This is the author’s version of a work that was submitted/accepted for publication in the following source:
Anh, Vo, Leonenko, Nikolai, & Sakhno, L (2003) Higher-Order Spectral
Densities of Fractional Random Fields. Journal of Statistical Physics,
111(314), pp. 789-814.
This file was downloaded from: ❤tt♣✿✴✴❡♣r✐♥ts✳q✉t✳❡❞✉✳❛✉✴✷✸✹✾✾✴
Notice: Changes introduced as a result of publishing processes such as
copy-editing and formatting may not be reflected in this document. For a
definitive version of this work, please refer to the published source:
A
.
!
"#
&%
'
"
" "
" +
)
#
%
$"
%
* +
"
%
(
%
"%
"
"
%
"#
,
)
.
&%
"
%) 0 1
%"
% %
%
I
%
! %
&%
/
0 1 '
* ! ( )
#
% "
0 1
+
%
5
"
%
" 8 9
0 1
2
2 %
)
" %
.%
0 1
'
"
( )
%)6
$
%
) )
*
)
0 1'
" "
"
&%
( )
7 0 1 0 1 0 1 0 1 :
%
%
3 0 1
"#
"
4
!
%
#
)%
)%
)
%
'
*
2 %
'
6 0 1
"
%
.
!
)
(
%)6
&%
"
7
(
&%
"%
"
"
$ "
"
#
" "
%
7 0 1 0 1 0 1 0 1 /
!
< => ?%
9
%
-
"
/
&&% 0 1
.
:
) ( ' 7
)
"#
:;
)%
%
#
7
% )%
0 1
"#
'
2 %
*
%
%
)
) 7
'
( %
) "
/ + 7 0 1
2 %
'
)%
:
"
2 %
6 0 1!
#
&&% 0 1
/
+
$"
@>>@
,AA,
-
0 1
0 1!
'
!
2 %
(
%) 0 1
2 %
)
%
G 2 AIB=B,
- "
&%
7
*
B@ C> B@ ,DE
.%
&%
F %
G %
HAB>,H@D
,
B> >D B>2B>
,>>@C,,I
7 0 1
@
%
0 1 0 1
0 1
-
&%
4
) 7
0 1 %)) *
' 7
' 7
%
"
%)) *
0 1! :
'
'
%
0 1 4
2 ) 0 1 *
)
"
*
0 1 4
)
"
"
"#
:
'
"
"#
"
#
"
2 %
"#
:
)
2 %
)
#" ) %
)
%" '
+
2 %
#
)%
+
2 %
#
% )
%%
%"
"
)
!
"
2 %
"
#
'
&%
"
"
"
' )
%) &%
2 %
"
%
&%
'
.
2 %
"
%
=) ' ' % ) % %
"
#
:
7 '
$ )
(
(
"
)%
4
.
- % 0 1 4
.
0 1 4
7
(
7 0 1!
* +4
$
!
&%
= ,! " ) %
"
(
(
2
%
&%
'
"
" )
3
)
) ( %
#
'
#
" "
0 1!
%"
%
"%
"
Lp
%" " "
(
0 1!
"%
" "'
(
9
0 1
? .
0 1
"
#
9
%"
)
? .
"
0 1 *
'
)
%
) %
&%
"
) ( %
#
'
&%
'
"%
'
2 %
$
=
"
7
"
@
"
%
$
(
"
#
$4
% )%
"
"
%
" 9
(
"%
%
%
)
%
"
%
%
"%
%"!
#
* " 7 CB)
"#
*
)
*
'
"%
0 1
" "
4 (
(
'! :
"
'
0 1
%
&%
* +
"
"%
"
C
"
"%
%"%
%
:2
*
*
*
- G *
: :
9 9* G :
*
9:
=
@ T
:
'
"#
"
%
/
"
&%
&%
∂u
= ∆u,
∂t
@ ,!
%)6
>0
"
u(0, x) = v(x), x ∈ Rn ,
@ @!
'
2 %
∆
v(x)
"#
" v(x) = h(ξ(x)).
n
"#
ξ(x), x ∈ R
%
h(u), u ∈ Rn ,
%"
4
G ( ) '
#
ξ (x) , x ∈ Rn
" % ) "
&%
% %
"
%
2 %
"#
' Eξ (x) = 0
(
%
"
B (x) = 1 + x
4
%
h
h
∞
h (u) =
k=1
G )
(
k
−1
Hk (u) = (−1) [ϕ (u)]
,
x ∈ Rn , 0 < κ < n.
Eh2 (ξ (0)) < ∞.
4
) $
%
%
G
2 −κ/2
Ck
Hk (u) ,
k!
Ck =
h (u) Hk (u) ϕ (u) du
R
"
"
dk
ϕ (u) ,
duk
1
ϕ (u) = √ e−u
2π
/2
,
u ∈ R1 , k = 0, 1, 2, ...
m≥1 %
$
C1 = ... = Cm−1 = 0, Cm = 0.
m≥1
&&% 0 1!
:
&%
@ ,! '
!
"
7 0 1
"
@ @!
/
"
m
Xε (t, x) =
'
1
εκm/4
u
%
)%
( )
h
$ "
%
)
%
u(t, x), t > 0, x ∈ R n ,
ξ(x), x ∈ Rn #
κ ∈ (0, n/m)#
7
"
'
"%
"
!"
v(x) = h(ξ(x))#
h(u), u ∈ R#
(
t x
,√
ε ε
− C0 ,
$
%# &#
h )
t > 0, x ∈ Rn
"
C
*
@ =!
ε −→ 0,
( #
"
Cm
[c (n, κ)]m/2
m!
Xm (t, x) =
′
ei(x,λ
+...+λ )− t λ +...+λ
( λ1 ... λm )(n−κ)/2
×W (dλ1 ) ...W (dλm ) , t > 0, x ∈ Rn , 0 < κ < n/m, m ≥ 1,
R
)
@ C!
c (n, κ) = Γ
W()
$
n−κ
2
/ 2κ π n/2 Γ (κ/2) ,
+
′
)
*
$
"
λi = ±λj , i, j = 1, ..., m, i = j,
+
* +
*
,
x
Xm (t, x) , t > 0, x ∈ Rn ,
m≥1
κ ∈ (0, n/m)
EXm (t, x) = 0
EXm (t, x) Xm (t′ , y) = R (x − y, t + t′ ) .
X1 (t, x) , t > 0, x ∈ Rn ,
-
S1,2 (λ) = C12 c (n, κ)
@ D!
$
(t+t′ ) λ
e−
λ
n−κ
x,
.
λ ∈ Rn
,
ei(λ,x−y) S1,2 (λ) dλ.
EX1 (t, x) X1 (t′ , y) =
R
)
∞.
/
" #
2
EXm (t, x) < ∞.
2 %
)
x,
#
S1,2 (0) =
Xm (t, x) , t > 0, x ∈ Rn , '
'
"
)
"#
@ =!
m ≥ 2
2 %
Xm (t, x) , t > 0, x ∈ Rn ,
#
+
t>0
'
m≥2
′
ei(λ,x−x ) Sm,2 (λ) dλ,
EXm (t, x) Xm (t, x′ ) =
R
@ B!
@ I!
Cm 2
e−2 t λ
Sm,2 (λ) =
(c2 (n, κ))m K (κ, m)
,
m!
λ n−mκ
K (κ, m) = π
(m−1)
"@'
)
Γ κ2
Γ n−κ
2
λ ∈ Rn , 0 < κ < n/m,
m−1 m−1
Γ
iκ
2
i=1
Γ
n−iκ
2
C
Γ
n−(1+i)κ
2
Γ
(1+i)κ
2
.
:2
*
*
)
- G *
: :
9 9* G :
*
)
)
m ≥ 2
Xm (t, x) , t > 0, x ∈ Rn , '
2 %
"#
% #
#
%
k ≥ 2)
% %
"
k
E |Z (x)| < ∞, k ≥ 2.
'
9:
D
Xm (t, x) , t > 0, x ∈ Rn ,
m≥2
# Sm,2 (0) = ∞. )
*
|λ| → 0
m≥2
"$
0!!#
Sm,2 (λ)
/
/
*
$
"#
2 %
)
X1 (t, x)
&%
+
( %
Z (x) , x ∈ Rn ,
"#
k
ck (x1 , ..., xk ) =
)
%"%
#
1
∂k
log E exp i
uj Z (xj )
ik ∂u1 ...∂uk
j=1
%
u =...=u =0
(Z (x1 ) , ..., Z (xk )) , k ≥ 2.
"(
ck (x1 , ..., xk ) = ck (x1 − xk , ..., xk−1 − xk , 0) ,
" $( %
) %
$
Sk (λ1 , ..., λk−1 ) ∈ L1 R(k−1)n
%
k−1
ck (x1 − xk , ..., xk−1 − xk , 0) =
exp i
R
−
j=1
λj , xj − xk
Sk (λ1 , ..., λk−1 ) dλ1 ...dλk−1 ,
Sk (λ1 , ..., λk−1 )
k≥2
# Z (x) , x ∈ Rn ,
:( (
7 0 1
!
/
%
Sk (λ1 , ..., λk−1 ) = Sk (λ1 , ..., λk−1 , λk ) ' λk = − (λ1 + ... + λk−1 ) .
9 %
%
' ' %
'
""
(
<
1
Sk (λ1 , ..., λk−1 ) =
Sk λπ(1) , ..., λπ(k−1)
sym
k! π∈P
{λ ,...,λ :λ +...+λ − +λ =0}
Pk
'
%
k!
'
* " 7I
'
2 %
/
"%
)
x
+
×
sym
{λ ,λ ,λ :λ +λ +λ =0}
'
)
m ≥ 2.
{1, ..., k} .
)
%
)
Xm (t, x) , t > 0, x ∈ Rn ,
+ t > 0
3
E |Xm (t, x)| < ∞. 1
Sm,3 (λ1 , λ2 ) =
@ H!
p = (π (1) , ..., π (k))
) %
%"" )
"%
%
% '
Xm (t, x) , t > 0, x ∈ Rn , '
"#
2
Sm,3 (λ1 , λ2 ) +
)
C2k
k!
exp − t
λ1
m ≥
3
(c (n, κ))3k (K (n, κ))3
2
+ λ2
2
+ λ1 + λ2
2
gm,3 (λ1 , λ2 ) ,
@ A!
dz
gm,3 (λ1 , λ2 ) =
R
( λ1 + λ2 + z
λ2 + z
z )
n−kκ
,
0 < κ < n/m, λ1 , λ2 ∈ Rn ,
B
m = 2k, k = 1, 2, ...
Sm,3 (λ1 , λ2 ) = 0,
m = 2k + 1, k = 1, 2, ... )
gm,3 (λ1 , λ2 ) , m = 2k,
3
# gm,3 (tλ1 , tλ2 ) = tH gm,3 (λ1 , λ2 ) ,
,
H = 2 mκ − 2n,
*
@ ,>!
gm,3 (ζ 1 , ζ 2 ) =
"='
& /
π
−kκ
)
3
Γ (kκ/2)
Γ ((n − kκ) /2)
(
*
( ζ1
ζ 1 − ζ 2 )−kκ .
ζ2
C
.2
%
κ ∈
+ %!
(0, n/m)
mκ
2
mκ
gm,3 (0, λ2 ) = k mκ − n,
2
mκ
gm,3 (λ, −λ) = k mκ − n,
2
gm,3 (λ1 , 0) = k mκ − n,
k (α, β) = π
%
n/2
Γ
Γ
α
2
n−α
2
+ %
gm,3 (λ1 , λ2 ) ,
λ1 + λ2 = 0.
λ2 = 0, λ1 = 0
"
)
x
+
Sm,4 (λ1 , λ2 , λ3 )
Γ
β
2
λ1
mκ−2n
,
λ2
mκ−2n
,
λ
mκ−2n
,
n−α−β
2
n−β
Γ α+β
2
2
Γ
Γ
! )
Sm,3 (λ1 , λ2 )
"
/
+
3!!#
)
*
"
)
Xm (t, x) , t > 0, x ∈ Rn ,
+ t>0
4
E |Xm (t, x)| < ∞
Cm m/2
c
Sm,4 (λ1 , λ2 , λ3 ) =
(n, κ)
m!
3
k
×3
sym
[exp − t
{λ ,λ ,λ ,λ :Σ λ =0}
i=1
m≥ 2
4 [m/2]
(m!)4
((m − 2k)!)2
k=1
2
3
λi 2 +
λi
i=1
× (Ik,1 (λ1 , λ2 , λ3 ) + Ik,2 (λ1 , λ2 , λ3 ) + Ik,3 (λ1 , λ2 , λ3 ))]
'
Ik,1 (λ1 , λ2 , λ3 ) = {K (κ, k)}4 {K (κ, m − 2k)}2 {k (kκ, (m − 2k) κ)}2
@ ,,!
×
λ1 + λ2 +
λ1 +
(m−k)κ−n
λ1 + λ2 + λ3 +
(m−k)κ−n
kκ−n
d ,
R
Ik,2 (λ1 , λ2 , λ3 ) = {K (κ, k)}4 {K (κ, m − 2k)}2 {k (kκ, (m − 2k) κ)}2
@ ,@!
×
kκ−n
λ1 +
R
kκ−n
λ1 + λ2 + λ3 +
kκ−n
λ1 + λ2 +
(m−k)κ−n
(m−k)κ−n
d ,
:2
*
*
- G *
: :
9 9* G :
*
9:
I
Ik,3 (λ1 , λ2 , λ3 ) = {K (κ, k)}4 {K (κ, m − 2k)}2
@ ,=!
×
*
kκ−n
−ν
λ1 +
R
kκ−n
×
& /
ν
kκ−n
−ν −λ
λ1 + λ2 +
(m−2k)κ−n
λ
(m−2k)κ−n
.2
−λ
λ1 + λ2 + λ3 +
%
d dνdλ.
κ ∈
+ %!#
(0, n/m)
Ik,1 (0, 0, λ3 ) = K1 k ((m + k) κ − 2n, (m − k) κ) λ3
Ik,1 (0, λ2 , 0) = K1 k (mκ − n, mκ − n) λ2
2mκ−2n
2mκ−2n
,
2mκ−2n
Ik,1 (λ, −λ, λ) = K1 k (2kκ − n, 2 (m − k) κ − n) λ
Ik,2 :
Ik,2 (0, 0, λ3 ) = K1 k ((2m − k) κ − 2n, kκ) λ3
Ik,2 (0, λ2 , 0) = K1 k (mκ − n, mκ − n) λ2
2mκ−2n
2mκ−2n
Ik,2 (λ, −λ, λ) = K1 k (2kκ − n, 2 (m − k) κ − n) λ
)
Ik,2 (λ1 , λ2 , λ3 )
m,4
*
(λ1 , λ2 , λ3 )
λ1 = 0
,
λ2 = 0
0, x ∈ Rn ,
2mκ−2n
2mκ−2n
,
.
Ik,1 (λ1 , λ2 , λ3 )
λ1 = 0
,
λ3 = 0
λ2 = 0
,
λ3 = 0
Sm,p (λ1 , ..., λp−1 )
"
" / #
)
p
"
,
,
Ik,2 (λ1 , 0, 0) = K1 k ((m + k) κ − 2n, (m − k) κ) λ1
λ1 + λ2 = 0
.
λ2 + λ3 = 0
p > 4
#
Xm (t, x) , t >
m=2
m = 3.
$
"
)
m=2
@ ,C!
+
X2 (t, x) , t > 0, x ∈ Rn ,
t>0 #
x
p, S2,p (λ1 , ..., λp−1 ) ,
sym
{λ ,...,λ :Σ
e
− t Σ
λ
+ Σ
−
E |X2 (t, x)|p <
2p−1 (p − 1)!
λ
g2,p (λ1 , ..., λp−1 ) ,
λ =0}
dλ
g2,p (λ1 , ..., λp−1 ) =
R
& /
−
p
p
C2
c (n, κ)
2
S2,p (λ1 , ..., λp−1 ) =
×
@ ,D!
,
K1 = {K (κ, k)}4 {K (κ, m − 2k)}2 {k (kκ, (m − 2k) κ)}2
*
4!
∞. 1
,
,
2mκ−2n
Ik,1 (λ1 , 0, 0) = K1 k ((2m − k) κ − 2n, kκ) λ1
'
kκ−n
λ
p−1
λ + λ1 ... λ + Σi=1
λi
.2
%
+ %!#
5
S2,2 (λ) = 2k (κ, κ) λ
2κ−n
C2
c (n, κ)
2
2
n−κ .
H
*
λ = 0.
, p≥3
! g2,3 (λ1 , λ2 )
const× λi 3κ−2n
{λ1 = 0} , {λ2 = 0} ,
{λ1 = −λ2 } ;
const × λi 4κ−3n
{λk = λj = 0} ,
! g2,4 (λ1 , λ2 , λ3 )
k = j, k, j = 1, 2, 3
{λk = λj = −λi } ;
const× λl 5κ−4n
{λi = λj = λk = 0} ,
4! g2,5 (λ1 , λ2 , λ3 , λ4 )
i = j = k ∈ {1, 2, 3, 4} ; {λi = λj = 0, λk = −λl } , {λi = 0, λj = λk = −λl } ,
{λi = −λj = λk = −λl } , i = j = k = l ∈ {1, 2, 3, 4} .
%
*
p ≥ 6.
)
m=3
+
t>0
1
@ ,B!
S3,p (λ1 , ..., λp−1 ) =
X3 (t, x) , t > 0, x ∈ Rn ,
x
p, S3,p (λ1 , ..., λp−1 ) ,
C3
(c (n, κ))3/2
3!
4!
E |X3 (t, x)| < ∞.
p
p
p
(S1 (λ1 , ..., λp−1 ) + S2 (λ1 , ..., λp−1 ))
p = 2k, k = 1, 2, ...
S3,p (λ1 , ..., λp−1 ) = 0
p = 2k + 1, k = 1, 2, ... #
S1 (λ1 , ..., λp−1 ) = (2k − 1)!
{λ
i
2k−1
×
γ ∈Γ (1,...,1)
R
i=1
×
j=1
δ
@ ,I!
λ
λ
κ−n
κ−n
j
j=1
j=1
dλdλ 1 ...dλ
k
−
2k
j
k ];
R
i=1
,...,λ :Σ
i
j=1
δ
λj −
k
+
−
− t Σ
[e
sym
λ =0}
2k+1
−
+ Σ
−
λ
κ−n 2k+2
i
κ−n
j
j=1
d 1 ...d
k
λ
j
j=1
k+1 ].
(k ,k )∈K(γ )
) (
"%
%""
" ' 2k ( '
(
$
"
" ' 2k ( ' (
@(
E K (γ)
"! :
! )
x
Sm,p (λ1 , ..., λp−1 ) ,
+ Σ
(k ,k )∈K(γ )
×
:
+
k
2k−1
γ ∈Γ (2,1,...,1,2)
λj + λ −
λ
κ−n
i
S2 (λ1 , ..., λp−1 ) = (2k − 1)!
{λ
×
[e
λ =0}
,...,λ :Σ
−
− t Σ
sym
p
Sm,p (λ1 , ..., λp−1 ) =
7
( Γc (1, ..., 1) ,
(
( Γc (2, 1, ..., 1, 2) ,
(2, 1, ..., 1, 2)
) '
" γ
'
"%
'
Xm (t, x) , t > 0, x ∈ Rn ,
E |Xm (t, x)|p < ∞. )
Cm
(c (n, κ))m/2
m!
"
(
$4
%
t>0 + #
p
(S1 (λ1 , ..., λp−1 ) + S2 (λ1 , ..., λp−1 )) ,
p,
:2
*
*
*
- G *
: :
S1 (λ1 , ..., λp−1 ) = (p − 1)!
{λ
@ ,H!
p−1
×
−
R
γ ∈Γ (m−2,...,m−2)
9 9* G :
,...,λ :Σ
j=1
λj + λp −
@ ,A!
×
κ−n
k
k=1
(k ,k )∈K(γ )
S2 (λ1 , ..., λp−1 ) = (p − 1)!
{λ
γ ∈Γ (m−1,m−1,m−2,...,m−2)
−
R
!
δ
p−1
i
i=1
j=1
κ−n
k
+
k
d
k
−
k
"
λ
p(m−2)+1
−
dλp ],
λ
+ Σ
κ−n
j(m−2)
i
λj −
λ
+ Σ
j=1 k=(j−1)(m−2)+1
[e
λ =0}
,...,λ :Σ
λ
A
j(m−2)
− t Σ
sym
9:
−
i
p(m−2)
× λp
− t Σ
[e
λ =0}
sym
i
i=1
κ−n
*
k
j=1 k=(j−1)(m−2)+1
p(m−2)+2
κ−n
×
:
δ
k
k=1
) (
"%
%""
"
" ' p (
Γcp (m − 1, m − 1, m − 2, ..., m − 2) ,
'
( m−1 (
( m−2 (
(
! ,
6
*2
k
+
d
k
k
].
(k ,k )∈K(γ )
7
(
(m − 2) (
"
) '
$4
Γc (m − 2, ..., m − 2) ,
(
(
" ' p (
@ (
"
p−2 (
"!
7
)
" *
*
L1 "
*
#
*8
= T
:
'
" #
5 .%
&%
"
∂β u
= − (I − ∆)γ/2 (−∆)α/2 u,
β
∂t
= ,!
%)6
= @!
7
>0
"
u (0, x) = v (x) ,
α > 0, β ∈ (0, 1], γ ≥ 0
" v (x) = h (ξ (x)) , x ∈ Rn ,
ξ (x) , x ∈ Rn ,
A−C
∆
n "
(
(−∆)α/2 , α > 0,
'
%
x ∈ Rn ,
"
" %
%
4
v (x)
h( )
" #
"#
( %
− (I − ∆)γ/2 , γ ≥ 0,
* +
(
,>
' 7
"
(
7 0 1! 4
4
&%
"
(
β ∈ (0, 1]
*
+
)
"
#
)
(
'<
∂u
∂t
(t, x) ,
Dtβ u (t, x) ,
∂β u
=
∂tβ
#
β = 1,
β ∈ (0, 1),
'
%
/ '
t
∂
1
(t, x) =
Γ (1 − β) ∂t
Dtβ u
+
0
(
7 0 1
%
(
(
'
j=0
zj
,
Γ (βj + 1)
F
Eβ (−x) =
j=0
#
.
)
"
dk
Eβ (−x) ≥ 0,
dxk
β < 1,
9
x≥0
Eβ (−x) =
:
%
$
<
x → ∞, '
"
= @! ( )
'
"
9
β<1(
)%
(
"
7
%# &#
6)
k=1
∞
0
"
!
exp − (xt)1/β dt
t2 + 2t cos (πβ) + 1
%
.
Eβ ,
'
"
(−1)k x−k
+ O |x|−N−1
Γ (1 − βk)
D!
%
7
( %
"
0 1!
u (t, x) , 0 < t ≤ T, x ∈ Rn ,
$
n
L1 (R )
= D!
%
0 < β < 1,
0 1
4 !
0 1! :
(−1)j xj
Γ (βj + 1)
x ≥ 0, E1 (−x) = e−x . 9
Eβ (−x) = −
= C!
6)
x ≥ 0, 0 < β < 1, k = 0, 1, 2, ...
sin (πβ)
πβ
N
6)
z ∈ C1 , β > 0.
"
(−1)k
%
,<
%
∞
= =!
G
1/β
7 '
x ≥ 0, β > 0,
0 < t ≤ T,
!
%
Eβ (z) =
u (0, x)
,
tβ
(
"
∞
%
(t − τ )−β u (τ , x) dτ −
κ < min (2α, n) /m,
%
) " = ,!
"%
4 !
7
:2
*
*
*
- G *
: :
9 9* G :
h. )
"
Uε (t, x) =
*
1
εmκβ/(2α)
ε→0
(
= B!
t x
,
ε εβ/α
u
x∈R
Cm m/2
(n, κ)
c
m!
′
ei(x,λ
,
m≥1
+...+λ )
α
"1 =
*
*
Um (t, x)
′
ei(x−y,λ +...+λ )
( λ1 ... λm )n−κ
R
α
Eβ − sβ λ1 + ... + λm
2
(t, x) < ∞.
κ < min (2α, n) /m,
EUm
n
U1 (t, x) , t > 0, x ∈ R ,
4 >!
m=1
dλ1 ...dλm .
x) $
α
S1,2 (λ) = C12 c (n, κ) Eβ2 − tβ λ
)
0 < t ≤ T, x ∈ Rn ,
+ $
′
<
W()
κ < min (2α, n) /m,
×Eβ − tβ λ1 + ... + λm
= H!
(
( λ1 ... λm )(n−κ)/2
R
2
Cm
EUm (t, x) Um (s, y) =
cm (n, κ)
m!
= I!
'
0 < t ≤ T, x ∈ Rn ,
,
×Eβ − tβ λ1 + ... + λm α W (dλ1 ) ...W (dλm ) ,
*" :
4 4!# W
Eβ
c (n, κ)
;! ' #
*
+$
λi = ±λj , i, j = 1, ..., m, i = j,
* +
" ,
,,
"
Um (t, x) =
n
9:
m≥1
%
κ
*
λ
κ−n
λ ∈ Rn .
,
4 3!
C12 c (n, κ) λ
λ → 0. '
*
?
,
x ∈ (0, min (2α, n))
U1 (t, x) , t > 0, x ∈ Rn ,
(
7
$
+
#
λ →∞
S1,2 (λ) =
%
κ−n
/
1
C12 c (n, κ)
n+2α−κ + O
β
t
λ
( 0 1!
)
1/ λ
0 1!
%
# )
3
1
λ
n+2α−κ+1
n+2α−α
"
n ≥ 1, β = 1, γ = 0, α = 2.
)
2 %
#
Um (t, x) , t > 0, x ∈ Rn , '
#
m ≥ 2. )
m≥2
(
$
'
Um (t, x) , t > 0, x ∈ Rn ,
x,
#
′
ei(λ,x−x ) SU
EUm (t, x) Um (t, x′ ) =
R
(λ) dλ
"
"
+
t>0
,@
*
= A!
SU
2
2
Cm
2
cm (n, κ) K (κ, m) Eβ − tβ λ α
λ mκ−n .
m!
"$
Um (t, x) , t > 0, x ∈ Rn ,
1
#
4 @!
(λ) =
$ )
/
λ → 0.
,
4 ;!
SU
,2
2
Cm
m!
(λ) =
:
Rn .
mκ−n
const × λ
$
κ ∈ (0, min (2α, n))
,
cm (n, κ) × 2K (κ, m)
tβ
λ
"'
1
λ
n+2α−mκ+1
.
Um (t, x) , t > 0, x ∈
#
Um (t, x) , t > 0, x ∈ Rn ,
E |Um (t, x)|p < ∞,
5
p
*
1
+O
n+2α−mκ
)
$ )
x
m ≥ 2
t>0 +
!)
SU
×
,3
sym
{λ
,λ ,λ :Σ
×
λ =0}
3
C2k
k!
(λ1 , λ2 ) =
[Eβ − tβ λ1
( λ1 + λ2 + λ
(c (n, κ))3k (K (κ, m))3
α
α
Eβ − tβ λ2
Eβ − tβ λ1 + λ2
λ )kκ−n dλ]
λ2 + λ
α
m = 2k
R
SU
,3
(λ1 , λ2 ) = 0
m = 2k + 1.
!)
SU
×
{λ
,4
(λ1 , λ2 , λ3 ) =
sym
λ =0}
,λ ,λ ,λ :Σ
#
Ik,1 , Ik,2 , Ik,3
4! )
SU
Cm m/2
(n, κ)
c
m!
$
3
β
i=1
Eβ − t
λi
α
*
4 [m/2]
k=1
3
β
− t
Eβ
!"
(m!)4 3k+1
((m − 2k)!)2
α%
λi
i=1
&
{Ik,1 + Ik,2 + Ik,3 } ,
4!
p
,p (λ1 , ..., λp−1 ) =
Cm
(c (n, κ))m/2
m!
p
(1)
(2)
× SU (λ1 , ..., λp−1 ) + SU (λ1 , ..., λp−1 ) ,
×
{λ
sym
,...,λ :Σ
λ =0}
#p−1
i=1
(1)
SU (λ1 , ..., λp−1 ) = (p − 1)!
$
p−1
Eβ − tβ λi
α
Eβ
− tβ
i=1
λi
α%
Σ1 (λ1 , ..., λp−1 )
&
:2
*
*
*
- G *
: :
9 9* G :
*
9:
,=
(2)
'
×
{λ
sym
λ =0}
,...,λ :Σ
#p−1
i=1
# Σ1 (λ1 , ..., λp−1 )
SU (λ1 , ..., λp−1 ) = (p − 1)!
$
p−1
Eβ − tβ λi
Eβ
Σ2 (λ1 , ..., λp−1 )
3!
@!
)
− tβ
λi
i=1
@
Σ2 (λ1 , ..., λp−1 ) .
*
*
A
#
* "
"
*
5 '
*
@
#
=
%
)
*
&
7
*
)
0! '
7
9
α
α%
/
(
"
A
"
"
C P
/
(
%
%
*
%
( (
(
"%
4)
%
7
)
B
)
+
"
/
'
"
7
ei(y,λ
+...+λ )
ei(y,λ
)
R
2
Cm
(c (n, κ))m
m!
ei(y,λ +...+λ )−2 t λ +...+λ
×
( λ1 ... λm )n−κ
R
( λ1 − λ2
ei(y,λ) e−2
e−2 t λ
... λm−1 − λm
t λ
R
−
dλ1 ...dλm
λm )n−κ
dλ2 ...dλm
( λ − λ2 λ2 − λ3 ... λm−1 − λm
Xm (t, x)
'
Sm,2 (λ) = e−2
t λ
R
×
dλ1 ...dλm
e−2 t λ +...+λ
dλ1 ...dλm
( λ1 ... λm )n−κ
R
:
%
&%
( %
(
"
λ1 = λ′1 − λ′2 , λ2 = λ′2 − λ′3 , ..., λm−1 = λ′m−1 − λ′m , λm = λ′m
)
′
Σm
i=1 λi = λ1
=
"
"%
"%
G
(
R
"
0 1
Cov (Xm (t, x) , Xm (t, x + y)) =
=
" @
"%
:;
"
G "
−
( λ − λ2
2
Cm
(c (n, κ))m .
m!
(
λm )n−κ
)
dλ2 ...dλm
λ2 − λ3 ... λm−1 − λm
λm )n−κ
dλ.
,C
f (x) = 1/ x n−κ , f ∗m (x) =
'
f (λm−1 − λm ) f (λm ) dλ2 ...dλm ;
%
t λ
Sm,2 (λ) = e−2
( %
"%
f ∗m (λ)
f ∗m (λ) =
=
9 "
*
+
"%
%
2
Cm
(c (n, κ))m .
m!2
" '
'
f ∗m (λ) =
κ−n
λ − λ2
R
×
R
λ2 − λ3
R
κ−n
λm−1 − λm
mκ−n
= K (κ, m) λ
K (κ, m) = π
'
"
λm
2κ−n
.
κ−n
κ−n
dλm dλm−1 ...dλ2
Γ κ2
Γ n−κ
2
(m−1)
mκ−n
,
m−1 m−1
Γ
iκ
2
i=1
Γ
n−iκ
2
Γ
n−(1+i)κ
2
Γ
(1+i)κ
2
.
(
f ∗m (λ) = K (κ, m) λ
Sm,2 (λ) = e−2
B
+
, 0 < mκ < n.
= k (κ, κ) k (κ, 2κ) ...k (κ, (m − 2) κ) k (κ, (m − 1) κ) λ
'
"
*
λm )n−κ
dλm
= k (κ, κ) λm−1
( λm−1 − λm λm )n−κ
R
'
f ∗m (λ)
dλ2 ...dλm
λ2 − λ3 ... λm−1 − λm
( λ − λ2
−
R
f (x − λ2 ) f (λ2 − λ3 ) ...
$
Sm,2
−
'
f (λ − λ2 ) f (λ2 − λ3 ) ...f (λm−1 − λm ) f (λm ) dλ2 ...dλm
−
R
) '
$ ! :
R
)
C ,!
4
λ
%
λ
mκ−n
)
mκ−n
K (κ, m)
2
Cm
(c (n, κ))m .
m!
%"# '
%"%
Cum (Xm (t, x1 ) , Xm (t, x2 ) , Xm (t, x3 )) = c3
hγ ,
γ∈Γ
3
Cm
(c (n, κ))m/2 ,
m!
" '
= (
%"%
&%
+
m = 2k.
c3 =
Γc3,m )
' Γc3,m = ∅
%
'
C @!
"
m = 2k + 1.
hx (λ1 , ..., λm ) =
ei(x,λ
{n1 , n2 , n3 } = {m, m, m} ,
m
+...+λ )− t λ +...+λ
( λ1 ... λm )(n−κ)/2
:2
*
*
*
- G *
: :
" γ ∈ Γc3,m , m = 2k,
"
) '
hγ =
9 9* G :
*
9:
K (γ) = {(ki , kj )} )
,D
E
hγ
hx (λ1 , ..., λ2k ) hx (λ2k+1 , ..., λ4k ) hx (λ4k+1 , ..., λ6k )
R
3k
×
δ λk + λk
dλk .
i=1
(k ,k )∈K(γ)
"
" γ ∈ Γc3,m )
"<
(
(
Γc3,m = ((2k)!/k!)3 . :
%
(
(
'
"
#
(
'
hx (λ1 + ... + λk − λk+1 − ... − λ2k )
hγ =
R
×hx (λk+1 + ... + λ2k − λ2k+1 − ... − λ3k )
×hx (−λ1 − ... − λk + λ2k+1 + ... + λ3k ) dλ1 ...dλ3k
ei[(x
=
,Σ
λ )+(x ,Σ
λ −Σ
λ )+(x ,−Σ
λ −Σ
λ +Σ
λ
)]
R
− t
×e
/
Σ
λ −Σ
λ
(
+ Σ
)
λ −Σ
λ
+ −Σ
λ +Σ
λ
dλ1 ...dλ3k
.
( λ1 ... λ3k )n−κ
<
Σki=1 λi − Σ2k
i=k+1 λi = ω 1
3k
Σ2k
i=k+1 λi − Σi=2k+1 λi = ω 2
C =!
′
Σ3k
i=2k+1 λi = λ3k
Σpi=1 λi = λ′p ,
Σpi=k+1 λi = λ′p ,
Σpi=2k+1 λi
=
λ′p ,
p = 1, 2, ..., k − 1
p = k + 1, k + 2, ..., 2k − 1
p = 2k + 1, 2k + 2, ..., 3k − 1,
λi = λ′i , i = 1, k + 1, 2k + 1
λk = ω 1 + ω 2 + λ′3k − λ′k−1
λ2k = ω 2 + λ′3k − λ′2k−1
,B
"
(
"
R
×
R
ei(x
#
λi = λ′i+1 − λ′i , i ∈
/ {1, k + 1, 2k + 1, k, 2k} ,
)
'
−x ,ω )+i(x −x ,ω ) − t( ω
e
+ ω
)
+ ω +ω
k−1
f (λ1 )
−
R
i=2
f (λi − λi−1 ) f (ω 1 + ω 2 + λ3k − λk−1 ) dλ1 ...dλk−1
2k−1
×
f (λk+1 )
−
R
i=k+2
f (λi − λi−1 ) f (ω 1 + λ3k − λ2k−1 ) dλk+1 ...dλ2k−1
&
3k−1
×
f (λ2k+1 )
−
R
ei[(x
=
i=2k+2
f (λi − λi−1 ) f (λ3k − λ3k−1 ) dλ2k+1 ...dλ3k−1 dλ3k dω 1 dω 2
−x ,ω )+(x −x ,ω )] − t( ω
+ ω
e
+ ω +ω
)
R
×
f ∗k (ω 1 + ω 2 + λ3k ) f ∗k (ω 2 + λ3k ) f ∗k (λ3k ) dλ3k dω 1 dω 2 .
R
%")
"
'
(
%"
C ,!
$
)
(2k)!
k!
Sm,3 (ω 1 , ω 2 ) = c3
%"
'
− t(
ω =0} e
3
sym{ω
,ω ,ω :Σ
ω
((2k)!/k!)3 ,
Xm (t, x) :
+ ω
+ ω +ω
f ∗k (ω 1 + ω 2 + λ) f ∗k (ω 2 + λ) f ∗k (λ) dλ,
×
'
f ∗k (ω 1 + ω 2 + λ) f ∗k (ω 2 + λ) f ∗k (λ)
R
( ω1 + ω2 + λ
ω2 + λ
A
'
%
R
m = 2k + 1, Sm,3 = 0.
’
"
7 '
* +J
"
0 < α < n, 0 < β < n, 0 < α + β < n,
R
x−z
α−n
x−y
β−n
k (α, β) = π n/2
%-
0 1
I,!
Γ
Γ
"% <
dz = k (α, β) x − y
'
,!
λ )kκ−n dλ
R
c3 (2k!/k!)3 = (C2k /k!)3 (c (n, κ))3k . 9
α
2
n−α
2
Γ
Γ
β
2
n−α−β
2
n−β
Γ α+β
2
2
Γ
α+β−n
)
m = 2k,
R
= {K (κ, k)}3
'
,
(
:2
*
*
A
*
- G *
: :
9 9* G :
*
9:
,I
&&% 0 1
7
4 C
$
)
)%
0 1
&&% 0 1 9 $
0 1
)
( %
" "
%
"%
&%
/ #
%
m1 , ..., mp )
(
!
(
"
( %
"
"
(
"
V
%
"%
" "% :
"
2 %
%"%
"%
/
"
" (
)
"%
"%
#
(
%
(m1 , ..., mp )
Γ
Γ'
m1 +...+mp = M
"
V = {(1, 1) , ..., (1, m1 ) , (2, 1) , ..., (2, m2 ) , ..., (p, 1) , ..., (p, mp )} =
4 ,!
:;
"
/
'
p
)
Wj ,
j=1
'
Wj = {(j, l) : 1 ≤ l ≤ nj }
j
Γ, 1 ≤ j ≤ p;
,
(j2 , i2 )
6
Γ
(
)!
(
$
"
" )
"
E
! (
(j1 , i1 )
)
w = ((j1 , i1 ) , (j2 , i2 )) ,
j1 = j2 ,
.
(
Γ (m1 , ..., mp )
"
(m1 , ..., mp ) .
) K (γ)
" γ ∈ Γ (m1 , ..., mp ) . /
"
v ∈ V, '
'
v
4 ,!
%
(1, 1) ,
(1, 2) @
(
$ (p, mp )
M.
w = ((j1 , i1 ) , (j2 , i2 )) ∈ K (γ)
)
%
w = (k1 , k2 ) ,
'
k1
(
$ (j1 , i1 )
k2
(
$ (j2 , i2 )
4 ,!
"γ
(
" )
$
(
: %
%")
γ
|K (γ)| = M/2.
"
( {Wj , j = 1, ..., p}
)
' %)
)
#
hi ∈ L2 (Rnm ) , i = 1, ..., p,
p
h (λ1 , ..., λM ) =
hi λM −
+1 , ..., λM
,
i=1
'
%
Mi = m1 + ... + mi , i = 1, 2, ..., p, M0 = 0
$
(
<
$
m
′
h1 (λ1 , ..., λm )
Cum
R
4 @!
hp λ1 , ..., λm
R
γ∈Γ (m ,...,m )
"%
W (dλi )
i=1
δ λk + λk dλk
h (λ1 , ..., λM )
R
'
m
′
W (dλi ) , ...,
i=1
=
Mp = M.
(k ,k )∈K(γ)
,
%
,H
'
GPO B
8"
%"
!S
2434, B
(
"
" γ,
7
U7
8"
δ( )
7
M
S
QLD 4001, A
<
7 !S
CF24 4YH, UK
8"
(m1 , ..., mp ) , K (γ)
%
" γ
M
, Q
,C
U $
U $
%, S
%
T
%
R
%,
,C
7 <
! D
M
7
<
, K% $ U $
% (N
), K% $, 01033,