Papers by Ulisses Nunes da Rocha
Pseudomonas putida strain P9 is a novel competent endophyte from potato. P9 causes cultivar-depen... more Pseudomonas putida strain P9 is a novel competent endophyte from potato. P9 causes cultivar-dependent suppression of Phytophthora infestans. Colonization of the rhizoplane and endosphere of potato plants by P9 and its rifampin-resistant derivative P9R was studied. The purposes of this work were to follow the fate of P9 inside growing potato plants and to establish its effect on associated microbial communities. The effects of P9 and P9R inoculation were studied in two separate experiments. The roots of transplants of three different cultivars of potato were dipped in suspensions of P9 or P9R cells, and the plants were planted in soil. The fate of both strains was followed by examining colony growth and by performing PCR-denaturing gradient gel electrophoresis (PCR-DGGE). Colonies of both strains were recovered from rhizoplane and endosphere samples of all three cultivars at two growth stages. A conspicuous band, representing P9 and P9R, was found in all Pseudomonas PCR-DGGE fingerprints for treated plants. The numbers of P9R CFU and the P9R-specific band intensities for the different replicate samples were positively correlated, as determined by linear regression analysis. The effects of plant growth stage, genotype, and the presence of P9R on associated microbial communities were examined by multivariate and unweighted-pair group method with arithmetic mean cluster analyses of PCR-DGGE fingerprints. The presence of strain P9R had an effect on bacterial groups identified as Pseudomonas azotoformans, Pseudomonas veronii, and Pseudomonas syringae. In conclusion, strain P9 is an avid colonizer of potato plants, competing with microbial populations indigenous to the potato phytosphere. Bacterization with a biocontrol agent has an important and previously unexplored effect on plant-associated communities.
FEMS Microbiology Ecology, 2000
Nymphal Ixodes ricinus ticks (n=180) were collected from three different areas in the Netherlands... more Nymphal Ixodes ricinus ticks (n=180) were collected from three different areas in the Netherlands to investigate the effect of forest composition on tick-associated microbial communities. Sampled habitats differed in thickness of leaf litter and humus layers and vegetation associations and were located near Amsterdam (Beech-Oak), Ede (Birch-Oak) and Veldhoven (Birch-Oak). Analysis of nine 16S rRNA gene clone libraries made from individual ticks showed nearest matches with presumed pathogens Candidatus Neoehrlichia mikurensis and Rickettsia australis and arthropod endosymbionts Wolbachia pipientis and Candidatus Midichloria mitochondrii. Total bacterial species diversity (Shannon index) and Borrelia species infections were determined in I. ricinus by, respectively, PCR-denaturing gradient gel-electrophoresis and PCR-reverse line blot with probes specific for Borrelia burgdorferi sensu stricto, Borrelia afzelii, Borrelia garinii, Borrelia valaisiana, Borrelia lusitaniae and Borrelia ruski. Bacterial diversity differed significantly per area and was lowest in Ede. In contrast, Borrelia species-infected ticks were more abundant in Ede, Candidatus Neoehrlichia mikurensis-infected ticks in Ede and Veldhoven, and R. australis-infected ticks in Amsterdam. Borrelia afzelii was the most common Borrelia species found in all three areas. Bacterial tick diversity was influenced by local differences in forest structure, which is proposed to modulate animal populations that are commonly parasitized by I. ricinus.
European Journal of Plant Pathology, 2013
Intensive insecticide and nutrient management have been attempted worldwide to reduce citrus huan... more Intensive insecticide and nutrient management have been attempted worldwide to reduce citrus huanglongbing (HLB) symptom development and yield loss. However, effects of insecticide and nutrient applications on HLB have been poorly understood. Leaf nutrients, jasmonic and salicylic acid contents, cycle threshold (Ct) values of Ca. Liberibacter asiaticus (Las), and community structure of endophytic α-proteobacteria were evaluated after insecticide treatment, 'nutrition' treatment (including systemic resistance inducing agents), or both in comparison with a control in a two-factor field experiment in 2008-2012. Leaf N, Mn, Zn and B significantly increased whilst Cu decreased after nutrient applications. Salicylic acid significantly increased in old leaves treated with insecticides, nutrients or both, and in young leaves treated with nutrients only. The jasmonic acid concentration was highest after the nutrition treatment in both old and young leaves. Ct values of Las and leaf area and weight significantly increased after long-term nutrient applications in 2011 and/or 2012. Redundancy analysis of the endophytic α-proteobacteria community structure indicated that the communities were mainly separated according to nutrient applications, which were positively associated with Ct values of Las and Ca, Mn, Zn, B, Mg, and Fe contents in leaf samples collected in 2012. Thus, effects of insecticides on HLB were significant in the early 2-year period whilst nutrients had significant effects on Las content and leaf size and weight after at least 3 years of application.
Microbial Ecology, 2013
To understand the functioning of sponges, knowledge of the structure of their associated microbia... more To understand the functioning of sponges, knowledge of the structure of their associated microbial communities is necessary. However, our perception of sponge-associated microbiomes remains mainly restricted to marine ecosystems. Here, we report on the molecular diversity and composition of bacteria in the freshwater sponge Ephydatia fluviatilis inhabiting the artificial lake Vinkeveense Plassen, Utrecht, The Netherlands. Polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) fingerprints revealed that the apparent diversities within the domain Bacteria and the phylum Actinobacteria were lower in E. fluviatilis than in bulk water. Enrichment of specific PCR-DGGE bands in E. fluviatilis was detected. Furthermore, sponge- and bulk water-derived bacterial clone libraries differed with respect to bacterial community composition at the phylum level. E. fluviatilis-derived sequences were affiliated with six recognized phyla, i.e., Proteobacteria, Planctomycetes, Actinobacteria, Bacteroidetes, Chlamydiae and Verrucomicrobia, in order of relative abundance; next to the uncultured candidate phylum TM7 and one deeply rooted bacterial lineage of undefined taxonomy (BLUT). Actinobacteria, Proteobacteria, and Bacteroidetes were the dominant bacterial phyla in the freshwater clone library whereas sequences affiliated with Planctomycetes, Verrucomicrobia, Acidobacteria and Armatimonadetes were found at lower frequencies. Fine-tuned phylogenetic inference showed no or negligible overlaps between the E. fluviatilis and water-derived phylotypes within bacterial taxa such as Alphaproteobacteria, Bacteroidetes and Actinobacteria. We also ascertained the status of two alphaproteobacterial lineages as freshwater sponge-specific phylogenetic clusters, and report on high distinctiveness of other E. fluviatilis specific phylotypes, especially within the Bacteroidetes, Planctomycetes and Chlamydia taxa. This study supports the contention that the composition and diversity of bacteria in E. fluviatilis is partially driven by the host organism.
Journal of Soils and Sediments, 2010
Purpose The role of dominant bacterial groups in the plant rhizosphere, e.g., those belonging to ... more Purpose The role of dominant bacterial groups in the plant rhizosphere, e.g., those belonging to the phyla Acidobacteria and Verrucomicrobia, has, so far, not been elucidated, and this is mainly due to the lack of culturable representatives. This study aimed to isolate hithertouncultured bacteria from the potato rhizosphere by a combination of cultivation approaches. Materials and methods An agar medium low in carbon availability (oligotrophic agar medium) and either amended with potato root exudates or catalase or left unamended was used with the aim to improve the culturability of bacteria from the potato rhizosphere. The colony forming unit numbers based on colonies and microcolonies were compared with microscopically determined fluorescence-stained cell numbers. Taxonomical diversity of the colonies was compared with that of library clones made from rhizosphere DNA, on the basis of 16S rRNA gene comparisons.
Frontiers in Microbiology, 2015
Biological Soil Crusts (BSCs) are organosedimentary assemblages comprised of microbes and mineral... more Biological Soil Crusts (BSCs) are organosedimentary assemblages comprised of microbes and minerals in topsoil of terrestrial environments. BSCs strongly impact soil quality in dryland ecosystems (e.g., soil structure and nutrient yields) due to pioneer species such as Microcoleus vaginatus; phototrophs that produce filaments that bind the soil together, and support an array of heterotrophic microorganisms. These microorganisms in turn contribute to soil stability and biogeochemistry of BSCs. Non-cyanobacterial populations of BSCs are less well known than cyanobacterial populations. Therefore, we attempted to isolate a broad range of numerically significant and phylogenetically representative BSC aerobic heterotrophs. Combining simple pre-treatments (hydration of BSCs under dark and light) and isolation strategies (media with varying nutrient availability and protection from oxidative stress) we recovered 402 bacterial and one fungal isolate in axenic culture, which comprised 116 phylotypes (at 97% 16S rRNA gene sequence homology), 115 bacterial and one fungal. Each medium enriched a mostly distinct subset of phylotypes, and cultivated phylotypes varied due to the BSC pre-treatment. The fraction of the total phylotype diversity isolated, weighted by relative abundance in the community, was determined by the overlap between isolate sequences and OTUs reconstructed from metagenome or metatranscriptome reads. Together, more than 8% of relative abundance of OTUs in the metagenome was represented by our isolates, a cultivation efficiency much larger than typically expected from most soils. We conclude that simple cultivation procedures combined with specific pre-treatment of samples afford a significant reduction in the culturability gap, enabling physiological and metabolic assays that rely on ecologically relevant axenic cultures.
Beneficial bacteria interact with plants by colonizing the rhizosphere and roots followed by furt... more Beneficial bacteria interact with plants by colonizing the rhizosphere and roots followed by further spread through the inner tissues, resulting in endophytic colonization. The major factors contributing to these interactions are not always well understood for most bacterial and plant species. It is believed that specific bacterial functions are required for plant colonization, but also from the plant side specific features are needed, such as plant genotype (cultivar) and developmental stage. Via multivariate analysis we present a quantification of the roles of these components on the composition of root-associated and endophytic bacterial communities in potato plants, by weighing the effects of bacterial inoculation, plant genotype and developmental stage. Spontaneous rifampicin resistant mutants of two bacterial endophytes, Paenibacillus sp. strain E119 and Methylobacterium mesophilicum strain SR1.6/6, were introduced into potato plants of three different cultivars (Eersteling, Robijn and Karnico). Densities of both strains in, or attached to potato plants were measured by selective plating, while the effects of bacterial inoculation, plant genotype and developmental stage on the composition of bacterial, Alphaproteobacterial and Paenibacillus species were determined by PCR-denaturing gradient gel-electrophoresis (DGGE). Multivariate analyses revealed that the composition of bacterial communities was mainly driven by cultivar type and plant developmental stage, while Alphaproteobacterial and Paenibacillus communities were mainly influenced by bacterial inoculation. These results are important for better understanding the effects of bacterial inoculations to plants and their possible effects on the indigenous bacterial communities in relation with other plant factors such as genotype and growth stage.
Springer Protocols Handbooks, 2014
Springer Protocols Handbooks, 2014
The ISME Journal, 2013
Biological soil crusts (BSCs) cover extensive portions of the earth's deserts. In order to surviv... more Biological soil crusts (BSCs) cover extensive portions of the earth's deserts. In order to survive desiccation cycles and utilize short periods of activity during infrequent precipitation, crust microorganisms must rely on the unique capabilities of vegetative cells to enter a dormant state and be poised for rapid resuscitation upon wetting. To elucidate the key events involved in the exit from dormancy, we performed a wetting experiment of a BSC and followed the response of the dominant cyanobacterium, Microcoleus vaginatus, in situ using a whole-genome transcriptional time course that included two diel cycles. Immediate, but transient, induction of DNA repair and regulatory genes signaled the hydration event. Recovery of photosynthesis occurred within 1 h, accompanied by upregulation of anabolic pathways. Onset of desiccation was characterized by the induction of genes for oxidative and photo-oxidative stress responses, osmotic stress response and the synthesis of C and N storage polymers. Early expression of genes for the production of exopolysaccharides, additional storage molecules and genes for membrane unsaturation occurred before drying and hints at preparedness for desiccation. We also observed signatures of preparation for future precipitation, notably the expression of genes for anaplerotic reactions in drying crusts, and the stable maintenance of mRNA through dormancy. These data shed light on possible synchronization between this cyanobacterium and its environment, and provides key mechanistic insights into its metabolism in situ that may be used to predict its response to climate, and or, land-use driven perturbations.
PLoS ONE, 2013
There is a lack in our current understanding on the putative interactions of species of the phyla... more There is a lack in our current understanding on the putative interactions of species of the phyla of Acidobacteria and Verrucomicrobia with plants. Moreover, progress in this area is seriously hampered by the recalcitrance of members of these phyla to grow as pure cultures. The purpose of this study was to investigate whether particular members of Acidobacteria and Verrucomicrobia are avid colonizers of the rhizosphere. Based on previous work, rhizosphere competence was demonstrated for the Verrucomicrobia subdivision 1 groups of Luteolibacter and Candidatus genus Rhizospheria and it was hypothesized that the rhizosphere is a common habitat for Acidobacteria subdivision 8 (class Holophagae). We assessed the population densities of Bacteria, Verrucomicrobia subdivision 1 groups Luteolibacter and Candidatus genus Rhizospheria and Acidobacteria subdivisions 1, 3, 4, 6 and Holophagae in bulk soil and in the rhizospheres of grass, potato and leek in the same field at different points in time using real-time quantitative PCR. Primers of all seven verrucomicrobial, acidobacterial and holophagal PCR systems were based on 16S rRNA gene sequences of cultivable representatives of the different groups. Luteolibacter, Candidatus genus Rhizospheria, subdivision 6 acidobacteria and Holophaga showed preferences for one or more rhizospheres. In particular, the Holophaga 16S rRNA gene number were more abundant in the leek rhizosphere than in bulk soil and the rhizospheres of grass and potato. Attraction to, and colonization of, leek roots by Holophagae strain CHC25 was further shown in an experimental microcosm set-up. In the light of this remarkable capacity, we propose to coin strain CHC25 Candidatus Porrumbacterium oxyphilus (class Holophagae, Phylum Acidobacteria), the first cultured representative with rhizosphere competence.
Journal of Microbiological Methods, 2010
In the light of the poor culturability of Acidobacteria and Verrucomicrobia species, group-specif... more In the light of the poor culturability of Acidobacteria and Verrucomicrobia species, group-specific real-time (qPCR) systems were developed based on the 16S rRNA gene sequences from culturable representatives of both groups. The number of DNA targets from three different groups, i.e. Holophagae (Acidobacteria group 8) and Luteolibacter/Prosthecobacter and unclassified Verrucomicrobiaceae subdivision 1, was determined in DNA extracts from different leek (Allium porrum) rhizosphere soil compartments and from bulk soil with the aim to determine the distribution of the three bacterial groups in the plant-soil ecosystem. The specificity of the designed primers was evaluated in three steps. First, in silico tests were performed which demonstrated that all designed primers 100% matched with database sequences of their respective groups, whereas lower matches with other non-target bacterial groups were found. Second, PCR amplification with the different primer sets was performed on genomic DNA extracts from target and from non-target bacteria. This test demonstrated specificity of the designed primers for the target groups, as single amplicons of expected sizes were found only for the target bacteria. Third, the qPCR systems were tested for specific amplifications from soil DNA extracts and 48 amplicons from each primer system were sequenced. All sequences were >97% similar to database sequences of the respective target groups. Estimated cell numbers based on Holophagae-, Luteolibacter/Prosthecobacter- and unclassified Verrucomicrobiaceae subdivision 1-specific qPCRs from leek rhizosphere compartments and bulk soils demonstrated higher preference for one or both rhizosphere compartments above bulk soil for all three bacterial groups.
Journal of Hazardous Materials, 2009
An investigation of electrokinetic bacterial mobilisation in a residual soil from gneiss is prese... more An investigation of electrokinetic bacterial mobilisation in a residual soil from gneiss is presented here. The experimental program aimed at assessing the efficacy of electrophoresis against the electro-osmotic flow to transport endospores of Bacillus subtilis LBBMA 155 and nitrogen-starved cells of Pseudomonas sp. LBBMA 81. Electrokinesis was performed on a low hydraulic reconstituted clayey soil column submitted to a 5 mA electrical current for 24 h. Cells were coccoid-shaped and characterised as possessing low surface hydrophobicity and less than 1 m in diameter. Distribution coefficient for B. subtilis in the soil was between 16.8 and 19.9 times higher than that for Pseudomonas sp. Distribution coefficient for B. subtilis between eluate and anionic exchange column was 11.8 times higher than that for Pseudomonas sp. After the electrokinesis, it was shown that cells and endospores were distributed hyperbolically through the soil probe and moved against the electro-osmotic flow; however, endospores were transported throughout all soil core and starved cells only till half of its length. The higher transport efficiency of B. subtilis endospores was attributed to their higher negative charge on cell surface. These results demonstrate that electrokinesis can be used for bacteria transport in soils with low hydraulic conductivity, even against the electro-osmotic flow.
FEMS Microbiology Ecology, 2011
Strains CHC12 and CHC8, belonging to, respectively, Luteolibacter and Candidatus genus Rhizospher... more Strains CHC12 and CHC8, belonging to, respectively, Luteolibacter and Candidatus genus Rhizospheria (Verrucomicrobia subdivision 1), were recently isolated from the leek rhizosphere. The key question addressed in this study was: does attraction to and colonization of the rhizosphere occur in the same way for both strains? Therefore, the fate of the two strains was studied near in vitro-grown leek roots and in soil zones proximate to and at a further distance from roots in a model plant-soil microcosm set-up. Quantitative PCR detection with specific primers was used, as the cultivation of these bacteria from soil is extremely fastidious. The data indicated that natural populations of Luteolibacter (akin to strain CHC12) had lower numbers in the rhizosphere than in the corresponding bulk soil. On the other hand, the populations of Candidatus genus Rhizospheria, i.e. strain CHC8, showed higher numbers in the rhizosphere than in the bulk soil. Increased strain CHC8 cell-equivalent numbers in the rhizosphere were not only the result of in situ cell multiplication, but also of the migration of cells towards the roots. Luteolibacter and Candidatus genus Rhizospheria cells displayed differences in attraction to the rhizosphere and colonization thereof, irrespective of the fact that both belonged to Verrucomicrobia subdivision 1.
FEMS Microbiology Ecology, 2000
The rhizosphere environment selects a particular microbial community that arises from the one pre... more The rhizosphere environment selects a particular microbial community that arises from the one present in bulk soil due to the release of particular compounds in exudates and different opportunities for microbial colonization. During plantmicroorganism coevolution, microbial functions supporting plant health and productivity have developed, of which most are described in cultured plantassociated bacteria. This review discusses the state of the art concerning the ecology of the hitherto-uncultured bacteria of the rhizosphere environment, focusing on Acidobacteria, Verrucomicrobia and Planctomycetes. Furthermore, a strategy is proposed to recover bacterial isolates from these taxa from the rhizosphere environment.
European Journal of Plant Pathology, 2013
Intensive insecticide and nutrient management have been attempted worldwide to reduce citrus huan... more Intensive insecticide and nutrient management have been attempted worldwide to reduce citrus huanglongbing (HLB) symptom development and yield loss. However, effects of insecticide and nutrient applications on HLB have been poorly understood. Leaf nutrients, jasmonic and salicylic acid contents, cycle threshold (Ct) values of Ca. Liberibacter asiaticus (Las), and community structure of endophytic α-proteobacteria were evaluated after insecticide treatment, 'nutrition' treatment (including systemic resistance inducing agents), or both in comparison with a control in a two-factor field experiment in 2008-2012. Leaf N, Mn, Zn and B significantly increased whilst Cu decreased after nutrient applications. Salicylic acid significantly increased in old leaves treated with insecticides, nutrients or both, and in young leaves treated with nutrients only. The jasmonic acid concentration was highest after the nutrition treatment in both old and young leaves. Ct values of Las and leaf area and weight significantly increased after long-term nutrient applications in 2011 and/or 2012. Redundancy analysis of the endophytic α-proteobacteria community structure indicated that the communities were mainly separated according to nutrient applications, which were positively associated with Ct values of Las and Ca, Mn, Zn, B, Mg, and Fe contents in leaf samples collected in 2012. Thus, effects of insecticides on HLB were significant in the early 2-year period whilst nutrients had significant effects on Las content and leaf size and weight after at least 3 years of application.
Brazilian Journal of Microbiology, 2008
Antonie van Leeuwenhoek, 2010
Beneficial bacteria interact with plants by colonizing the rhizosphere and roots followed by furt... more Beneficial bacteria interact with plants by colonizing the rhizosphere and roots followed by further spread through the inner tissues, resulting in endophytic colonization. The major factors contributing to these interactions are not always well understood for most bacterial and plant species. It is believed that specific bacterial functions are required for plant colonization, but also from the plant side specific features are needed, such as plant genotype (cultivar) and developmental stage. Via multivariate analysis we present a quantification of the roles of these components on the composition of root-associated and endophytic bacterial communities in potato plants, by weighing the effects of bacterial inoculation, plant genotype and developmental stage. Spontaneous rifampicin resistant mutants of two bacterial endophytes, Paenibacillus sp. strain E119 and Methylobacterium mesophilicum strain SR1.6/6, were introduced into potato plants of three different cultivars (Eersteling, Robijn and Karnico). Densities of both strains in, or attached to potato plants were measured by selective plating, while the effects of bacterial inoculation, plant genotype and developmental stage on the composition of bacterial, Alphaproteobacterial and Paenibacillus species were determined by PCR-denaturing gradient gel-electrophoresis (DGGE). Multivariate analyses revealed that the composition of bacterial communities was mainly driven by cultivar type and plant developmental stage, while Alphaproteobacterial and Paenibacillus communities were mainly influenced by bacterial inoculation. These results are important for better understanding the effects of bacterial inoculations to plants and their possible effects on the indigenous bacterial communities in relation with other plant factors such as genotype and growth stage.
There is a lack in our current understanding on the putative interactions of species of the phyla... more There is a lack in our current understanding on the putative interactions of species of the phyla of Acidobacteria and Verrucomicrobia with plants. Moreover, progress in this area is seriously hampered by the recalcitrance of members of these phyla to grow as pure cultures. The purpose of this study was to investigate whether particular members of Acidobacteria and Verrucomicrobia are avid colonizers of the rhizosphere. Based on previous work, rhizosphere competence was demonstrated for the Verrucomicrobia subdivision 1 groups of Luteolibacter and Candidatus genus Rhizospheria and it was hypothesized that the rhizosphere is a common habitat for Acidobacteria subdivision 8 (class Holophagae). We assessed the population densities of Bacteria, Verrucomicrobia subdivision 1 groups Luteolibacter and Candidatus genus Rhizospheria and Acidobacteria subdivisions 1, 3, 4, 6 and Holophagae in bulk soil and in the rhizospheres of grass, potato and leek in the same field at different points in time using real-time quantitative PCR. Primers of all seven verrucomicrobial, acidobacterial and holophagal PCR systems were based on 16S rRNA gene sequences of cultivable representatives of the different groups. Luteolibacter, Candidatus genus Rhizospheria, subdivision 6 acidobacteria and Holophaga showed preferences for one or more rhizospheres. In particular, the Holophaga 16S rRNA gene number were more abundant in the leek rhizosphere than in bulk soil and the rhizospheres of grass and potato. Attraction to, and colonization of, leek roots by Holophagae strain CHC25 was further shown in an experimental microcosm set-up. In the light of this remarkable capacity, we propose to coin strain CHC25 Candidatus Porrumbacterium oxyphilus (class Holophagae, Phylum Acidobacteria), the first cultured representative with rhizosphere competence.
Uploads
Papers by Ulisses Nunes da Rocha