Modelización y métodos de optimización aplicados al consumo energético en los ferrocarriles

El sector ferroviario, reconocido por su eficiencia energética, sigue siendo objeto de investigación para mejorar su sostenibilidad. Pese a representar solo el 2 % del consumo energético del transporte en Europa, su relevancia en el transporte de mercancías y pasajeros impulsa la investigación para reducir su huella de carbono. La necesidad de reducir las emisiones de gases de efecto invernadero y mejorar la competitividad económica ha llevado a realizar estudios exhaustivos centrados en el consumo energético ferroviario.

 

Modelización del consumo energético

El modelado del consumo energético permite evaluar y simular el rendimiento de los trenes sin necesidad de realizar pruebas experimentales. Las técnicas de modelado se clasifican principalmente en modelos deterministas y métodos alternativos, como redes neuronales y modelos estocásticos. Estos enfoques permiten analizar múltiples escenarios operativos y optimizar las decisiones estratégicas y operativas.

Modelos deterministas

El enfoque predominante utiliza ecuaciones basadas en la ecuación de Davis, que describe la resistencia al movimiento del tren en función de factores como la velocidad, la masa y la fricción. Su modularidad permite incluir características como frenos regenerativos y sistemas de almacenamiento a bordo. Aunque estos modelos son fiables, requieren numerosos parámetros técnicos, algunos de los cuales son difíciles de obtener debido a su complejidad técnica y a la necesidad de realizar mediciones precisas.

La ecuación de Davis se amplía con frecuencia para incorporar factores como la inclinación de la vía, la resistencia aerodinámica y la fricción en curvas. Estas ampliaciones permiten crear simuladores más detallados que evalúan trayectorias específicas y condiciones operativas complejas. Algunos estudios incluyen incluso el consumo de sistemas auxiliares, como el aire acondicionado y la iluminación, lo que mejora la precisión.

Además, el modelado detallado permite tener en cuenta aspectos como la variación de la masa del tren debida a la carga de pasajeros o mercancías, así como las condiciones meteorológicas y la interacción entre trenes en redes densas. Gracias a estas mejoras, los simuladores no solo evalúan el consumo energético, sino también el impacto de distintas estrategias operativas.

Alternativas al enfoque determinista

Los modelos basados en redes neuronales (Neural Networks) y en técnicas estocásticas (Stochastic Methods) han sido menos explorados, pero ofrecen flexibilidad y pueden manejar incertidumbres como retrasos y cambios en la carga de pasajeros. Las redes neuronales permiten entrenar modelos a partir de grandes volúmenes de datos operativos, lo que les permite aprender patrones complejos que los modelos deterministas podrían pasar por alto. Sin embargo, estos métodos requieren grandes volúmenes de datos y procesos de entrenamiento complejos.

Los modelos estocásticos integran factores aleatorios, como fallos en el sistema y condiciones meteorológicas. Su uso es particularmente relevante en redes ferroviarias densas, donde las interacciones entre trenes generan escenarios difíciles de prever mediante métodos deterministas. Los estudios actuales sugieren que estas técnicas podrían aplicarse a la gestión en tiempo real de las redes ferroviarias para mejorar la eficiencia global.

Métodos de optimización

La optimización del consumo energético ferroviario implica resolver problemas complejos, desde la gestión de perfiles de velocidad hasta la distribución de tiempos de espera y la configuración de infraestructuras. Estos estudios buscan minimizar el consumo energético sin comprometer los tiempos de viaje ni la capacidad operativa.

La formulación de problemas de optimización se basa en variables como los tiempos de viaje, los perfiles de velocidad, el consumo energético y la utilización de las infraestructuras, y su enfoque varía en función de si se optimiza un solo tren o un sistema completo. Las metodologías utilizadas incluyen la optimización unidimensional, que se centra en variables individuales como, por ejemplo, minimizar el tiempo de viaje o el consumo energético, y la optimización multidimensional, que aborda simultáneamente varios factores como el tiempo, el consumo energético, los costos operativos y las emisiones contaminantes. Los problemas de optimización pueden ser estáticos, donde se consideran condiciones fijas, o dinámicos, que ajustan decisiones en tiempo real con datos operativos actualizados.

Los métodos de optimización incluyen la búsqueda directa, que evalúa todas las soluciones posibles y es adecuada para problemas simples con pocos parámetros, y el análisis de principios máximos, que obtiene soluciones exactas mediante ecuaciones matemáticas avanzadas, aunque para ello sea necesario realizar simplificaciones y hacerlos computacionalmente viables. Las metaheurísticas, inspiradas en procesos naturales, se utilizan ampliamente por su capacidad para gestionar espacios de solución complejos. Entre ellas destacan los algoritmos genéticos, que han demostrado su versatilidad y eficacia en numerosos estudios. También se emplean técnicas como la optimización por enjambre de partículas y la optimización por colonias de hormigas, que son útiles en problemas específicos como, por ejemplo, la asignación de horarios y rutas óptimas. Además, la optimización basada en aprendizaje combina aprendizaje individual y colectivo para mejorar los resultados en contextos operativos cambiantes.

Los métodos de optimización también incluyen técnicas como la programación lineal, la programación dinámica y los algoritmos híbridos, que combinan diferentes enfoques para superar las limitaciones de cada uno de ellos. Las técnicas más avanzadas integran sistemas de inteligencia artificial y algoritmos de predicción para ajustar dinámicamente los parámetros operativos.

Discusión y análisis estadístico

Un análisis estadístico muestra que los modelos deterministas predominan debido a su precisión y facilidad para incluir múltiples factores. En optimización, los algoritmos genéticos son ampliamente preferidos, aunque métodos como la optimización por enjambre de partículas han demostrado ser eficaces en ciertos problemas.

Estudios recientes sugieren la posibilidad de combinar diferentes algoritmos para cubrir todo el espacio de soluciones y abordar problemas complejos que incluyen interacciones entre múltiples trenes y redes ferroviarias completas. Estas estrategias son esenciales para implementar operaciones ferroviarias completamente autónomas y sostenibles.

Además, el uso de análisis estadísticos avanzados, como el análisis de correspondencias y el modelado predictivo, permite identificar patrones ocultos y mejorar la precisión de los modelos y algoritmos utilizados.

Conclusión

La combinación de modelos deterministas y técnicas complementarias podría mejorar la precisión de los estudios. En optimización, el desarrollo de enfoques híbridos que combinen diferentes algoritmos metaheurísticos podría suponer un gran avance en la gestión energética ferroviaria. La integración de datos en tiempo real y técnicas de aprendizaje automático (Machine Learning Techniques) podría revolucionar el campo y llevar a sistemas ferroviarios más sostenibles y eficientes.

Referencia:

MARTÍNEZ-FERNÁNDEZ, P.; VILLALBA-SANCHÍS, I.; YEPES, V.; INSA-FRANCO, R. (2019). A review of modelling and optimisation methods applied to railways energy consumption. Journal of Cleaner Production, 222:153-162. DOI:10.1016/j.jclepro.2019.03.037

Os dejo la versión autor del artículo, para su consulta.

Descargar (PDF, 517KB)

Técnica innovadora optimiza estructuras de hormigón y reduce emisiones de CO₂ al considerar la interacción suelo-estructura

El artículo científico, titulado «Metamodel-assisted meta-heuristic design optimization of reinforced concrete frame structures considering soil-structure interaction» y publicado recientemente en Engineering Structures, una de las revistas de mayor impacto en ingeniería civil, aborda un desafío clave en la ingeniería estructural: cómo optimizar el diseño de estructuras de hormigón armado para minimizar su impacto ambiental, con especial atención a la reducción de las emisiones de CO₂.

Esta investigación es el resultado de una colaboración internacional realizada en el marco de los proyectos HYDELIFE y RESILIFE, cuyo investigador principal es Víctor Yepes, y es fruto de una colaboración internacional entre investigadores de Cuba, Brasil y España.

Contexto de la investigación

La optimización estructural ha sido ampliamente explorada en las últimas décadas debido a la creciente necesidad de reducir los costes de construcción y el uso de materiales, todo ello mientras se minimiza el impacto ambiental. En el caso de las estructuras de hormigón armado, que son esenciales en la construcción de edificios y obras de infraestructura, optimizar su diseño conlleva implicaciones significativas en cuanto al ahorro de recursos y la reducción de las emisiones de CO₂.

Los problemas de optimización estructural pueden resolverse mediante métodos exactos, como la programación matemática, o mediante métodos heurísticos que imitan procesos naturales (como la evolución genética o el comportamiento de enjambres). Aunque los métodos heurísticos son más eficientes para problemas complejos y no lineales, como los que involucran grandes estructuras tridimensionales, requieren un alto coste computacional. Para abordar este problema, los autores proponen el uso de metamodelos, que son modelos simplificados que permiten realizar simulaciones con un consumo computacional mucho menor sin sacrificar demasiada precisión. En este estudio, se utiliza un metamodelo basado en Kriging, una técnica que permite aproximar el comportamiento de estructuras complejas.

Además, el estudio introduce una novedad crucial: la inclusión de la interacción suelo-estructura (SSI, por sus siglas en inglés) durante el modelado. Esta interacción, que muchas veces se ignora en los modelos tradicionales, afecta significativamente al comportamiento de la superestructura (el marco de hormigón). Ignorarla puede dar lugar a diseños menos precisos que no tienen en cuenta los asentamientos diferenciales del suelo, lo que puede provocar tensiones adicionales y un mayor deterioro de las estructuras con el tiempo.

Metodología

La investigación emplea un enfoque combinado de optimización heurística convencional y una estrategia basada en Kriging para optimizar marcos espaciales de hormigón armado. El objetivo es reducir las emisiones de CO₂ de las estructuras optimizadas, en línea con los esfuerzos para disminuir el impacto ambiental del sector de la construcción. El estudio incluye tres estudios de caso, cada uno con diferentes configuraciones estructurales (variando la longitud de los vanos y el número de niveles de las estructuras) para generalizar los resultados.

El elemento clave en esta investigación es la inclusión de la interacción suelo-estructura, que afecta al comportamiento global del sistema. Los autores utilizan un modelo de Winkler, que representa el suelo como un conjunto de resortes con rigidez variable en función de las características del suelo, y lo implementan en dos tipos de suelos: uno cohesivo y otro granular. Esta diferenciación es importante porque cada tipo de suelo responde de manera distinta a las cargas, lo que provoca asentamientos que, en última instancia, influyen en las tensiones de la superestructura. La plataforma CSi-SAP2000 se utilizó como motor de cálculo, mientras que el análisis geotécnico y estructural se integró mediante MATLAB.

Resultados

Uno de los hallazgos más destacados del estudio es que la inclusión de la interacción suelo-estructura modifica significativamente los diseños estructurales. En general, las estructuras diseñadas teniendo en cuenta la interacción suelo-estructura requieren más material (mayores cantidades de hormigón y acero), lo que refleja el aumento de tensiones debido a los asentamientos diferenciales. Por ejemplo, en comparación con un modelo con soportes rígidos ideales, las estructuras que consideran la inclusión de la interacción suelo-estructura muestran un aumento del 12,03 % en las emisiones de CO₂ en suelos cohesivos y hasta un 18,81 % en suelos friccionales.

Los elementos estructurales más afectados por la interacción suelo-estructura son las columnas. Esto se debe a que los asentamientos diferenciales incrementan los momentos flectores en las columnas, lo que requiere un refuerzo adicional y secciones más grandes para resistir las nuevas tensiones. En algunos casos, las emisiones de CO₂ asociadas a las columnas aumentaron más del 60 % al considerar la interacción con el suelo. Los resultados son especialmente marcados en suelos granulares, donde los asentamientos diferenciales son más pronunciados.

Además, la metodología basada en metamodelos, asistida por la técnica de Kriging, demostró ser eficaz para lograr optimizaciones con un alto grado de precisión (hasta un 98,24 % en suelos cohesivos y un 98,10 % en suelos granulares), todo ello reduciendo el tiempo de cálculo en aproximadamente un 90 % en comparación con los métodos heurísticos convencionales.

Implicaciones

Este estudio tiene importantes implicaciones prácticas para el diseño de estructuras de hormigón armado. La inclusión de la interacción suelo-estructura permite obtener diseños más robustos y precisos, lo que reduce el riesgo de fallos prematuros y la necesidad de costosos trabajos de mantenimiento a largo plazo. Los modelos que no tienen en cuenta la interacción suelo-estructura pueden dar como resultado estructuras que inicialmente parecen eficientes, pero que con el tiempo se deterioran más rápidamente debido a las tensiones adicionales no previstas. Por tanto, incluir esta interacción desde el inicio del diseño mejora significativamente la durabilidad y la fiabilidad de las estructuras.

Desde el punto de vista ambiental, el uso de metamodelos para optimizar estructuras de hormigón supone un importante avance. Al reducir el material necesario y mejorar la eficiencia estructural, se contribuye a la reducción de las emisiones de CO₂, un objetivo clave en la lucha contra el cambio climático. Además, la metodología propuesta ofrece un enfoque más sostenible al disminuir los recursos computacionales necesarios para realizar simulaciones complejas.

En conclusión, la inclusión de la interacción suelo-estructura y el uso de metamodelos basados en Kriging suponen una contribución innovadora al campo de la ingeniería estructural. Esta investigación no solo proporciona mejores resultados de diseño, sino que también tiene el potencial de reducir el impacto ambiental de las estructuras de hormigón armado, lo que hace que el sector de la construcción sea más sostenible y eficiente.

Referencia:

NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023). Metamodel-assisted meta-heuristic design optimization of reinforced concrete frame structures considering soil-structure interaction. Engineering Structures, 293:116657. DOI:10.1016/j.engstruct.2023.116657

Este artículo está publicado en abierto, por lo que puedes descargar aquí mismo:

Descargar (PDF, 8.18MB)

Redes neuronales y metamodelos Kriging para la optimización de la energía en puentes losa pretensados

Acaban de publicarnos un artículo en la revista Sustainability, revista indexada en el JCR. El artículo evalúa la eficacia de las redes neuronales artificiales y los modelos sustitutos de Kriging para optimizar la energía incorporada de los puentes de losas pretensadas, y proporciona recomendaciones prácticas para mejorar el diseño y la sostenibilidad.

El trabajo se enmarca dentro del proyecto de investigación RESILIFE que dirijo como investigador principal en la Universitat Politècnica de València.

A continuación se recoge un resumen sintético del trabajo.

 

 

Introducción

  • La industria de la construcción contribuye significativamente al consumo mundial de energía y a las emisiones de gases de efecto invernadero, lo que suscita un interés creciente en mejorar las prácticas de sostenibilidad.
  • El hormigón pretensado destaca por sus ventajas, que incluyen la durabilidad, la reducción del mantenimiento y la rapidez de construcción, a pesar de los costes iniciales más altos en comparación con los métodos tradicionales.
  • Las investigaciones indican que existe una brecha en la optimización de la energía incorporada en los puentes de losas de hormigón, lo que exige una mayor exploración y metodologías innovadoras, como el Kriging y las redes neuronales artificiales, para optimizar su diseño de manera efectiva.

Descripción de la cubierta del puente de losa aligerada

  • Los diseñadores suelen utilizar una relación canto/luz de 1/25 para las losas de carreteras con el fin de garantizar su integridad estructural. Los diseños de losas aligeradas ofrecen ventajas en cuanto a rigidez a la flexión y adaptabilidad.
  • El estudio se centra en una configuración de losas aligeradas pretensadas adecuada para los pasos superiores, con el objetivo de mejorar la eficiencia del diseño y el rendimiento estructural.
  • La teoría del estado límite se emplea para verificar la resistencia estructural mediante el uso de software avanzado para el modelado tridimensional y el análisis de cargas.
Figura 2. Imagen aérea de la estructura, situada en Cocentaina (Alicante). Imagen: Google Maps.

Metodología

  • El estudio analiza varios materiales, incluidos tipos específicos de acero y calidades de hormigón, para optimizar el diseño del puente de losa aligerada.
  • Se utilizan dos metamodelos predictivos, Kriging y las redes neuronales, con el fin de optimizar el diseño propuesto del puente de losas.
  • La metodología incluye una fase de diversificación para la optimización inicial y una fase de intensificación para refinar los resultados, midiendo los errores de predicción mediante el error cuadrático medio (RMSE).

Metamodelo Kriging

  • Kriging se emplea para estimar las necesidades de energía del puente de losas, utilizando un enfoque determinista que proporciona respuestas consistentes basadas en los datos de entrada.
  • La «caja de herramientas Kriging de MATLAB» se utiliza para crear un modelo sustituto, y el LHS (LHS) mejora el proceso de muestreo para representar mejor el espacio de diseño.
  • Este método permite realizar pruebas computacionales eficientes y, al mismo tiempo, minimizar los errores sistemáticos, lo que lo hace adecuado para tareas complejas de optimización estructural.

Red neuronal artificial

  • Las ANN están estructuradas con capas de neuronas, donde las capas ocultas utilizan funciones sigmoideas para procesar las entradas y la capa de salida emplea funciones lineales para las predicciones.
  • El modelo de perceptrón multicapa (MLP) destaca por su capacidad para aproximar funciones de manera eficaz, basándose en el algoritmo de retropropagación para el entrenamiento.
  • El estudio hace hincapié en la importancia de la validación cruzada para evitar el sobreaprendizaje y garantizar que el rendimiento de la red neuronal sea sólido en los diferentes conjuntos de datos.

Visualización de los datos observados

  • La gráfica de contorno de los datos observados revela múltiples valores óptimos locales, lo que indica la complejidad del problema de optimización y las limitaciones de los modelos de regresión tradicionales.
  • Esta complejidad requiere el uso de modelos predictivos avanzados para identificar con precisión las soluciones óptimas dentro del espacio de diseño.

Comparación de modelos predictivos

  • Los modelos de Kriging son deterministas, mientras que las redes neuronales introducen variabilidad debido a que se basan en la selección aleatoria de datos para su entrenamiento y validación.
  • El rendimiento de la red neuronal se estabiliza mediante múltiples ejecuciones, lo que permite una comparación más fiable de los valores medios con las predicciones de Kriging.

Análisis de errores

  • El promedio de las predicciones de la red neuronal coincide estrechamente con los resultados del modelo de Kriging, aunque la red neuronal presenta un error cuadrático medio (MSE) y un error cuadrático medio (RMSE) más bajos.
  • El análisis destaca la necesidad de una evaluación exhaustiva de la capacidad de la red neuronal para identificar los valores óptimos, comparando las predicciones entre todos los puntos de datos.

Recomendaciones prácticas

  • El estudio proporciona recomendaciones prácticas para reducir las emisiones en los puentes de losas pretensadas, incluidas directrices específicas sobre el contenido de hormigón y refuerzo.
  • Los hallazgos sugieren que tanto las redes neuronales como las de Kriging pueden identificar eficazmente los valores óptimos locales, lo que ayuda a los ingenieros estructurales a optimizar los diseños para obtener beneficios económicos y ambientales.
  • Haciendo hincapié en la importancia de los modelos sustitutivos, la investigación aboga por su uso para perfeccionar los procesos de diseño y mejorar los resultados en materia de sostenibilidad.

Conclusiones

  • Se subraya la complejidad de la superficie de respuesta al consumo de energía, ya que tanto Kriging como las redes neuronales predicen valores superiores a los observados.
  • El modelo de Kriging muestra un error relativo menor en las predicciones óptimas locales en comparación con la red neuronal, que, sin embargo, muestra un rendimiento de RMSE superior.
  • El estudio concluye que, si bien Kriging proporciona resultados deterministas, las redes neuronales requieren múltiples iteraciones para estabilizar los resultados, lo que aporta información valiosa para optimizar los diseños estructurales.

ABSTRACT:

The main objective of this study is to assess and contrast the efficacy of distinct spatial prediction methods in a simulation aimed at optimizing the embodied energy during the construction of prestressed slab bridge decks. A literature review and cross-sectional analysis have identified crucial design parameters that directly affect the design and construction of bridge decks. This analysis determines the critical design variables to improve the deck’s energy efficiency, providing practical guidance for engineers and professionals in the field. The methods analyzed in this study are ordinary Kriging and a multilayer Perceptron neural network. The methodology involves analyzing the predictive performance of both models through error analysis and assessing their ability to identify local optima on the response surface. Results show that both models generally overestimate observed values. The Kriging model with second-order polynomials yields a 4% relative error at the local optimum, while the neural network achieves lower root-mean-square errors (RMSE). Neither the Kriging model nor the neural network provide precise predictions, but point to promising solution regions. Optimizing the response surface to find a local minimum is crucial. High slenderness ratios (around 1/28) and 40 MPa concrete grade are recommended to improve energy efficiency.

KEYWORDS:

bridges; embodied energy; optimization; prestressed concrete; artificial neural network; surrogate model; Kriging; sustainability

REFERENCE:

YEPES-BELLVER, L.; BRUN-IZQUIERDO, A.; ALCALÁ, J.; YEPES, V. (2024). Artificial neural network and Kriging surrogate model for embodied energy optimization of prestressed slab bridges. Sustainability, 16(19), 8450; DOI:10.3390/su16198450

Descargar (PDF, 4.78MB)

Optimización de los costes de fabricación de vigas híbridas de chapa de acero soldadas

Acaban de publicarnos un artículo en la revista Advances in Civil Engineering (revista indexada en el JCR) donde se optimizan las vigas de acero híbridas para minimizar los costos de fabricación. El estudio se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

El objetivo del artículo es optimizar las vigas de acero híbridas transversal-longitudinalmente (TLH) para minimizar los costos de fabricación, basándose en investigaciones anteriores sobre vigas híbridas transversalmente. Explora la ubicación de los puntos de transición en las vigas TLH para maximizar las ventajas de la configuración mecánica, y ofrece recomendaciones para establecer transiciones y configuraciones de acero en función de los niveles de tensión y las longitudes de los elementos.

La metodología implica definir estudios de casos, modelar estructuras híbridas transversales y longitudinalmente, formular un problema de optimización para explorar las configuraciones de TLH y establecer restricciones de diseño. El estudio utiliza técnicas de optimización para determinar el número y las posiciones óptimos de los puntos de transición a lo largo del elemento, así como las configuraciones de los materiales para los diferentes tramos de vigas TLH.

Las conclusiones más importantes de este trabajo son las siguientes:

  • El estudio muestra los beneficios económicos de las vigas de acero híbridas transversal-longitudinalmente (TLH) en comparación con los diseños homogéneos tradicionales y optimizados, y muestra una reducción de costos de fabricación de más del 50%.
  • Se ha descubierto que las configuraciones TLH son más eficaces para elementos de mayor envergadura, con recomendaciones específicas para los puntos de transición y las configuraciones de materiales en función de los niveles de tensión.
  • La metodología propuesta ofrece un enfoque de diseño sostenible al optimizar los elementos del TLH para mejorar los índices económicos y las consideraciones ambientales, lo que allana el camino para futuras investigaciones sobre el comportamiento estructural, el análisis conjunto y la implementación más amplia de criterios de sostenibilidad.

Abstract:

I-section girders with different types of steel in the flanges and web (fyf > fyw, respectively) are known as transverse hybrid girders. These have proven to be more economical than their homogeneous counterparts. However, the use of hybrid configurations in the longitudinal direction of the element has yet to be studied. This paper uses optimization techniques to explore the possibility of constructing transverse and longitudinally hybrid (TLH) steel girders. The optimization objective is to minimize the manufacturing cost, including seven activities besides the material cost. The geometrically double symmetric I-girder design subjected to a uniform transverse load is performed using Eurocode 3 specifications. Nine case studies are implemented, varying the element span (L) and the applied load. The results show that establishing various configurations along the length of the element is beneficial. The optimum number of transition points is six, meaning the girder will have four configurations, i.e., one central and three others symmetrically distributed toward each half of the element. The optimum position for the first transition would be at (L/2), the second at (L/2), and the third at (L/2). The optimum extreme configuration is usually homogeneous (fyf = fyw = 235 MPa). The others increase the steel quality in the plates, maintaining hybrid arrangements to reach the central one that usually remains with S700 steel for the flanges and S355 for the web. The study shows that TLH configurations are more effective for elements with larger spans. By applying the formulated design recommendations in a different case study, the manufacturing cost dropped by over 50% compared to the traditionally designed element and by more than 10% relative to the optimized element with a homogeneous configuration. The study’s limitations and encouraging results suggest future lines of research in this area.

Reference:

NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2024). Optimized Transverse-Longitudinal Hybrid Construction for Sustainable Design of Welded Steel Plate Girders. Advances in Civil Engineering, 2024:5561712. DOI:10.1155/2024/5561712.

Como la publicación está en abierto, os la dejo para su descarga.

Descargar (PDF, 3.33MB)

Interacción suelo-estructura en el diseño óptimo de pórticos de edificación

Hemos presentado en la 7th International Conference on Mechanical Models in Structural Engineering una comunicación sobre la implementación de un modelo que considere la interacción entre el suelo y la estructura (SSI) en el diseño óptimo de pórticos de hormigón armado en edificación. El trabajo propone una metodología para simular la interacción suelo-estructura en los procesos de optimización estructural, utilizando un modelo tipo Winkler que considera la deformación adicional de la superestructura durante la carga, lo que conduce a diseños sostenibles más eficientes y duraderos. El objetivo es crear un escenario más realista considerando el asentamiento del suelo y su influencia en el coeficiente de rigidez, que no se tiene en cuenta en los métodos tradicionales de soportes rígidos o articulados, lo que lleva a un diseño de superestructura ineficiente. El estudio se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

El estudio compara los diseños optimizados de las estructuras con los soportes clásicos (métodos tradicionales) y el modelo sugerido, lo que demuestra la influencia de considerar la interacción entre el suelo y la estructura en la eficiencia del diseño de la superestructura. Los resultados muestran que el uso de soportes tradicionales conduce a diseños ineficientes, lo que pone de relieve la necesidad de modelos más realistas que tengan en cuenta esta interacción.

El documento también analiza el comportamiento de los diferentes tipos de suelo y cómo se refleja en el modelo propuesto. Considera tanto los suelos cohesivos como los granulares, destacando los asentamientos diferenciales y las tensiones adicionales que se producen en los modelos con interacción, y que no ocurren en los modelos con soportes rígidos.

Los resultados de este estudio se pueden resumir de la siguiente forma:

  • Los diseños optimizados de los modelos con interacción generan más emisiones que los modelos tradicionales, lo que indica que la superestructura de los modelos que consideran el SSI está más estresada. Sin embargo, esto no significa que no tener en cuenta la interacción sea más beneficioso.
  • Las estructuras con soportes rígidos requieren menos material en la superestructura, pues están menos estresadas, pero no reflejan los asentamientos diferenciales que existen en la práctica.
  • Los suelos granulares son más propensos a los asientos diferenciales, y el aumento de la curvatura resultante de los asientos diferenciales afecta más a las columnas que a las vigas.
  • Las diferencias más significativas entre los modelos con SSI y los modelos con soportes clásicos se observan en el estudio de caso en el que la carga axial que llega a los cimientos es mayor debido a un nivel adicional, lo que agudiza el fenómeno del asiento diferencial.
  • Los resultados demuestran la influencia del SSI en la eficiencia del diseño de la superestructura, y destacan la necesidad de modelos más realistas que tengan en cuenta el SSI para diseños sostenibles más eficientes y duraderos.

Abstract:

This paper proposes a methodology to simulate the soil-structure interaction (SSI) in structural optimization processes. The aim is to create a scenario more aligned with reality, which is not reflected in the traditional methods of considering perfectly rigid or articulated supports. A Winkler-type model is proposed where a hyperbolic equation that relates the pressure p with the settlement S is used to calculate the stiffness coefficient k. This coefficient simulates the interaction that causes additional deformation of the superstructure during the loading process, increasing internal forces. Several reinforced concrete frame structures with traditional rigid supports and the proposed SSI model are optimized to demonstrate the influence of this phenomenon. The results show that using traditional supports, as is commonly done, leads to inefficient superstructure design. Therefore, the proposed methodology is conducive to creating more realistic models that allow for more efficient and durable sustainable designs.

Keywords:

Soil-structure interaction; reinforced concrete; frame structure; optimization; Winkler model.

Reference:

NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023). Model for considering soil-structure interaction and its implementation in the optimal design of RC frame structures. 7th International Conference on Mechanical Models in Structural Engineering, CMMoST 2023. 29 nov – 01 dec, Málaga (Spain).

Descargar (PDF, 523KB)

Optimización energética de tableros tipo losa pretensados aligerados mediante modelos Kriging

Durante los días 10-13 de julio de 2023 tuvo lugar en Donostia-San Sebastián (Spain) el 27th International Congress on Project Management and Engineering AEIPRO 2023. Fue una buena oportunidad para debatir y conocer propuestas sobre dirección e ingeniería de proyectos. Nuestro grupo de investigación, dentro del proyecto de investigación HYDELIFE, presentó varias comunicaciones. A continuación os paso el resumen de una de ellas.

El objetivo de este trabajo es desarrollar una metodología para optimizar la energía en la construcción de tableros losa pretensado aligerados. Se lleva a cabo un análisis de la sección transversal para determinar los parámetros de diseño a través de un estudio del estado del arte. A partir de ese análisis, se identifican las variables de diseño que mejorarán la eficiencia energética del tablero. La metodología se divide en dos fases: primero, se utiliza una técnica estadística llamada hipercubo latino para muestrear las variables del tablero y determinar una superficie de respuesta; y en segundo lugar, se optimiza la superficie de respuesta mediante un modelo de optimización basado en Kriging. Como resultado, se ha desarrollado una metodología que reduce el costo energético en la construcción de tableros losa pretensado aligerados. Las recomendaciones para mejorar la eficiencia energética incluyen emplear esbelteces elevadas (alrededor de 1/28), reducir el consumo de hormigón y armadura activa, y aumentar la cantidad de armadura pasiva.

El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

Palabras clave:

Optimización; energía; puentes; Kriging; metamodelos; sostenibilidad

Agradecimientos:

This research was funded by MCIN/AEI/10.13039/501100011033, grant number PID2020-117056RB-I00 and The APC was funded by ERDF A way of making Europe.

Referencia:

BRUN-IZQUIERDO, A.; YEPES-BELLVER, L.; ALCALÁ, J.; YEPES, V. (2023). Optimización energética de tableros tipo losa pretensados aligerados mediante modelos Kriging. 27th International Congress on Project Management and Engineering, AEIPRO, 10-13 de julio, Donostia/San Sebastián (Spain), pp. 426-437. DOI:10.61547/3374

A continuación os dejo un vídeo donde presentamos el trabajo. Espero que os sea de interés.

Os dejo la comunicación completa, pues está publicada en abierto.

Descargar (PDF, 1.88MB)

Optimización del coste energético de puentes losa postesados mediante un Kriging en dos fases

Acaban de publicarnos un artículo en la revista Materials, revista indexada en el JCR. El objetivo del estudio es optimizar la energía empleada en la construcción de pasos elevados de carreteras aligeradas mediante la identificación de las principales variables de diseño y el desarrollo de una metodología que utilice el muestreo latino de hipercubos y la optimización basada en el método Kriging. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

  • El artículo establece una metodología para optimizar la energía incorporada en la construcción de pasos elevados de carreteras aligeradas mediante la identificación de las principales variables de diseño y el uso del hipercubo latino y la optimización basada en el método Kriging.
  • El estudio recomienda emplear índices de esbeltez elevados, minimizar el uso de hormigón y armaduras activas y aumentar la cantidad de armaduras pasivas para mejorar la eficiencia energética.
  • El artículo utiliza una técnica estadística llamada muestreo de hipercubo latino para muestrear variables y crear una superficie de respuesta, que luego se ajusta con precisión mediante un metamodelo Krixing.
  • La metodología desarrollada en el trabajo reduce el coste energético de la construcción de puentes de losas aligeradas.
  • El estudio contribuye al campo de la optimización energética en la construcción al proporcionar una metodología específica para los puentes de losas de hormigón pretensado aligerado, especialmente en los pasos elevados de carreteras postesadas.

Abstract:

This study aims to establish a methodology for optimizing embodied energy while constructing lightened road flyovers. A cross-sectional analysis is conducted to determine design parameters through an exhaustive literature review. Based on this analysis, key design variables that can enhance the energy efficiency of the slab are identified. The methodology is divided into two phases: a statistical technique known as Latin Hypercube Sampling is initially employed to sample deck variables and create a response surface; subsequently, the response surface is fine-tuned through a Kriging-based optimization model. Consequently, a methodology has been developed that reduces the energy cost of constructing lightened slab bridge decks. Recommendations to improve energy efficiency include employing high slenderness ratios (approximately 1/28), minimizing concrete and active reinforcement usage, and increasing the amount of passive reinforcement.

Keywords:

Optimization; embodied energy; bridges; surrogate model; Kriging; prestressed concrete; sustainability

Reference:

YEPES-BELLVER, L.; BRUN-IZQUIERDO, A.; ALCALÁ, J.; YEPES, V. (2023). Embodied energy optimization of prestressed concrete road flyovers by a two-phase Kriging surrogate model. Materials16(20); 6767. DOI:10.3390/ma16206767

Descargar (PDF, 2.15MB)

Optimización por acoplamiento térmico del impacto ambiental de un puente

Nos acaban de publicar en la revista Environmental Impact Assessment Review (primer cuartil del JCR) un artículo relacionado con la optimización por acoplamiento térmico del impacto ambiental de un puente. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

El objetivo del artículo es minimizar el impacto ambiental del mantenimiento de los puentes durante una vida útil de 100 años mediante el desarrollo de un modelo de optimización termomecánica dinámica tridimensional. La fiabilidad del modelo se demuestra mediante un estudio de caso, que muestra una reducción de 49,9 millones de toneladas de emisiones, lo que equivale al 1,91% de las emisiones totales de diseño, durante un período de mantenimiento de 100 años.

Los resultados de la investigación pueden servir de base para futuros estudios y proporcionar un enfoque para evaluar el impacto ambiental de los cambios de temperatura a largo plazo en las estructuras. Esto puede contribuir al desarrollo de enfoques más eficaces para mitigar la contaminación ambiental en la industria de la construcción.

La editorial permite la descarga gratuita del artículo hasta el 30 de noviembre de 2023 en la siguiente dirección: https://authors.elsevier.com/c/1hv7iiZ5tCtN6

Abstract:

Infrastructure is a crucial aspect of promoting worldwide economic integration. However, the construction of infrastructure often results in high energy consumption and substantial emissions of greenhouse gases. Over time, the environment can also cause significant damage to bridges, leading to repeated repairs and replacements that further harm the environment. This research aims to minimize the environmental impact of bridge maintenance over a 100-year lifespan. The study utilizes a three-dimensional dynamic thermo-mechanical optimization model developed through comprehensive research and interdisciplinary collaboration in various fields such as Bibliometrics, Fluid Mechanics, Structural DynamicsThermoelectricity, and Damage Mechanics. From examining single crystal structures at a microscopic level to examining system components under extreme temperatures, this study provides a system for reducing environmental pollution. The model’s reliability is shown through a case study, demonstrating a reduction of 49.9 million tonnes of emissions, equivalent to 1.91% of total design emissions, over a 100-year maintenance period. This research provides a foundation for future studies and presents an approach for evaluating the environmental impact of long-term temperature changes in structures.

Keywords:

Construction industry; Structure; Temperature; Topology optimization; Stress; Sensitivity

Reference:

ZHOU, Z.; ZHOU, J.; ALCALÁ, J.; YEPES, V. (2024). Thermal coupling optimization of bridge environmental impact under natural conditions. Environmental Impact Assessment Review, 104:107316. DOI:10.1016/j.eiar.2023.107316

Aprendizaje profundo para la optimización del ciclo de vida de puentes mixtos de hormigón y acero

Acaban de publicarnos un artículo en Structures, revista indexada en el JCR. Se trata de la evaluación del coste del ciclo de vida mediante la función de densidad espectral de potencia en un puente de hormigón en ambiente costero. El artículo presenta una metodología que utiliza el aprendizaje profundo para acelerar los cálculos de las restricciones estructurales en un contexto de optimización, específicamente para un puente mixto de hormigón y acero. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

El modelo de aprendizaje profundo óptimo está integrado por tres metaheurísticas: el método Obamo (Old Bachelor Acceptance with a Mutation Operator), el Cuckoo Search (CS) y los algoritmos de coseno sinusoidal (SCA). Esta integración da como resultado un posible aumento de 50 veces en la velocidad computacional en ciertos escenarios. El estudio destaca la viabilidad económica, las ramificaciones ambientales y las evaluaciones del ciclo de vida social de las soluciones de diseño optimizadas. Demuestra las ventajas de combinar el aprendizaje profundo con la optimización del diseño de la ingeniería civil, especialmente en lo que respecta al aumento del límite elástico del acero para cumplir objetivos medioambientales y sociales. La metodología propuesta en el documento se puede adaptar a una variedad de otras configuraciones estructurales, por lo que es aplicable más allá del caso específico del puente compuesto

La editorial permite la descarga gratuita del artículo hasta el 29 de noviembre de 2023 en la siguiente dirección: https://authors.elsevier.com/c/1humr8MoIG~oVG

Abstract:

The ability to conduct life cycle analyses of complex structures is vitally important for environmental and social considerations. Incorporating the life cycle into structural design optimization results in extended computational durations, underscoring the need for an innovative solution. This paper introduces a methodology leveraging deep learning to hasten structural constraint computations in an optimization context, considering the structure’s life cycle. Using a composite bridge composed of concrete and steel as a case study, the research delves into hyperparameter fine-tuning to craft a robust model that accelerates calculations. The optimal deep learning model is then integrated with three metaheuristics: the Old Bachelor Acceptance with a Mutation Operator (OBAMO), the Cuckoo Search (CS), and the Sine Cosine Algorithms (SCA). Results indicate a potential 50-fold increase in computational speed using the deep learning model in certain scenarios. A comprehensive comparison reveals economic feasibility, environmental ramifications, and social life cycle assessments, with an augmented steel yield strength observed in optimal design solutions for both environmental and social objective functions, highlighting the benefits of meshing deep learning with civil engineering design optimization.

Keywords:

Deep learning; Sustainability; Optimization; Bridges; Machine learning; Composite structures

Reference:

MARTÍNEZ-MUÑOZ, D.; GARCÍA, J.; MARTÍ, J.V.; YEPES, V. (2023). Deep learning classifier for life cycle optimization of steel-concrete composite bridges. Structures, 57:105347. DOI:10.1016/j.istruc.2023.105347

Optimización del diseño de vigas híbridas de acero

Acaban de publicarnos un artículo en el Journal of Constructional Steel Research, revista indexada en el JCR. Este artículo implementa la optimización del diseño estructural para mejorar los índices económicos de las vigas híbridas de acero soldadas. El problema de optimización está formulado de manera que permita el uso de configuraciones híbridas, es decir, diferentes tipos de acero en el alma y en las alas. El trabajo se enmarca dentro del proyecto de investigación HYDELIFE que dirijo como investigador principal en la Universitat Politècnica de València.

Las contribuciones de este trabajo son las siguientes:

  • El artículo propone una metodología para la optimización del diseño estructural de vigas híbridas de acero soldadas con el fin de mejorar sus índices económicos.
  • El problema de optimización se formula para permitir el uso de configuraciones híbridas, que pueden incluir diferentes tipos de acero en las almas y en las alas.
  • El documento incluye once calidades de acero como variables de optimización, y el costo de fabricación se formula como una función objetivo, que incluye otras siete actividades, como la soldadura o la pintura.
  • Los resultados muestran que el diseño optimizado proporciona soluciones hasta un 50% más económicas que los métodos de diseño tradicionales.
  • El documento sugiere ciertos conceptos que destacan las propiedades mecánicas para comparar las soluciones óptimas para cada estudio de caso, que pueden servir como recomendaciones de diseño para proyectos futuros que incluyan este elemento estructural.
  • El artículo establece líneas de investigación futuras sobre este tema, basándose en los vacíos de la investigación y en los prometedores resultados obtenidos.

Abstract:

This paper implements structural design optimization to improve the economic indexes of welded steel plate girders. The optimization problem is formulated in a way that allows the use of hybrid configurations, i.e., different types of steel in the flanges and web. Besides the cross-sectional dimensions, eleven steel grades are included as optimization variables. In addition to weight and material cost, the manufacturing cost is formulated as an optimization objective, which includes seven other activities, such as welding or painting. The geometrically double symmetric I-girder design subjected to a uniform transverse load is carried out through the Eurocode 3 rules. Nine case studies are implemented by varying the girder span and load values. The results show significant differences depending on the optimization objective, especially between weight and cost optimization. On the other hand, optimization-assisted design provides solutions up to 50% more economical than traditional design methods. Hybrid-optimized configurations can also improve these indexes by about 10% compared to their homogeneous counterpart, demonstrating the applicability of this novel practice. Certain concepts highlighting mechanical properties are proposed to compare the optimal solutions for each case study. These concepts can serve as design recommendations for future projects that include this structural element. Finally, based on the research gaps and the promising results obtained, future lines of research on this topic are established.

Keywords:

Hybrid steel girder; Structural optimization; Hybrid ratio; Biogeography-based optimization

Reference:

NEGRÍN, I.; KRIPKA, M.; YEPES, V. (2023). Design optimization of welded steel plate girders configured as a hybrid structure. Journal of Constructional Steel Research, 211:108131. DOI:10.1016/j.jcsr.2023.108131

Al tratarse de un artículo publicado en abierto, os dejo el mismo para su descarga. Espero que os sea de interés.

Descargar (PDF, 4.16MB)