deposition
(Figs. Mixingoftwosulfur-bearing
Thefirst,thehydrothermal
reservoir
witha
21 and23). Thisis perhaps
bestillustrated
in samples
from tionsobserved.
•534S
of
--•
10
per
mil,
is
evident
in
paragenetieally
earlier
stages
lens
2-5where
apara•4e,
netie
sequence
ofsulfide
deposition
is
andtypifiedby coarse-bladed
galenaand
established,
andthe •5 S valueshiftsfromaround7 to 11 per of mineralization
Thesecond,
thebacteriogenic
reservoir
witha(534S
milin earlysphalerite
andgalena
to -3 permilandeventuallymarcasite.
suchasdendritie
growths
-14 permil in subsequent
color-banded
sphalerite
(Fig.23). of --•-20permil,isseenintextures
To explain
boththeranges
in •5•4S
andtheisotopically
heavy and laminated sediments and becomes dominant in alloehem
Wherebothreservoirs
contribute
sulfur,an
values
inparagenetieally
earlysulfides
(witha shifttoward
lower replacements.
isotopic
composition
isobserved
(e.g.,the-12
values
in laterstages),
twopossibilities
areconsidered:
first, intermediate
in Fig. 18).
precipitation
froma single
sulfur-bearing
fluid,andsecond,
mix- to 6%0samples
Tobetterassess
themixing
model,conventional
laser-comingof twosulfur-bearing
fluids.
(Kelley
andFalliek,
1990)isotopic
profiles
weremade
Precipitation
involving
sulfurin a single
hydrothermal
fluid bustion
ofcrystal
growth,
across
a25-mm-thiek
galena
wouldrequiremajorfluctuations
in eithertemperature,
pH, inthedirection
fo2ora combination
oftheseparameters
(Ohmoto,
1972;Rye band from the 2-1 lens. A distinct textural break is evident
andOhmoto,1974);mostlikelya movetowardhigherfo.•. around 6 mm above the base and marks a transition from
grained
(upperband)galena.
Importantly,
it is notconsidered
possible
to transport
suffi- finer(lowerband)to eoarser
cient metal and reduced sulfur in the same solution to form an The results
(Fig.24) canbe summarized
asfollows:
economic
Zn-Pbdeposit
underrealistic
conditions
(Anderson
1975,1983).Indeed Bisehoffet al. (1981)showedthat leach1. The rangeof valuesacross
a singlegalenabandis
556
ANDERSONET AL.
context,
it isinteresting
thatsulfides
deposited
asopen-space
groxvths
donotexhibit
•4Svalues
greater
than0 permiland
THIN
SECTION
TRANSMITTED
UNDER
d's
LIGHT
T
r_.hythmically.banded
..aphalerite
and coeval
extremely
negative
values.
Thiscouldbea result
.ANGE
•N0'%VALUES trendtoward
IN ALL SAMPLES
of mixingof a subordinate
component
of isotopically
heavy
hydrothermal
sulfurtransported
withthe metals,
witha far
moreabundant
component
ofbaeteriogenie
sulfur;
thehydrothermalsignature
beingoverwhelmed
by the baeteriogenie
component
at thesiteof oredeposition.
Summary
-14.48%.
sediments
( -15.60 to+3.00%o)
- 2.75%,3
coarse bladed ,galena
, 10.21ø'oo
Twosources
ofsulfide
sulfurareinterpreted
fromtheisotopicresults,
a dominant
baeteriogenie
component
derivedby
the reductionof lower Carboniferousseawatersulfate,and a
( ø7.72 to o10.97%o)
subordinate
hydrothermal
component
transported
withthe
metals.The latterwaspreferentially
incorporated
into the
paragenetieally
earliest
sulfides.
Therateofsulfursupply,
and
theinterplay
betweenthe twosources,
governs
the mineral
textures
andthesulfurisotope
signatures,
thusexplaining
the
relationship
observed
between
thesetwofeatures.
Sulfate
was
derived from lower Carboniferous seawater.
Discussion
coarse
(zoned)
Iø
10.76%o
(.7.10
õphalerlte
to.10.76
,%•)
Controls
on thelocationof mineralization
Bedding-parallel
mineralization
isfrequently
developed
atthe
contact
between
deanlimestones
andoverlying
detrital
silt-rich
dolomite
(Fig.9A).Therefore,
understanding
thisstratigraphic
control on the location of the mineralization is fundamental to
the understanding
of oredepositional
processes.
Thinsection
FIG. 23. Diagramillustrating
morenegative
sulfurisotoperesultsin petrography
indicates
that
the
earliest
stage
of
dolomitization
paragentically
latersulfides.
withinthesedolomitic
horizons
inthePaleBedspredates
sulfide
deposition.
Whatcontrol
wasexerted
bythedolomitized
horizons
on
later
sulfide
deposition?
The
ore
textures
and
their
virtually
thesameasthatobtained
fromsimilar-textured
garelationships
with
host
rocks
indicate
that
the
sulfides
were
lenathroughout
thedeposit.
Thus,interpretation
ofthissamdeposited
asacomplex
sequence
ofopen-space
growths
inmany
plemayhaveimplications
forthedeposit
asa whole.
cases,
forcing
the
conclusion
that
spaces
developed
preferen2. Thetextural
breakduringgalenagrowthcorresponds
to
tiallyat thesestratigraphic
levels
at thetimeof mineralization.
a majorshiftin theisotopic
composition.
The
most
readily
envisaged
processes
in theformation
ofopen
3. Thereis an apparent
trendtowardisotopically
lighter
space
are
dilation
or
dissolution.
values
throughout
thelowerbandandthetopportionof the
veining
wouldproduce
a thickupperband.In the latter,thistrendcontinues
into subse- Dilation:Bedding-parallel
eningofthestratigraphic
intervals
hosting
themineralization.
quentovergrowths
of rhythmically
bandedsphalerite.
4. Therearemajorshiftsin galena
6s4S
values
overshort However,AndrewandAshton(1985)clearlydemonstrated
Indeed,anantipathetic
relaverticaldistances,
e.g.,3.9 to 14.4per rail andbackto 6.5 thatthereisnosuchthickening.
tionship
between
vertical
thickness
and
ore
grade
is
evident
per mil over< 1 min.
in severallenses,rendering
it unlikelythat dilationwasa
The resultsare interpreted
in termsof variations
in the majorprocess
with regardto the mineralization
at Navan
ratioof baeteriogenie
to hydrothermal
sulfurcomponents.(Andrew and Ashton,1985).
A dynamicmixingregimeis plainlyindicated.
Wherethe
Dissolution:
Dissolution
atpreferential
stratigraphic
levels
baeteriogenie
component
increases,
systematic
shiftstoward in thecarbonate
sequence
couldgenerate
openspace.
In this
lower6s4S
values
occur,
forexample,
in thelowerbandand context,the dolomitic
horizons
appearto havea relatively
thetopportionof theupperband.
uniformthickness
throughout
thedeposit,
irrespective
of the
The common
occurrence
of isotopically
mixedsulfidein presence
and/orabsence
of underlying
mineralization,
indihandspecimens
throughout
theminehighlights
theprobabil- catingthatthedolomitic
horizons
themselves
werenotextenity thatoredeposition
wasfacilitated
through
mixingof the sivelydissolved.
Anydissolution
would,therefore,haveaftwofiuids--arelatively
hot,metal-rich,
sulfur-poor
hydro- fectedthe underlying
limestones.
Thisis supported
by the
thermalfluid with relativelycool,metal-poor,
sulfur-rich highlyirregular,
undulating
footwallcontacts
to thesesulfide
modified
seawater.
Manyoretextures
suchasstalaetitie
and horizons
compared
totheessentially
planarhanging-wall
condendritie
growths
aresuggestive
of rapidprecipitation
of the tacts, and the observationthat clastsof host rock within the
sulfides,
whichcouldbe achieved
by suchmixing.In this mineralization
aredominantly
limestone,
withonlylocaldolo-
NAVANZN-PBDEPOSIT,IRELAND..ORE DEPOSITIONALPROCESSES
557
rhythmic. .sl•halerite
25
hand-drilled
traverse
20laser
traverse
coarse bladed galena
15
-
•
/
o
(13
10-
5-
-- TEXTUiAI,.
BREAK
-medium.fine bladed galena
Q
FIG. 24.
I
I
I
I
l
-5
0
+5
+10
•15
Hand-drilled
andlasersulfurisotope
traverse
across
coarse-bladed
galenain the2-1 lens.
mite. Dissolution of the limestones could result from karstifi-
metals
weretransported
aschloride
complexes
(Lydon,1986),
of the sulfides
wouldbe acidgenerating,
eationprocesses
priorto the mineralizing
eventor by the then deposition
hydrothermal
fluidsthemselves.
Rizzi(1993)hasidentified whichcouldresultin carbonatedissolution(Anderson,1983).
minorkarstifieation
features
associated
withemergent
sur- The observation
that high-grade
horizonsare morerarely
facesin the MieriteunitandPaleBedshostlithologies
and developed
at the contactbetweendolomiteand overlying
arguesthattheyrepresent
layersof highpermeability
and limestone
arguesagainst
a purelychemical
controlmodel,
lowcompetence
whichcouldhaveactedasa controlon the where dissolution occurs at the contact due to differences in
channeling
of orefluids.Karstifieation
processes
havebeen chemistry
betweendolomiteandlimestone.
It is, therefore,
proposed
to explaincavities
associated
withstrata-bound
Zn- proposed
thatthelithological
contrast
between
thedolomite
Pb mineralization
in the AlpineMiddleandUpperTriassic andtheunderlying
limestone
provided
a permeable
pathway
deposits
(Klauand Mostler,1986),Nanisivik(Olson,1984), whichfacilitated
the lateralflowof the hydrothermal
fluids
andPinePoint(Rhodes
et al.,1984).In theAlpineandPine with the resultant dissolution and mineralization. It is unclear
Pointdeposits,
meteoric
karstification
ormixing
zonedissolu- whatcaused
theinitialpermeability
atthiscontact.
However,
tion relatedto subaerial
exposure
afteremergence
of the the differingcompetence
andmechanical
behavior
of limecarbonate
platformhasbeenproposed
(KlauandMostler, stones
anddolomitized
horizons
asa consequence
of tilting
1983, 1986; Rhodes et al., 1984). At Nanisivik the initial andweakflexuring
duringextension
is considered
the most
karsticnetworkmayhavebeenenlarged
by hydrothermallikelyexplanation.
fluids (Ford, 1986). The absenceof featuresat Navan such
An importantstructural
controlon the mineralization
is
asinternalcarbonate
sediments
or majorcollapse
breccias shownby contouredmetaldistribution
plots(Andrewand
andotherassociated
karstic
features,
suggests
thatlargeopen Ashton,1985).Theseindicatethatlocalized
areasof higher
spaces
werenotpresent
priorto themineralization.
It ismore grademineralization
arenortheast
to east-northeast
trending,
plausible
thatmajordissolution
wasrelatedto themineraliz- particularly
in the4 and5 lenses,
withlocalswings
to a more
ingevent,similarto thatproposed
forthe Zn-Pbdeposits
in easterlytrend.Sulfideveinsin the depositgenerally
strike
theUpperSilesian
district(Sass-Gustkiewicz
et al.,1982)and northeast, and Andrew and Ashton (1985) conclude that
recentlyfor PinePoint(QingandMountjoy,
1994).If the northeast
fracturing
and,in particular
faulting,
wasa primary
558
ANDERSON ET AL.
NW
SE
.---BLOCK
15
•. (
BLOCK 14
'F$•,,,...t•.
'
Lower
Do•k
Marker
Equivalent
..
!:'"""•
•'5ø/u
ZnePb
•:: }t:
_ ?:-..'•:".'
..';-.;J:"?
'- :':-*
'-•"•t.•J' "'"'-'
'.
-;'---- t-:.:/',•,-•Y.'{.t•'
Llmi•t•d
-.'.:':'"FW "' '
•d•
FIG.25. Examples
of thebuildupof sulfidein the 1-5lensin thehanging
wallof normalfaults.
controlonthemineralization.
Twoexamples
illustrating
this theregional
tilting(Hercynian?).
However,
the strongest
conrelationship
areshown
in Figure25,wherea buildupof ore straints
on the timingof mineralization
canbe inferredfrom
occurs
ontheimmediate
hanging
wallofa fault.A connectionfeatures
of the BoulderConglomerate
andrelationships
with
between these accumulations of sulfide and this northeast- the immediately
underlying
PaleBedsmineralization
(Ashton
southwest
faulting
isinferredbutnotspecifically
to theindi- et al.,1992).Layered
pyfitein theBoulder
Conglomerate
and
vidualfaultplanes
whicharecommonly
unmineralized
(An- theThinlyBedded
unitisdominated
by framboids,
suggesting
drewandAshton,1985).It is envisaged
that fracture-controlledpermeabfiity,
whichlocalized
mineralization,
waspreferentially
developed
in the hanging
wallof thesestructures
. ::"
.4' "
astheyformed,givinga structural
control
to oredeposition.
Thisissupported
byalteration
oftheRedBedsin theimmediatehanging
wall of the B fattit,implyinga conduitfor
.!
ascending
hydrothermal
fluids(Ashton
et al., 1995).
-'
7.
,
.
Timingof mineralization
Detailed
petrographic
examination
oflayered
sulfides
reveals
thattheyformedby replacement
andcavityfill ratherthan
syngenetically
ontheseafloor.
Therefore,
theonsetof mineralizationat Navanpostdated
the deposition
of at leastthe bulk
of the PaleBedssequence.
Localfeatures
in the PaleBeds
mineralization,
suchas disrupted
layersof sulfideenclosed
withincalcarenites
(Fig.9D), andcarbonate
dikescontaining
allochems
cutting
massive
sulfides
(Fig.26),suggest
thatatleast
someof thePaleBedslithologies
werenotfullylithified
atthe
time of mineralization. Tfited stalactiticstructuresand associated
laminated,
internal
sediments
indicate
mineralization
priorto
FIC. 26. Carbonate
dikecontaining
allochems,
cuttinga sulfideband
(horizontaldimension= 5 ram).
NAVANZN-PBDEPOSIT,IRELAND:OREDEPOSITIONALPROCESSES
559
formation
asearlydiagenetic
ironsulfides.
Giventheirsimfiar presence
of clastsof PaleBedswithsphalerite
replacement
isotopic
compositions
anddosespatial
relationship,
it isreason- restricted
to theclastmargins,
indicating
thatat leastpartof
abletoassume
thatthedeposition
ofironsulfides
intheBoulder themineralizing
eventoccurred
afterdeposition
oftheBoulConglomerate-Conglomerate
Groupore and underlying
lens derConglomerate.
Similarly,
clasts
ofPaleBedsandWaulsorare cemented
by pyriteandlatersphalerite
2-1wascontemporaneous.
In bothlocations,
substantial
sphaler- tianLimestone
postdated
deireandgalena
postdate
ironsulfides.
Importantly,
Ashton
et al. (Fig. 17B),implyingthatsulfideprecipitation
(1992)havedemonstrated
thatthehighest
grade
Zn-Pbmineral- positionof at leastthatpart of the BoulderConglomerate.
pointtothebull(ofthemineralization
izationin theConglomerate
Grouporecommonly
occurs
over Theselinesofevidence
high-grade
Zn-Pbmineralization
in theimmediately
underlyingat Navanhavingformedduringandshortly
afterthe formathe2-5and3-5lenses,
againsuggesting
synchronous
mineraliza-tionof the erosionsurfaceandBoulderConglomerate.
tion.
Finally,the extremely
negative
sulfurisotopecomposition
Sulfideclasts
exhibiting
truncation
ofZn-Pblayering
atthe of pyriteandmarcasite
fromthe Conglomerate
Groupore
clastedgesindicatethat previously
deposited
sulfides
were andimmediately
underlying
PaleBedscouldbe attributed
environment
of bacteriogenic
reduction
rippedup andincorporated
in the BoulderConglomerate.to a moreoxidizing
Based on the sulfide textures it is difficult to assesswhether
andsulfidedeposition
relativeto the deeperPaleBeds(see
these clasts are derived from the Pale Beds mineralization or
above).
Thiswouldbe consistent
withproximity
to thelower
pyrite-deficient
sphalerite-galena
mineralization
in the Boul- Carboniferous
sea,suggesting
sulfidedeposition
at thetime
der Conglomerate.
Theydo indicatethatthe BoulderCon- of formation
of the BoulderConglomerate.
glomerate-forming
eventwasstillongoing
duringthe minerIt isenvisaged
thata largeproportion
oftheascending
hydrofluidsentered
thePaleBedsatthetimeofmajorextenalization.However,the overallscarcity
of clastsof obviouslythermal
mineralized
PaleBedssuggests
that muchof the PaleBeds sionandsubmarine
debris
flowformation,
thusplacing
themain
mineralization
formedduringandafterthe formation
of the mineralizing
eventat Chadian
to earlyArundian.
erosion
surface
anddeposition
of the BoulderConglomerate Thepresence
ofbaritein thedeposit
witha lowerCarbonseawater
sulfate
isotope
composition,
impliesthatsea(Ashtonet al., 1999•;
Ford,1996).Thisis supported
by the iferous
Lower
Carboniferous
seai
containing
sulfate(-21 permil)
Iron-richsulfides
proximalto theerosion
surface,possiblyformingin a more
oxidisedenviomment
(-25 to -40 l•r mid
Biogenicreduction
of seawatersulfate
to sulfide(-15 to -25 pernail),
subsequently
accesshag
thePaleBeds
Alteration of the Red Beds
ha the HW of the B Fault
Marcasite mineralization
in the FW of the T Fault
Legend
•
.•
Upper
Dark
Limestones
•
Pale
Beds
(Dolomite
Horizom)
N
Boulder
Conglomerate
•
Rod
Bc•l•
/Laminated
Beds
Ascending
hydrothermal
fluids
transporting
metalsand
limitedsulfide(-10 permil)
Fig. 27. Simplified
modelfor the formationof the Navandeposit.
560
ANDERSON ET AL.
REFERENCES
wateraccessed
the mineralizing
system.
Thisseawater
could
alsoprovidea mediumfor transporting
thebiogenic
sulfur. Anderson,
G.M.,1975,Precipitation
ofMississippi
Valley-type
ores:
ECONOMIC
GEOLOC¾,
v. 70, p. 937--942.
--1983, Somegeological
aspects
ofsulfide
precipitation
in carbonate
rocks,
Themainphaseof mineralization
at Navanoccurred
at the
in Kisvarsanyi,
G., Grant,S.K.,Pratt,W.P.,andKoenig,
J.W.,eds.,Internationalconference
onMississippi
Valley-type
lead-zinc
deposits.
Proceedings
time of formationof the BoulderConglomerate,
duringa
of Missouri-Rolla
Press,
p. 61-76.
majorphaseof extension
in the lateChadianto earlyArun- volume:Rolla,University
I.K.,1990,Orealepositional
processes
intheformation
oftheNavan
dian (Fig. 27). Basemetalmineralization
in the PaleBeds Anderson,
zinc/lead
deposit,
Co.Meath,Ireland:Unpublished
Ph.D.thesis,
Glasgow,
wasdeposited
predominantly
asopen-space
growths
andby
University
of Strathclyde,
290p.
replacement
of hostlithologies.
Thediversity
of oretextures Anderson,
I.K.,Andrew,
c.J.,Ashton,
J.H.,Boyce,
A.J.,Caulfield,
J.B.D,FalM.J.,1989,Preliminary
sulfurisotope
dataof diagereflectsboththe depositional
processes
andthe availability lick,A.E.,andRussell,
netic and vein sulfides in the Lower Palaeozoic strata of Ireland and southern
of sulfur.Bedding-parallel,
high-grade
ore horizons
formed Scotland:
Implications
forZn + Pb+ Bamineralization:
Geological
Society
at thecontact
betweenlimestone
andoverlying
detritalsilt- of LondonJournal,
v. 146,p. 715-720.
rich dolomite,with sulfidescommonly
deposited
as open- Andrew,
c.J.,andAshton,
J.H.,1985,Theregional
setting,
geology
andmetal
patterns
of the Navanorebody,
Ireland:Institution
of Mining
spacegrowths.
Suchvoidsformedby hydrothermal
dissolu- distribution
Transactions,
v. 94,sec.B, p. 66-93.
tionof limestone
directlybeneathdolomite.It is envisaged andMetallurgy
C.J.,andPoustie,
A., 1986,Syndiagenetic
or epigenetic
minera]izathatthe competency
contrast
betweena dolomitic
lithology Andrew,
tion--the evidence
fromtheTarestown
zinc-lead
prospect,
Co. Meath,in
and an underlying
limestone
facilitatedthe lateralflowof
Andrew,c.J.,Crowe,R.W.A.,Finlay,S., Pennell,
W.M., andPyne,J.F.,
hydrothermal
fluids.The mineralization
in the Micriteunit
eds.,Geology
andgenesis
ofmineral
deposits
inIreland:
Dublin,IrishAssocip. 281-296.
isbestexplained
in termsof initialdevelopment
of extensive ationFor EconomicGeology,
J.H.,1995,Guideto thegeology
of theNavanorebody:
Society
of
fracturingof the micrites,with subsequent
enlargement
of Ashton,
Economic
Geologists
Guidebook
Series,
v. 21,p. 151-168.
thisfracturesystemby dissolution
duringthe mineralizingAshton,
J.H.,Downing,
D.T., andFinlay,S.,1986,Thegeology
of theNavan
event.Thisresulted
inthecontinual
development
of aninter- orebody,
in Andrew,c.J.,Crowe,R.W.A.,Finlay,S.,Pennell,
W.M., and
andgenesis
ofmineral
deposits
in Ireland:
Dublin,
connected
network
of openspaces.
Thepreferential
fractur- Pyne,J.F.,eds.,Geology
For Economic
Geology,
p. 243-280.
ingof theserocksis attributed
to weakerphysical
properties IrishAssociation
J.H., Black,A., Geraghty,
J., Holdstock,
M., andHyland,E., 1992,
(e.g.,smallercompressive
strength)
compared
to othercar- Ashton,
Thegeological
setting
andmetaldistribution
patterns
oftheZn-Pb-Fe
minerbonatelithologies
in the PaleBedsstratigraphy.
alization
in theNavanBoulder
Conglomerate,
in Boxvden,
A.A.,Earls,G.,
Twosources
ofsulfide
sulfurareinterpreted
fromthe•5a4S O'Connor,P.G.,andPyne,J.F.,eds.,The Irishminerals
industry
19801990:Dublin,IrishAssociation
For Economic
Geology,
p. 171-210.
data,a dominantbacteriogenic
component
derivedby the
Ashton,
J.H.,Black,A., Duffy,P., Geraghty,
J., Holdstock,
M., Hyland,E.,
O'Keeffe,W.G., Powell,P.J.,andFord,C., 1995,Structural
setting
and
ordinate
hydrothermal
component
transported
in anacidso- metaldistribution
patterns
in the Navanorebody
labs.
J:IrishAssociation
lutionwith the metals.Thereis a notablerelationship
beforEconomic
Geology
Models
forCarbonate-Hosted
BaseMetalDeposits
Conference,
Killarney,
Abstracts,
p. 1-7.
tweensulfidetextureandisotopic
composition.
The rateof
M.J.,1992,Fluidmixingduringoredeposition
at
sulfursupply,andthe interplaybetweenthe two sources, Banks,D.A.,andRussell,
theTynagh
base-metal
deposit,
Ireland:European
Journal
of Mineralogy,
reduction of lower Carboniferous seawater sulfate and a sub-
governed
the mineraltextures
andthe sulfurisotope
signa- v. 4, p. 921-931.
tures,thusexplaining
the relationship
observed.
Mixingof Binney,
W.P.,1987,A sedimentologieal
investigation
ofMaclean
channel
transthe acidhydrothermal
fluidwithseawater
containing
bacte- portedsulphide
ores:Geological
Survey
of Canada
Paper86-24,p. 107riogenic
sulfidecaused
oredeposition,
withsulfates
directly 147.
Bisehoff,
J.L.,Radtke,
A.S.,andRosenbauer,
R.J.,1981,Hydrothermal
alterprecipitated
usinglowerCarboniferous
seawater
sulfate.
ationofgraywaeke
bybrineandseawater:
Roles
ofalteration
andchloride
eomplexing
onmetalsohibilization
at200øand350øC:
ECONOMIC
GEOLAcknowledgments
OCY,v. 76, p. 659-676.
The authors
acknowledge
the permission
andencourage-Boast,A.M.,Coleman,M.L., andHalls,C., 1981,Texturalandstableisotope
forthegenesis
of theTynagh
basemetaldeposit,
Ireland:ECOmentofOutokumpu
TaraMinesLtd.tocarryoutandpublish evidence
v. 76, p. 27-55.
thiswork.All isotopicanalyses
werecarriedout at Scottish NOMICGEOLOGY,
UniversitiesResearchand ReactorCentre (SURRC), funded
by the NaturalEnvironment
Research
Council(NERC)and
the Scottish
Universities.
We thankDermotDowning,Peter
Powell,AdrianBlack,JimGeraghty,
MarkHoldstock,
Eugene
Hyland,andotherTaraMinesgeologists
pastandpresent,
ColinAndrew,DaveColler,the late DaveJohnston,
Colin
Ford,MurrayHitzman,Mike Philcox,GianRizzi,andAllan
Hall formanyhelpfuldiscussions,
andElspethTweedieand
TerryDonnellyfor assistance
duringS isotopeanalysis.
We
aregrateful
to LuisFontbote
andTerjeBjerkgard
forcareful
reviews.
Thisresearch
wasrealized
through
fundingof I.K.A.
by the NERC and Outokumpu
Tara MinesLtd. A.J.B.is
fundedbythe NERC Scientific
Services'
support
of theIsotopeCommunity
SupportFacilityat SURRC.
July14, 1997;April29, 1998
Boyee,
A.J.,1990,Sedimentation,
exhalation
andsulphur
isotopes
of the
Silvermines
Zn + Pb + Badeposits,
CountyTipperary,
Ireland:Unpub-
lishedPh.D.thesis,Glasgow,
University
of Strathclyde,
354p.
Boyee,
A.J.,Anderton,
R., andRussell,
M.J.,1983a,Rapidsubsidence
and
earlyCarboniferous
base-metal
mineralization
in Ireland:Institution
of
MiningandMetalluryTransactions,
v. 92, see.B, p. 55-66.
Boyee,
A.J.,Coleman,
M.L., andRussell,
M.J.,1983b,Formation
of fossil
hydrothermal
chimneys
andmounds
fromSilvermines,
Ireland:Nature,
v. 306, p. 545-550.
Boyee,
A.J.,Fletcher,
T.J.,Falliek,A.E.,Ashton,
J.H.,andRussell,
M.J.,
1993,Petrographie
and•5a4S
studyof the LowerPalaeozoic
underthe
Navan
Zn + Pbdeposit:
A soume
ofhydrothermal
sulfur,
in FenollHaehA1,P.,Torres-Ruiz,
J.,andGervilla,
F., eds.,Currentresearch
in geology
appliedto oredeposits:
Spain,University
of Granda,
p. 53-56.
Boyce,A.J.,Fallick,A.E., Fletcher,T.J.,Russell,
M.J.,andAshton,
J.H.,
1994,Detailedsulfurisotope
studies
of LowerPalaeozoic-hosted
pyrite
belowthegiantNavanZn + Pbmine,Ireland:
Evidence
ofmass
transport
ofcrustal
Sto a sediment-hosted
deposit:
Mineralogical
Magazine,
v. 58A,
p. 109-110.
NAVAN ZN-PB DEPOSIT,IRELAND: ORE DEPOSITIONALPROCESSES
561
Braith•vaite,
C.J.R.,
andRizzi,G.,1997,Thegeometry
andpetrogenesis
ofhydro- ogyandgenesis
of mineraldeposits
in Ireland:Dublin,IrishAssociation
for Economic
Geology,
p. 663-676.
thermal
dolomites
at Navan,
Ireland:
Sedimentology,
v. 44,p. 421-440.
Bums,s.J.,andBaker,P.A.,1987,A geochemical
studyof dolomite
in the Krouse,H.R., Viau, C.A., Eliuk, L.S., Veda, A., and Halas, S., 1988, Chemical
MontereyFormation,
California:
Journal
of Sedimentary
Petrology,
v. 57,
andisotopic
evidence
of thermochemical
sulphate
reduction
by lighthyp. 128-139.
drocarbon
gases
in deepcarbonate
reservoirs:
Nature,v. 333,p. 415-419.
Caulfield,
J.B.D.,LeHuray,A.P.,andRye,D.M., 1986,A revie•vof lead Lydon,J.W.,1986,Modelsfor thegeneration
of metalliferous
hydrothermal
andsulfurisotope
investigations
ofIrishsediment-hosted
zinc-lead
depos- systems
withinsedimentary
rocksandtheirapplieabili
,tyto the IrishZnitsxvithne•vdatafromtheKeel,Ballinalack,
Moyvoughly
andTatestoxxm Pb deposits,
in Andrew,c.j., Crmve,R.W.A.,Finlay,S.,andP•vne,
J.F.,
deposits,
in Andre,v,
c.j., Crowe,R.W.A.,Finlay,S.,Pennell,
W.M.,and
eds.,Geology
andgenesis
of mineraldeposits
in Ireland:Dublin,Irish
Pyne,J.F.,eds.,Geology
andgenesis
of mineraldeposits
in Ireland:DubAssociation
forEconomic
Geology,
p. 555-577.
lin,IrishAssociation
ForEconomic
Geology,
p. 591-615.
McNestry,
A., andRees,J.G.,1992,Environments
andpalynofacies
of a
Claypool,
C.E.,Holser,•V.T.,Sakai,I.R., andZak,I., 1980,Theagecurves Dinantian(Carboniferous)
littoralsequence:
The basalpartof the Navan
forsulfurandoxygen
isotopes
in marinesulfate
andtheirmutual
interpre- Group,Navan,CountyMeath,Ireland:Palaeogeography,
Palaeoclimatoltation:Chemical
Geology,
v. 28, p. 199-260.
ogy,Palaeoecology,
v. 96, p. 175-193.
andaliagenesis
in Waulsortian
mudColeman,
M.L.,andMoore,
M.P.,1978,Directreduction
ofsulphates
tostdphur Miller,J., 1986,Faciesrelationships
dioxide
forisotopic
analysis:
Analytical
Chemistry,
v.50,p. 1594-1595.
moundsfrom the lmverCarboniferous
of Irelandand N. England,in
Cook,H.E., andMullins,H.T., 1983,Basinmarginenvironment,
in Scholle, Schroeder,
J.H., andPursrer,B.H., eds.,Reefdiagenesis:
Berlin-HeidelP.A.,Bebout,D.G., andMoore,C.H., eds.,Carbonate
depositional
enviberg,Springer-Verlag,
p. 311-335.
A.N.,Ashton,
J.H.,Anderson,
I.K., andRussell,
M.J.,1987,
ronments:
Tulsa,OK, American
Association
of Petroleum
Geologists,
p. Mills,H., Halliday,
540-617.
Ori• of a giantorebody
at Navan,
Ireland:
Nature,
v. 327,p. 2'23-'226.
Coomet,P.G., and Robinson,
B.W., 1976,Sulphurand sulphate-oxygen
Muro•vchick,
J.B.,andBarnes,
H.L.1986,Marcasite
precipitation
fromhydrotherGeoctfimica
et Cosmoctfimica
Acta,v. 50,p. 2615-2629.
isotopes
andthe originof the Silvermines
deposits,
Ireland:Mineralium malsolutions:
Deposita.,v. 11, p. 15-169.
Naylor,H., Turner,P., Vaughan,
D.J.,Boyce,A.J.,andFallick,A.E., 1989,
Genetic studies of redbed mineralization in the Triassic of the Cheshire
Eldridge,
C.S.,Compston,
W., Williams,
I.S.,Patterson,
D.J.,Ohmoto,
H.,
Walshe,
J.L.,andBoth,R.A.,1986,Shrimp
ionmicroprobe
determination basin,northwest
England:
Geological
Society
of LondonJournal,
v. 146,
of sulfurisotoperatiosin somesediment
hostedmassive
sulfideores:
p. 685-699.
describeNavan
Variability
in theirtimingandformation
[abs.]:
TerraCognita,
v. 6, p. O'Brien,M.V., and Romer,D.M., 1971,Tara geologists
134.
discovery:
WorldMining,v. 24, p. 38-39.
Elsgaard,
L., Isaksen,
M.F., Jorgensen,
B.B.,Alayse,
A.-M.,.andJannasch, Ohmoto,
H., 1972,Systematics
of sulfurandcarbonisotopes:
ECONOMIC
H.W., 1994,Microbialsulfatereductionin deep-sea
sediments
at the
GEOLOGY,
v. 67, p. 551--578.
Guaymas
basinhydrothermal
ventarea:Influenceof temperature
and
1986,Stableisotope
geochemistry
of oredeposits:
Reviews
in Mineralsubstrates:
Geochimica
et Cosmochimica
Acta,v. 58,p. 3335-3343.
ogy,v. 16, p. 460-491.
Everett, C.E., 1997, Brine infiltration of Loxver Palaeozoicrocks beneath Ohmoto,
H., andRye,R.O.,1979,Isotopes
of sulfurandcarbon,
in Barnes,
theNavandeposit,
Ireland:Implications
forthegenesis
of Irish-type
ZnH.L., ed., The geochemistry
of hydrothermal
ore deposits:
Ne•vYork,
Pb mineralization
labs.]:Geological
Society
of AmericaAbstracts
xvith WileyInterscience,
p. 509-567.
Programs,p. A-208.
Olson,R.A.,1984,Genesis
of palaeokarst
andstrata-bound
zinc-lead
sulfide
Fallick,A.E.,Burgess,
R., Boyce,A.J.,andKelley,S.P.,1990,Advances
in
deposits
in a Proterozoie
dolostone,
northern
BaffinIsland,Canada:
ECO-
thepractice
andapplication
oflaserprobes
to •534S
analysis
of geological NOMICGEOLOGY,
V. 79, p. 1056-1103.
materials
labs.]:Geological
Society
of Australia
Abstracts,
p. 27-32.
Philcox,
M., 1984,LmverCarboniferous
lithostratigraphy
of the h'ishMidFisher,
I., StJ.,andHudson,
J.D.,1987,Pyriteformation
inJurassic
shales
of
lands:Dublin,IrishAssociation
for Economic
Geology,
89 p.
contrasting
biofacies:
Geological
Society
ofLondonSpecial
Publications,
v.
26, p. 69-78.
1989,The mid-Dinantian
uneonformity
at Navan,Ireland,in Arthurton
R.S.,Gutteridge
P., andNolanS.C.,eds.,Theroleoftectonics
in Devonian
andCarboniferous
sedimentation
intheBritishIsles:Yorkshire
Geological
Society
Occasional
Publication,
v. 6, p. 67-81.
Ford,C.V., 1996,The integration
of petrologic
andisotopic
datafromthe
BoulderConglomerate
to determine
theageof theNavanorebody,
IreProbert, K., 1983, Fluid inclusiondata from carbonate-hostedIrish base
land:Unpublished
Ph.D.thesis,
University
of Glasgmv,
p. 176.
Ford,D.C., 1986,Genesis
of palaeokarst
andstrata-bound
zinc-lead
sulfide
metaldeposits
labs.],in MineralDeposits
Studies
GroupAbstracts,
Unideposits
in a Proterozoic
dolostone,
northernBaffinIsland,Canada--a
versityof Manchester,
p. 4.
discussion:
ECONOMIC
GEOLOGY,
v. 81,p. 1562--1566.
Qing,H., and Mountjoy,E.W., 1994,Originof dissolution
vugs,caverns,
andbreeeias
in theMiddleDevonian
Presqu'ile
barrier,hostofPinePoint
Garcia-Ruiz,
J.M.,1986,Grmvth
history
ofPbSsingle
crystal
atroomtemperature:Journal
of CrystalGrowth,v. 75,p. 441-453.
Mississippi
Valley-type
deposits:
ECONOMIC
G•OLOGY,
v.89,p. 858-876.
Goldhaber,
M.B.,andKaplan,I.R.. 1975,Controls
andconsequences
of Rees,J.G.,1987,The Carboniferous
geology
of the BoyneValleyarea,Iresulphate
reduction
ratesin recentmarinesediments:
SoilScience,
v. 119,
land:Unpublished
Ph.D.thesis,Dublin,Ireland,TrinityCollegeDublin,
p. 42-55.
273 p.
Hird,K.,Tucker,M.E., andWaters,R.A.,1987,Petrography,
geochemistryRizzi,G., 1993,Thesedimentology
andpetrography
of lmverCarboniferous
andoriginof Dinantian
dolomites
fromsouth-east
Wales,in Miller,j.,
limestones
and dolomites:
Host rocksto the Navanzinc-leaddeposit,
Adams,
A.E.,andWright,V.P.,eds.,European
Dinantian
environments: Ireland:Unpublished
Ph.D.thesis,
University
of Glasgmv,
369p.
Ne•vYork,Wiley,p. 359-377.
Rhodes,
D., Lantos,E.A.,Lantos,
J.A.,Webb,R.J.,andOwens,D.C., 1984,
Honjo,H., and Sa•vada,
Y., 1982,Quantitative
measurements
on the morPinePointorebodies
andtheirrelationship
tostratigraphy,
structure,
dolophology
of a NH4Brdendritic
crystal
growthin a capillary:
Journal
of
mitization,and karstification
of the Middle Devonianbarriercomplex:
CrystalGrowth,v. 58,p. 297-303.
ECONOMIC
GEOLOGY,
V. 79, p. 991--1055.
Kaplan,I.R., andRittenberg,
S.C.,1964,Microbiological
fractionation
of Robinson,
B.W.,andKusakabe,
M., 1975,Quantitative
preparation
of sul-
sulfurisotopes:
Journal
of General
Microbiology,
v. 34,p. 195-212.
Kelley,S.P.,andFallick,
A.E.,1990,Highprecision,
spatially
resolved
analy-
phurdioxide
fora4S/•2S
analyses
fromsulphides
bycombustion
withcuprousoxide:Analytical
Chemistry,
v. 47, p. 1179-1181.
sisof •5a4S
in sulfides
usinga laserextraction
technique:
Geochimica
et Roedder,
E., 1968,Thenon-colloidal
originof "colloform"
textures
in sphal-
Cosmochimica
Acta,v. 54, p. 883-888.
erite ores:ECONOMIC
G•OLOGY,
v. 63, p. 451-471.
Klan,W., andMosfler,
H., 1983,AlpineMiddleandUpperTriassic
Pb-Zn Romano,
M., 1980,The stratigraphy
of theOrdovician
rocksbetweenSlane
deposits,
in Kisvarsanyi,
G., Grant,S.K.,Pratt,W.P.andKoenig,
J.•V.,eds,
andCollon,easternIreland:RoyalDublinSociety,EarthScience,
v. 3,
International
conference
onMississippi
Valley-type
lead-zinc
deposits.
Proceed- p. 53-79.
ingsvolume:
Rolla,
University
of Missouri-Rolla
Press,
p. 113-128.
Russell,
M.J.,1978,Dmvmvard-excavating
hydrothermal
cellsandIrish-type
--1986, On the formation
of AlpineMiddleandUpperTriassic
Pb-Zn
oredeposits:
Importance
ofanunderlying
thickCaledonian
prism:Institudeposits,
withsomeremarks
onIrishcarbonate-hosted
basemetaldepos- tionof MiningandMetallurgy
Transactions,
v. 87,p. 168-171.
its,in Andre,v,
c.j., Cro•ve,
R.W.A.,Finlay,S.,andPyne,J.F.,eds.,Geol1986,Extension
andconvection:
A geneticmodelfortheIrishCarbonif-
562
ANDERSON ET AL.
mentof zinc-leadoresin the UpperSilesian
district--acontribution
to
erousandbasemetalandbaritedeposits,
in Andrew,c.J.,Crowe,R.W.A.,
Finlay,S. andPyne,J.F.,eds.,Geology
andgenesis
of mineraldeposits theunderstanding
of Mississippi
Valley-type
deposits:
ECONOMIC
GEOLin Ireland:Dublin,IrishAssociation
for Economic
Geology,
p. 545-554.
OgY,v. 77, p. 392-412.
Russell,
M.J.,Hall,A.J.,andDuller,P., 1984,Implications
of chemical
garden Schwarcz,
H.P., andBurnie,S.W.,1973,Influenceof sedimentary
environgrox•th
totheunderstanding
ofcertain
oremorphologies
intheNavan
orebody: •nentson sulfurisotope
ratiosin clastic
rocks--review:
Mineralium
DeMineralogical
Society
Newsletter,
September,
v. 64,p. 2-3.
posita,v. 8, p. 264-277.
Russell,M.J., Hall, A.J., and Turner,D., 1989,In vitro growthof iron Strogen,P., Jones,G.L., and Somerville,
I., 1990,Stratigraphy
andsedisulphidechimneys:
Possible
culturechambers
for origin-of-life
experimentology
of lowerCarboniferous
(Dinantian)boreholesfromWestCo.
ments:Terra Nova,v. 1, p. 238-241.
Meath,Ireland:Geological
Journal,
v. 25, p. 103-137.
Rye,R.O.,andOhmoto,H., 1974,Sulfurandcarbonisotopes
andoregene- Turner,j.s., Hornung,G., andRex,D.C., 1972,Tertiaryigneous
activity,
at
sis:A review:ECONOMICGEOLOGY,
V. 69, p. 826-842.
Navan,Co. Meath:IrishNaturalists
Journal,
v. 11,p. 262-264.
Samson,
I.M., and Russell,M.J., 1987,Genesisof the Silvermines
zincA., 1991,TheLowerPalaeozoic
geology
ofthe Iapetussuturezone
lead-barite
deposit,
Ireland:Fluidinclusion
andstableisotopeevidence: Vaughan,
in easternIreland:Unpublished
Ph.D. thesis,Dublin,Ireland,Trinity
ECONOMIC
GEOt.OC¾,
v. 82, p. 371-394.
Sass-Gustkiewicz,
M., Dzulynski,
S., andRidge,J.D., 1982,The eraplace- CollegeDublin,237 p.
APPENDIX
I
Tableof SulfurIsotopeData fromthe NavanZn-PbDeposit,Ireland
Sample
no.
Lens
Mineral
Texture
(5348
(%0)
Sample
no.
Lens
Mineral
NAV G135
NAV G007
NAV G001
NAV G002
NAV G003
NAV G004
NAV G005
NAV G006
NAV G008
NAV G009
NAV 081
NAV 082
1-2
1-2
1-2
1-3
1-3
1-3
1-3
1-3
1-3
1-4
1-5
1-5
Sphalerite
Sphalerite
Sphalerite
Sphalerite
Sphalerite
Sphalerite
Sphalerite
Sphalerite
Sphalerite
Sphalerite
Sphalerite
Sphalerite
Honeyblende
Replaced
allochems
Replaced
allochems
Replaced
allochems
Laminated
Replaced
allochems
Replaced
allochems
Replaced
allochems
Replaced
allochems
Replaced
allochems
Honeyblende
Honeyblende
- 13.7
-23.0
-20.9
-21.6
-22.2
-20.3
-21.4
-21.3
-22.6
-22.5
- 10.8
- 10.1
NAV G031
NAV G032
NAV G033
NAV G034
NAV G040
NAV G095
NAV G096
NAV G101
NAV G099
NAV G102
NAV G108
NAV G109
2-1
2-1
2-1
2-1
2-1
2-1
2-1
2-1
2-1
2-1
2-1
2-1
Sphalerite
Sphalerite
Galena
Galena
Galena
Barite
Barite
Barite
Barite
Barite
Sphalerite
Sphalerite
Laminated
Laminated
Coarsebladed
Coarse
bladed
Cubic
Coarsebarite
Coarsebarite
Coarsebarite
Coarsebarite
Coarsebarite
Honeyblende
Honeyblende
- 15.3
-9.7
13.5
9.7
1.2
19.5
19.3
17.9
20.1
17.9
- 15.3
- 15.3
NAV 085
1-5
Sphalerite
Barite
Coarse barite
-8.7
NAV G129
2-1
Mamasite
Colloform
-28.2
NAV 087
NAV 088
NAV 089
NAV 090
NAV 091
NAV 092
NAV 100
NAV 101
NAV 102
1-5
1-5
1-5
1-5
1-5
1-5
1-5
1-5
1-5
Galena
Sphalerite
Sphalerite
Sphalerite
Galena
Sphalerite
Galena
Galena
Galena
Dendritic-skeletal
Laminated
Laminated
Laminated
Dendritic-skeletal
Rhythmically
banded
Coarsebladed
Coarsebladed
Coarsebladed
-6.9
-6.6
-10.2
-9.4
-6.1
-10.2
8.5
8.2
8.5
NAV G132
NAV G133
NAV G036
NAV G037
NAV 019
NAV 023
NAV 001
NAV 002
NAV 003
2-1
2-1
2-1
2-1
2-1
2-1
2-2
2-2
2-2
Sphalerite
Mamasite
Galena
Sphalerite
Pyrite
Pyrite
Sphalerite
Sphalerite
Sphalerite
Honeyblende
Colloform
Coarse
bladed
Granular
Colloform
Colloform
Replaced
allochems
Replaced
allochems
Replaced
allochems
-16.6
-30.1
7.3
7.2
-28.9
-32.9
-15.0
-14.5
-14.8
NAV 103
NAV 104
NAV 107
1-5
1-5
1-5
Galena
Galena
Barite
Coarse bladed
Coarse bladed
Coarse barite
9.8
11.8
17.7
NAV 004
NAV 005
NAV 006
2-2
2-2
2-2
Galena
Galena
Galena
Coarse bladed
Coarse bladed
Coarse bladed
NAV 112
NAV 114
NAV 116
NAV 117
NAV 118
NAV 121
NAV 122
1-5
1-5
1-5
1-5
1-5
1-5
1-5
Sphalerite
Sphalerite
Sphalerite
Sphalerite
Sphalerite
Sphalerite
Sphalerite
Laminated
Laminated
Laminated
Laminated
Laminated
Laminated
Laminated
-21.1
-7.7
-8.6
-9.4
- 10.7
-6.0
-3.4
NAV007
NAV009
NAV010
NAV011
NAV012
NAV013
NAV014
2-2
2-2
2-2
2-2
2-2
2-2
2-2
Galena
Sphalerite
Galena
Galena
Barite
Sphalerite
Sphalerite
Coarse
bladed
Rhythmically
banded
Coarse
bladed
Coarse
bladed
Coarse
barite
Laminated
Laminated
NAV 083
NAV 084
NAV 086
NAV G014
NAV G018
NAVG022
1-5
1-5
1-5
1-5
1-5
1-5
Barite
Barite
Barite
Galena
Coarse barite
Coarse barite
Honeyblende
Coarse barite
Dendritic-skeletal
Sphalerite Honeyblende
NAV G026
1-5
Galena
Dendritic-skeletal
NAV G085
NAV G088
1-5
1-5
Galena
Barite
Coarsebladed
Coarsebarite
NAVGl12
NAVG012
NAV G013
1-5
1-5
1-5
Pyrite
Colloform
Sphalerite Laminated
NAV022
NAVG030
1-5
2-1
Pyrite
Stalactitic
Sphalerite Laminated
Galena
Laminated
21.6
23.6
24.4
27.9
-11.1
NAV Gl15
NAV G128
NAV G131
NAV 015
NAV 016
2-1
2-1
2-1
2-2
2-2
Mamasite
Galena
Barite
Colloform
Coarse bladed
Coarse barite
NAV017
NAV 018
2-2
Galena
Coarse bladed
12.3
19.4
NAV 024
NAV 026
2-2
2-2
Sphalerite
Sphalerite
Laminated
Replaced
allochems
-26.6
-12.5
NAV033
NAV034
2-2
2-2
Galena
Galena
Coarse
bladed
Coarse
bladed
Galena
Coarse
bladed
Sphalerite Rhythmically
banded
-17.2
NAV 035
2-2
-19.3
- 18.2
NAV036
NAV037
2-2
2-2
Galena
Colloform
Colloform
-9.3
-6.5
2-2
Marcasite
Marcasite
Texture
Galena
Coarse
bladed
Coarse bladed
(5348
(%0)
-32.3
-37.3
-3.23
1.5
7.0
-0.4
1.7
2.1
3.7
-1.1
19.5
- 19.5
- 17.5
5.8
19.3
2.1
2.6
-16.2
-20.2
6.2
0.3
9.3
10.8
11.3
NAVANZN-PBDEPOSIT,
iRELAND:
OREDEPOSiTiONAL
PROCESSES
APPENDIX
Sample
no. Lens Mineral
NAV039
NAV041
NAV051
NAV052
NAV053
NAV055
2-2
2-2
2-2
2-2
2-2
2-2
Galena
Galena
Galena
Galena
Galena
Galena
NAV062
NAV063
NAV064
2-2
2-2
2-2
NAV069
NAV073
Texture
(Cont.)
•34S
(%0) Sample
no. Lens Mineral
2-4
2-4
2-4
2-4
2-4
2-4
Pyrite
Sphalerite
Sphalerite
Sphalerite
Sphalerite
Sphalerite
Stalactitic
Laminated
Laminated
Laminated
Laminated
Laminated
2-2
SphaleriteReplaced
allochems -20.0
Sphalerite Replaced
allochems -22.3
Sphalerite Rhythmically
banded
4.0
Barite
Coarsebarite
22.5
NAVG122
NAVG123
NAVG134
NAV G072
2-4
2-4
2-4
2-4
Galena
Galena
Barite
Dendritic-skeletal -8.2
Dendritic-skeletal -8.4
Coarse
barite
21.7
2-2
2-2
Barite
Galena
Coarse
barite
Coarse
bladed
21.6
9.9
NAVG073
NAVG074
2-4
2-4
Sphalerite Rhythmically
banded
Sphalerite Honeyblende
-18.3
-18.2
NAV075
NAV076
NAV077
2-2
2-2
2-2
Galena
Galena
Galena
Coarse
bladed
Coarse
bladed
Coarse
bladed
6.5
7.6
7.5
NAVG136
NAVG142
NAVG144
2-4
2-5
2-5
Sphalerite Honeyblende
Sphalerite Zoned
Sphalerite Rhythmically
banded
-3.6
12.3
-11.6
NAV078
NAV079
2-2
2-2
Sphalerite Granular
Sphalerite Granular
3.8
3.3
NAVG126
NAVG023
2-5
2-5
Sphalerite Zoned
Marcasite Coarse
bladed
8.8
10.9
NAV126
NAV127
2-2
2-2
Sphalerite Replaced
allochems -21.1
Sphalerite Replaced
allochems -14.9
Sphalerite Rhythmically
banded
Galena
Coarse
bladed
-1.5
7.8
2-2
Galena
NAVG049
2-5
2-5
NAV129
-0.1
NAVG047
NAVG048
NAVG050
2-5
2-2
Sphalerite Replaced
allochems -19.2
NAV 074
NAV 080
NAV128
NAV130
2-2
2-2
2-2
Galena
Galena
Coarsebladed
Coarsebladed
Sphalerite Granular
Coarse
bladed
NAVG039
2-2
Galena
NAVG138
2-2
Sphalerite Honeyblende
NAVG042
NAVG011
2-2
2-2
NAVG150
2-2
Bournonite Coarse
latecrystals
NAVG140
NAVG137
NAVG016
NAVG017
NAVG021
2-3
2-3
2-3
2-3
2-3
NAV G019
NAV G143
NAVG024
NAVG025
NAVG127
2-2
2-3
2-3
2-3
2-3
Galena
Galena
Coarse
bladed
3.4
10.2
-11.8
2-5
Barite
Galena
Dendritic-skeletal
Coarsebarite
Coarsebladed
2-5
Sphalerite Zoned
NAVG051
2-5
Sphalerite Zoned
NAVG055
2-5
Galena
Coarse
bladed
Coarsebladed
NAVG053
2-5
-4.2
NAVG060
Sphalerite Honeyblende
Sphalerite Zoned
Sphalerite Laminated
Sphalerite Laminated
Sphalerite Honeyblende
-11.5
3.7
-5.7
-8.9
-16.8
-12.0
-11.1
NAVG063
NAVG065
NAVG066
NAVG067
NAVG068
Sphalerite Honeyblende
Sphalerite Zoned
Sphalerite Rhythmically
banded
-19.7
22.1
10.3
8.0
7.1
8.4
-15.6
8.8
2-5
Galena
3.0
-0.9
2-5
2-5
Sphalerite Zoned
Galena
Coarsebladed
10.5
NAVG069
NAVG070
2-5
2-5
2-5
2-5
2-5
2-5
2-5
Sphalerite
Galena
Galena
Sphalerite
Galena
Zoned
Coarse
bladed
Coarse
bladed
Zoned
Coarse
bladed
8.8
11.0
7.7
10.8
10.2
-10.2
NAVG076
2-5
Galena
Dendritic-skeletal
Sphalerite Honeyblende
-9.7
NAVG079
2-5
Galena
Dendritic-skeletal -10.3
Barite
35.0
NAV G086
2-5
Marcasite
Coarsebladed
Galena
Galena
Galena
Barite
Barite
Coarsebarite
Cubic
Cubic
Cubic
Coarse
barite
Coarse
barite
NAVGl10
2-3
NAV G020
2-3
2-3
Celestite
Coarse
barite
NAV048
2-4
Galena
Coarse
bladed
NAV054
2-4
2-4
2-4
Sphalerite Laminated
Galena
Galena
NAV057
NAV058
2-4
2-4
Coarsebarite
20.8
-9.5
23.2
21.0
39.1
NAV G059
NAV G061
NAVG077
NAV G078
2-5
2-5
NAVG080
2-5
2.2
NAVG087
-20.3
NAVG089
Sphalerite Rhythmically
banded
Sphalerite Rhythmically
banded
Sphalerite Rhythmically
banded
Sphalerite Honeyblende
10.8
9.4
-2.8
-14.5
-6.8
-17.0
-14.4
Sphalerite Rhythmically
banded
-14.6
2-5
Sphalerite Rhythmically
banded
9.3
2-5
Sphalerite Rhythmically
banded
14.9
9.0
-15.6
-18.7
NAV G091
NAV G094
2-5
2-5
Galena
Galena
Coarsebladed
Coarsebladed
0.2
8.5
2-4
2-4
Sphalerite Laminated
Sphalerite Honeyblende
Galena
Galena
-22.0
-17.4
NAVG097
NAVG098
2-5
2-5
Barite
Barite
Coarse
barite
Coarse
barite
24.4
22.7
NAV061
NAV065
2-4
2-4
Sphalerite Laminated
Sphalerite Rhythmically
banded
-19.5
7.8
NAVG106
NAVGlll
2-5
2-5
Barite
Coarse
barite
Sphalerite Zoned
21.6
9.3
NAV 096
2-4
Galena
-20.8
NAV G200
2-5
Galena
NAV097
2-4
Galena
Galena
Stalactitic
-16.8
NAV G202
NAV099
2-4
Pyrite
Stalactitic
-14.0
NAV 059
NAV 060
NAV095
NAV 098
2-4
2-4
Galena
Laminated
Laminated
-24.8
-20.6
NAV G046
2-4
Galena
-32.6
-12.0
-15.6
-17.5
-13.7
-23.5
Sphalerite Rhythmically
banded
Sphalerite Rhythmically
banded
2-3
2-3
NAV 125
NAV 049
1.9
NAV G100
2-5
2-5
NAVG105
NAV G108
NAV-CEL
9.8
NAVG057
NAVG058
Barite
Laminated
Laminated
14.1
10.5
5.9
10.0
6.0
6.1
Texture
NAVGl14
NAVGl16
NAVGl17
NAVGl18
NAVGl19
NAV G121
NAV 067
Coarse
bladed
Coarse
bladed
Coarse
bladed
Coarse
bladed
Coarse
bladed
Coarse
bladed
I
563
Cubic
Cubic
Dendritic-skeletal
Dendritic-skeletal
Stalactitic
Coarse
bladed
-6.1
-7.4
-20.8
- 16.0
NAV 110
2-4
Galena
NAV111
NAV124
NAVG145
NAV123
2-4
2-4
2-4
2-4
Sphalerite Laminated
Sphalerite Laminated
Sphalerite Laminated
Sphalerite Laminated
-11.0
-15.0
-19.3
- 16.0
NAV Gl13
2-4
Pyrite
- 12.9
Stalactitic
13.3
NAV G103
NAV G104
2-5
2-5
Barite
Barite
Coarsebarite
Coarsebarite
NAVG139
2-5
NAVG201
2-5
Sphalerite Granular
NAVG203
2-5
BournoniteCoarse
latecrystals
NAV G204
2-5
2-5
Sphalerite Zoned
Galena
Laminated
Laminated
Boumonite Coarse
latecrystals
NAVG045 3-5 Galena
NAV020
CGO Pyrite
NAV021
CGO Pyrite
NAV025
CGO Pyrite
Coarse
bladed
Framboidal
Framboidal
Framboidal
22.5
29.4
7.2
-19.9
- 15.7
-20.3
-14.9
-17.2
5.9
-30.2
-30.8
-32.0