Aplicabilidad de la construcción de puentes empujados

peri_maut_millau_7_lg
Construcción del viaducto de Millau (Francia) mediante empuje de su tablero

El procedimiento de empuje consiste en fabricar o montar el tablero detrás del estribo en un parque fijo y después trasladarlo longitudinalmente sobre las pilas, por fases sucesivas, hasta alcanzar su posición definitiva al llegar al otro estribo, sin necesidad de cimbras. El tablero desliza con gatos sobre estribo y pilas, con ayuda de un pico de lanzamiento. Para que el procedimiento sea efectivo, el puente necesita un tablero de canto constante y un trazado en planta recto y pendiente nula o ascendente; sin embargo, con los actuales sistemas de retenida, se permiten pendientes descendentes y alineaciones circulares. Otro trazado imposibilita que cualquier parte del puente pase durante la traslación por los mismos puntos, complicando la ejecución. Al principio el procedimiento se utilizó con tableros metálicos, pero hoy se aplica también a cajones de hormigón.

Las solicitaciones propias del empuje requieren secciones en cajón con cantos importantes y constantes, en torno a relaciones canto/luz de 1/10 a 1/15. El procedimiento constructivo provoca una ley de momentos flectores con valores muy altos cuando está el vano entero en voladizo. Para reducir el peso del tablero, se dispone de un pico de avance o nariz metálica en la parte delantera del dintel del tablero.

Este sistema requiere de medios auxiliares de coste elevado y proporciona buenas calidades de ejecución al agrupar todas las operaciones en una zona específica. Su ventaja económica reside en preparar un parque de fabricación fijo, en el eje del puente, donde poder realizar una dovela de 10 a 25 m de longitud. En el caso de dovelas de hormigón, se realiza un pretensado inicial para absorber los esfuerzos del lanzamiento y se deja en una segunda fase el pretensado definitivo para soportar las cargas de servicio. Cada segmento normalmente se completa su ejecución en una semana. Posteriormente, se consolidó el método de dovelas largas hormigonadas “in situ” en una instalación industrializada que se monta detrás del estribo, aunque es habitual seguir con el empleo de dovelas. Existe la posibilidad de fabricar y empujar desde un solo lado o desde los dos lados del puente. El método del empuje ha permitido resolver satisfactoriamente la construcción de puentes sobre obstáculos importantes situados por debajo del tablero, pues no necesita del cimbrado.

Esquema del proceso del lanzamiento del tablero de un puente
Esquema del proceso del lanzamiento del tablero de un puente

El empuje de puentes se desarrolló en la segunda mitad del siglo XIX para ubicar en su situación definitiva grandes viaductos metálicos de celosía. De hecho, la ligereza de los tableros metálicos y mixtos es una ventaja sobre los de hormigón, mucho más pesados; sin embargo, es habitual la construcción de estos puentes con hormigón pretensado. Los puentes de ferrocarril, en particular, son estructuras idóneas para construirlas mediante empuje, pues han de soportar, además de su peso propio, unas cargas de servicio elevadas que obligan a dimensionar secciones con una gran capacidad resistente. Al construir el puente, donde solo actúa el peso propio, el exceso de capacidad puede aprovecharse sin sobredimensionar la estructura.

El primer viaducto de segmentos de hormigones prefabricados empujados fue el Puente de Ager en Austria en 1959, donde se usaban dovelas cortas prefabricadas; sin embargo, muchos autores citan el puente sobre el río Caroní (Venezuela), con un vano principal de 96 m y terminado en 1964, de Leonhardt y Baur como iniciadores de esta técnica con el hormigón. En este caso se utilizaron pilas intermedias para el lanzamiento para reducir la luz de lanzamiento. Este procedimiento encarece la construcción, pues no tiene sentido que las pilas provisionales no queden definitivas. Solamente podría plantearse el uso de una sola pila provisional en el caso de una luz de empuje extraordinaria. En España, el primer puente empujado de hormigón se construyó en 1972 en la línea férrea Almería-Linares, sobre el río Andarax (Almería), con un vano principal de 42,5 m.

Primer y Segundo Puente sobre el río Caroni (Venezuela). Diseñado por F. Leonhardt y H. Baur. Terminado en 1963, une San Félix y Puerto Ordaz
Primer y Segundo Puente sobre el río Caroni (Venezuela). Diseñado por F. Leonhardt y H. Baur. Terminado en 1963, une San Félix y Puerto Ordaz

Es un sistema costoso que solo resulta de interés económico para longitudes de puente superiores a 300 – 400 m (Ministerio de Fomento, 2000). Este procedimiento presenta ventajas claras en los puentes muy largos, pues permiten aplicar la construcción industrializada —según Pérez-Fadón (2004), es rentable a partir de los 600 m de longitud—, o bien se reutilice en varios puentes. Fuera de estos rangos, los medios auxiliares no se amortizan suficientemente.

El campo de luces óptimo para los tableros empujados se encuentra entre los 30 y 50 m, aunque de forma excepcional dicho intervalo se amplía desde los 25 a los 100 m. Normalmente, cuando se requieren luces altas, por encima de 50 m, se requieren apoyos o atirantamientos provisionales. Se han empleado luces de empuje superiores, por ejemplo en el acueducto de Alcanadre, de J. Manterola y L.F. Troyano, con una luz de 60 m debido a que el dintel debe soportar la sobrecarga del agua, lo que permite una mayor luz óptima.

En el caso de una luz muy grande, se puede construir el puente realizando un lanzado desde ambos apoyos y terminando en el centro de la luz con dos voladizos convergentes. Por ejemplo, Millanes y Matute (1999) describen la construcción de un viaducto con un tramo continuo singular compuesto por dos vanos de 40 m y un vano central de 80 m que se construyó mediante lanzamiento de las vigas mediante un carro. Se emplearon dos pilas provisionales y se tesó la losa para darle continuidad antes de eliminar dichas pilas.

El empuje de puentes entra en competencia con la construcción de tramos sucesivos con autocimbra. Por debajo de 30 m existen autocimbras en alquiler que abaratan los costes respecto a los puentes empujados. Sin embargo, por encima de dicho límite, los costes de la cimbra autoportante empiezan a crecer exponencialmente, quedando en desventaja por encima de 100 m. Por otra parte, las cimbras desmontables, con o sin pila auxiliar intermedia, compiten cuando existen luces repetitivas y un gran número de vanos, especialmente en puentes de baja altura y terrenos poco abruptos. El procedimiento de la cimbra autoportante presenta claras ventajas en puentes muy largos, donde se amortizan bien los medios auxiliares. Además, es un procedimiento que permite cualquier geometría en planta del puente, frente a los empujados.

Os paso una animación en 3D de Octavio Martins que explica muy bien el procedimiento constructivo. Espero que os sea útil.

También la empresa ULMA nos ofrece una animación de estas características.

Referencias:

MILLANES, F.; MATUTE, L. (1999). Viaducto sobre el río Lambre. Hormigón y Acero, 213: 33-39.

MINISTERIO DE FOMENTO (2000). Obras de paso de nueva construcción. Conceptos generales. Madrid, 94 pp.

PÉREZ-FADÓN, S. (2004). Construcción de viaductos para líneas de FFCC. Tableros empujados. Revista de Obras Públicas, 3445: 47-52.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Sistemas voluntarios de gestión de playas de uso intensivo

Playa de San Lorenzo, Gijón. Fotografía de Víctor Yepes

Resumen: El artículo destaca la importancia de la adopción voluntaria de sistemas de gestión de las playas como soporte de gran parte de la actividad turística española. Se describen brevemente las normas específicas desarrolladas recientemente para las playas turísticas de uso intensivo, en especial la norma UNE 150104 y el proyecto de norma PNE 187001. Además, un análisis de la evolución de los certificados de gestión en las playas de la Comunidad Valenciana permite comprobar la aplicabilidad de estos sistemas y la compatibilidad entre ellos. El trabajo concluye que los sistemas de gestión y los distintivos de calidad de las playas suponen una oportunidad de mejora en los aspectos sociales, económicos y medioambientales del litoral. Sin embargo, se hace necesaria una revisión de estas normas en el marco de una gestión integrada del litoral, pues en este momento se encuentran excesivamente orientadas hacia la satisfacción de los consumidores turísticos. No hacerlo, supone olvidar aspectos fundamentales que podrían acarrear una pérdida de los atractivos naturales y paisajísticos que motivan, entre otros, los viajes turísticos.

Palabras clave: playa, sistemas de gestión, gestión integrada de las zonas costeras, turismo, calidad, sostenibilidad.

Referencia:

YEPES, V. (2012). Sistemas voluntarios de gestión de playas de uso intensivo. En: Rodríguez-Perea, A., Pons, G.X., Roig-Munar, F.X., Martín-Prieto, J.Á., Mir-Gual, M. y Cabrera, J.A. (eds.). La gestión integrada de playas y dunas: experiencias en Latinoamérica y Europa: Mon. Soc. Hist. Nat. Balears, 19: 61-76. ISBN: 978-84-616-2240-5. Palma de Mallorca.

Descargar (PDF, 279KB)

 

¿Es fácil optimizar estructuras de hormigón?

Es más, ¿es posible que un ordenador sea capaz de diseñar de forma automática estructuras óptimas sin darle ninguna pista o información previa? Estoy convencido que a la vuelta de un par de años, todos los programas comerciales tendrán paquetes de optimización estructural que permitirán reducciones de coste en torno al 5-15% respecto a los programas actuales. Ya os adelanto que esta nueva tecnología va a traer consigo nuevas patologías en las estructuras de hormigón, que con la optimización se parecen más a las estructuras metálicas. Con el tiempo habrá que introducir capítulos o restricciones en las futuras versiones de la EHE o de los Eurocódigos. En este post vamos a continuar comentando aspectos relacionados con la modelización matemática, la optimización combinatoria, las metaheurísticas y los algoritmos.

Toda esta aventura la empezamos en el año 2002, con el primer curso de doctorado sobre optimización heurística en la ingeniería civil, que luego hemos ido ampliando y mejorando en el actual Máster Oficial en Ingeniería del Hormigón. Ya tenemos varias tesis doctorales y artículos científicos al respecto para aquellos de vosotros curiosos o interesados en el tema. Para aquellos que queráis ver algunas aplicaciones concretas, os recomiendo el siguiente capítulo de libro que escribimos sobre la optimización de distintas estructuras con un algoritmo tan simple como la cristalización simulada. Para aquellos otros que tengáis más curiosidad, os dejo algunas publicaciones de nuestro grupo de investigación en el apartado de referencias.

Os paso, para abrir boca, una forma sencilla de optimizar a través de este Polimedia. Espero que os guste.

Referencias:

  • MOLINA-MORENO, F.; MARTÍ, J.V.; YEPES, V. (2017). Carbon embodied optimization for buttressed earth-retaining walls: implications for low-carbon conceptual designs. Journal of Cleaner Production, 164:872-884. https://authors.elsevier.com/a/1VLOP3QCo9NDzg 
  • GARCÍA-SEGURA, T.; YEPES, V.; FRANGOPOL, D.M.; YANG, D.Y. (2017). Lifetime Reliability-Based Optimization of Post-Tensioned Box-Girder Bridges. Engineering Structures, 145:381-391. DOI:10.1016/j.engstruct.2017.05.013 OPEN ACCESS
  • GARCÍA-SEGURA, T.; YEPES, V.; FRANGOPOL, D.M. (2017). Multi-Objective Design of Post-Tensioned Concrete Road Bridges Using Artificial Neural Networks. Structural and Multidisciplinary Optimization, 56(1):139-150. doi: 10.1007/s00158-017-1653-0
  • YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T.; GONZÁLEZ-VIDOSA, F. (2017). Heuristics in optimal detailed design of precast road bridges. Archives of Civil and Mechanical Engineering, 17(4):738-749. DOI: 10.1016/j.acme.2017.02.006
  • MOLINA-MORENO, F.; GARCÍA-SEGURA; MARTÍ, J.V.; YEPES, V. (2017). Optimization of Buttressed Earth-Retaining Walls using Hybrid Harmony Search Algorithms. Engineering Structures, 134:205-216. DOI: 10.1016/j.engstruct.2016.12.042
  • GARCÍA-SEGURA, T.; YEPES, V. (2016). Multiobjective optimization of post-tensioned concrete box-girder road bridges considering cost, CO2 emissions, and safety. Engineering Structures, 125:325-336. DOI: 10.1016/j.engstruct.2016.07.012.
  • MARTÍ, J.V.; GARCÍA-SEGURA, T.; YEPES, V. (2016). Structural design of precast-prestressed concrete U-beam road bridges based on embodied energy. Journal of Cleaner Production, 120:231-240. DOI: 10.1016/j.jclepro.2016.02.024
  • GARCÍA-SEGURA, T.; YEPES, V.; ALCALÁ, J.; PÉREZ-LÓPEZ, E. (2015). Hybrid harmony search for sustainable design of post-tensioned concrete box-girder pedestrian bridges. Engineering Structures, 92:112-122. DOI: 10.1016/j.engstruct.2015.03.015 (link)
  • LUZ, A.; YEPES, V.; GONZÁLEZ-VIDOSA, F.; MARTÍ, J.V. (2015). Diseño de estribos abiertos en puentes de carretera obtenidos mediante optimización híbrida de escalada estocástica. Informes de la Construcción, 67(540), e114. DOI: 10.3989/ic.14.089
  • MARTÍ, J.V.; YEPES, V.; GONZÁLEZ-VIDOSA, F. (2015). Memetic algorithm approach to designing of precast-prestressed concrete road bridges with steel fiber-reinforcement. Journal of Structural Engineering ASCE, 141(2): 04014114. DOI:10.1061/(ASCE)ST.1943-541X.0001058 (descargar versión autor)
  • YEPES, V.; GARCÍA-SEGURA, T.; MORENO-JIMÉNEZ, J.M. (2015). A cognitive approach for the multi-objective optimization of RC structural problems. Archives of Civil and Mechanical Engineering, 15(4):1024-1036. doi:10.1016/j.acme.2015.05.001
  • YEPES, V.; MARTÍ, J.V.; GARCÍA-SEGURA, T. (2015). Cost and CO2 emission optimization of precast-prestressed concrete U-beam road bridges by a hybrid glowworm swarm algorithm. Automation in Construction, 49:123-134. DOI: 10.1016/j.autcon.2014.10.013 (link)
  • GARCÍA-SEGURA, T.; YEPES, V.; MARTÍ, J.V.; ALCALÁ, J. (2014). Optimization of concrete I-beams using a new hybrid glowworm swarm algorithm. Latin American Journal of Solids and Structures,  11(7):1190 – 1205. ISSN: 1679-7817. (link)
  • MARTÍ, J.V.; YEPES, V.; GONZÁLEZ-VIDOSA, F.; LUZ, A. (2013). Diseño automático de tableros óptimos de puentes de carretera de vigas artesa prefabricadas mediante algoritmos meméticos híbridos. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, DOI: http://dx.doi.org/10.1016/j.rimni.2013.04.010.
  • TORRES-MACHÍ, C.; YEPES, V.; ALCALA, J.; PELLICER, E. (2013). Optimization of high-performance concrete structures by variable neighborhood search. International Journal of Civil Engineering, 11(2):90-99 . ISSN: 1735-0522. (link)
  • MARTÍNEZ-MARTÍN, F.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A.; YEPES, V. (2013). A parametric study of optimum tall piers for railway bridge viaducts. Structural Engineering and Mechanics45(6): 723-740. (link)
  • MARTINEZ-MARTIN, F.J.; GONZALEZ-VIDOSA, F.; HOSPITALER, A.; YEPES, V. (2012). Multi-objective optimization design of bridge piers with hybrid heuristic algorithms. Journal of Zhejiang University-SCIENCE A (Applied Physics & Engineering, 13(6):420-432. DOI: 10.1631/jzus.A1100304. ISSN 1673-565X (Print); ISSN 1862-1775 (Online).  (link)
  • MARTÍ, J.V.; GONZÁLEZ-VIDOSA, F.; YEPES, V.; ALCALÁ, J. (2013). Design of prestressed concrete precast road bridges with hybrid simulated annealing. Engineering Structures48:342-352. DOI:10.1016/j.engstruct.2012.09.014. ISSN: 0141-0296.(link)
  • YEPES, V.; GONZÁLEZ-VIDOSA, F.; ALCALÁ, J.; VILLALBA, P. (2012). CO2-Optimization Design of Reinforced Concrete Retaining Walls based on a VNS-Threshold Acceptance Strategy. Journal of Computing in Civil Engineering ASCE, 26 (3):378-386. DOI: 10.1061/(ASCE)CP.1943-5487.0000140. ISNN: 0887-3801. (link)
  • CARBONELL, A.; YEPES, V.; GONZÁLEZ-VIDOSA, F. (2011). Búsqueda exhaustiva por entornos aplicada al diseño económico de bóvedas de hormigón armado. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, 27(3):227-235.  (link) [Global best local search applied to the economic design of reinforced concrete vauls]
  • CARBONELL, A.; GONZÁLEZ-VIDOSA, F.; YEPES, V. (2011). Heuristic optimization of reinforced concrete road vault underpasses. Advances in Engineering Software, 42(4): 151-159. ISSN: 0965-9978.  (link)
  • MARTÍNEZ, F.J.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A. (2011). Estudio paramétrico de pilas para viaductos de carretera. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, 27(3):236-250. (link)
  • MARTÍNEZ, F.J.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A.; ALCALÁ, J. (2011). Design of tall bridge piers by ant colony optimization. Engineering Structures, 33:2320-2329.
  • PEREA, C.; YEPES, V.; ALCALÁ, J.; HOSPITALER, A.; GONZÁLEZ-VIDOSA, F. (2010). A parametric study of optimum road frame bridges by threshold acceptance. Indian Journal of Engineering & Materials Sciences, 17(6):427-437. ISSN: 0971-4588.  (link)
  • PAYÁ-ZAFORTEZA, I.; YEPES, V.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A. (2010). On the Weibull cost estimation of building frames designed by simulated annealing. Meccanica, 45(5): 693-704. DOI 10.1007/s11012-010-9285-0. ISSN: 0025-6455.  (link)
  • MARTÍ, J.V.; GONZÁLEZ-VIDOSA, F. (2010). Design of prestressed concrete precast pedestrian bridges by heuristic optimization. Advances in Engineering Software, 41(7-8): 916-922. http://dx.doi.org/10.1016/j.advengsoft.2010.05.003
  • MARTÍNEZ, F.J.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A.; YEPES, V. (2010). Heuristic Optimization of RC Bridge Piers with Rectangular Hollow Sections. Computers & Structures, 88: 375-386. ISSN: 0045-7949.  (link)
  • PAYÁ, I.; YEPES, V.; HOSPITALER, A.; GONZÁLEZ-VIDOSA, F. (2009). CO2-Efficient Design of Reinforced Concrete Building Frames. Engineering Structures, 31: 1501-1508. ISSN: 0141-0296. (link)
  • YEPES, V.; ALCALÁ, J.; PEREA, C.; GONZÁLEZ-VIDOSA, F. (2008). A Parametric Study of Optimum Earth Retaining Walls by Simulated Annealing. Engineering Structures, 30(3): 821-830. ISSN: 0141-0296.  (link)
  • PEREA, C.; ALCALÁ, J.; YEPES, V.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A. (2008). Design of Reinforced Concrete Bridge Frames by Heuristic Optimization. Advances in Engineering Software, 39(8): 676-688. ISSN: 0965-9978.  (link)
  • PAYÁ, I.; YEPES, V.; GONZÁLEZ-VIDOSA, F.; HOSPITALER, A. (2008). Multiobjective Optimization of Reinforced Concrete Building Frames by Simulated Annealing. Computer-Aided Civil and Infrastructure Engineering, 23(8): 596-610. ISSN: 1093-9687.  (link)
  • PAYÁ, I.; YEPES, V.; CLEMENTE, J.J.; GONZÁLEZ-VIDOSA, F. (2006). Optimización heurística de pórticos de edificación de hormigón armado. Revista Internacional de Métodos Numéricos para Cálculo y Diseño en Ingeniería, 22(3): 241-259. [Heuristic optimization of reinforced concrete building frames]. (link)

Study of criteria used to obtain a sustainable bridge

Abstract. The sustainable development of bridges is mainly based on meeting the three pillars of sustainability (economic, social and environmental factors) which have different goals. Each main criterion groups a large number of subcritera. Therefore, achieve a sustainable bridge is a complicate problem that involves a high number of factors in each stage of bridge life-cycle. For this reason, decision-making is a helpful process to solve the sustainability problem. The objective of this work is to review the bridge life-cycle decision-making problems that involve criteria that represent the pillars of the sustainability. While some works only consider criteria related to one or two of these pillars, the most current works consider criteria that involve all the pillars of sustainability. Furthermore, most of the works reviewed only study one stage of bridge life-cycle. This study shows the criteria used in some revised journal articles in each bridge life-cycle phase and, the multi-attribute decision-making used to achieve the sustainability. In addition, a small explanation of the obtained information will be carried out.

Keywords: Multi-criteria, Life-cycle, Decision-making, MCDM, MADM

Reference:

PENADÉS, V.; YEPES, V.; GARCÍA-SEGURA, T.; MARTÍ, J.V. (2017). Study of criteria used to obtain a sustainable bridge. Proceedings of the Ninth International Structural Engineering and Construction Conference, Valencia, Spain, July 24-July 29.    doi: 10.14455/ISEC.res.2017.177

Descargar (PDF, 186KB)

 

The Ninth International Structural Engineering and Construction Conference

Esta semana, del 24 al 29 de julio de 2017, se celebra en la Escuela Técnica Superior de Ingenieros de Caminos, Canales y Puertos de Valencia la 9ª Conferencia Internacional de Ingeniería Estructural y Construcción (The Ninth International Structural Engineering and Construction Conference, ISEC-9). Constituye esta Conferencia un evento de especial importancia internacional que este año trata sobre las construcción sostenible y las estructuras resilientes. El Chair de la Conferencia es nuestro Director de la Escuela de Caminos, el profesor Eugenio Pellicer. Mi participación consiste es la de pertenecer al Comité Científico y ser coeditor de las actas científicas.

Por si os interesa, la página web de la Conferencia es: https://www.isec-society.org/ISEC_09/index.php

 

 

Sustainable assessment of retaining walls through an active learning method considering multiple stakeholders

ABSTRACT: The sustainability approach has changed the modern society. Currently, the sustainability takes into consideration, not only the economic and environmental facets, but also the social facet. Taking into account the three facets of sustainability, this paper shows the application of a method of active learning to assess the sustainability of three real retaining walls. A group of 29 students of the Master of Science in Planning and Management in Civil Engineering at the Universitat Politècnica de València has experienced this assessment. The method followed was proposed by academics of the School of Civil Engineering of the Universitat Politècnica de València (Spain) and Universidad de La Frontera (Chile). An approach multi-criteria and a clusters analysis are part of method, which allows developing a participative process with different points of view about the sustainability. The outcomes show that of this way students can forecast impacts from of the integration of design, planning and the location context of the infrastructure. Result evidence that personal values of each student influences the election of the optimal alternative. The paper also identifies the need to strengthen the conceptualization of social criteria in the students training.

KEYWORDS: Infrastructure, Education, Cluster analysis, Analytic hierarchy process, Civil engineering, Sustainability

REFERENCE:

SIERRA-VARELA, L.; YEPES, V.; PELLICER, E. (2017). Sustainable assessment of retaining walls through an active learning method considering multiple stakeholders. Proceedings of the Ninth International Structural Engineering and Construction Conference, Valencia, Spain, July 24-July 29.  doi: 10.14455/ISEC.res.2017.51

Descargar (PDF, 276KB)

 

Un esbozo sobre la ingeniería en Mesopotamia

Entre los ríos Tigris y Éufrates
Entre los ríos Tigris y Éufrates

Es evidente que, en un pequeño artículo como este, resulta atrevido cualquier intento de explicar la ingeniería de las primeras civilizaciones. Sin embargo, parte de lo que somos como ingenieros hay que buscarlo allí. Vamos, pues, a dar dos pinceladas sobre algunas de las técnicas que se originaron en las antiguas tierras del Oriente Próximo, a sabiendas de que dejamos muchísimo por el camino.

La “tierra entre ríos”, Mesopotamia, entre el Tigris y el Éufrates, fue no solo cuna de las primeras civilizaciones, sino también de las técnicas constructivas. Hubo otros logros en la Antigüedad, quizás no tan espectaculares como las pirámides, pero con un mayor impacto en el desarrollo de la Humanidad, como la construcción de canales y acueductos, que hicieron posible la aparición de ciudades y la expansión de la agricultura. Mucho antes del 3000 a.C., los Sumerios habían drenado las marismas del Golfo Pérsico y construido canales para irrigación. La ingeniería subterránea, tal como la entendemos actualmente, tuvo sus comienzos en Babilonia hacia el 2180 a.C. con la construcción de un túnel bajo el río Éufrates, de unos 900 m de longitud y una sección de 3.60 x 4.50 m2. Del mismo modo, la sustitución de la energía humana por otros tipos de energía, o el desarrollo de estas nuevas fuentes, han supuesto igualmente hitos fundamentales en el desarrollo de la técnica. El uso de bueyes y, posteriormente, con la aparición del arado, de caballos (más rápidos y eficientes que los bueyes), permitió al hombre disponer de nuevas fuentes motrices. En este sentido, el salto más importante se dio al reemplazar la energía animal por la mecánica, dando inicio al periodo que se conoce como Revolución Industrial.

Los sistemas de construcción se desarrollaron ampliamente en Mesopotamia; los sistemas de ingeniería hidráulica y sanitaria, los caminos, los puentes y las artes navales de los imperios asirios, babilonios y otros pueblos de esa región. Gracias a la naturaleza arcillosa del suelo, esta civilización comenzó usando este material para la obtención de adobes o ladrillos cocidos, material poco resistente que explica el alto grado de deterioro de las construcciones encontradas. En el siglo VII a.C. constituye el principal material empleado en las construcciones de Nabucodonosor; los relatos de Herodoto estipulan que los muelles y las fortificaciones eran en parte construidos con este mismo material. Los asirios recurrían al ladrillo cocido solo en los casos en que la humedad hubiese disgregado la arcilla. El betún, abundante en Caldea, también se empleó como material de construcción. Formaba una argamasa impermeable muy utilizada, que estaba compuesta, además, de cal, arena y agua.

Respecto a las técnicas de construcción, los constructores babilónicos no cavaban nunca cimientos, pensaban que como sus tierras poseían demasiada agua, el fondo sólido debería de estar lejos, por lo que renunciaban a alcanzarlo y se apoyaban directamente sobre el suelo interponiendo entre ese y el edificio un macizo de asiento. Como podemos ver se empieza a perfilar lo que hoy conocemos como Geotecnica, en cuanto a la clasificación y características del terreno.

Las comunicaciones también fueron un referente en el Oriente Medio, siendo a mediados del IV milenio cuando empezaron a trazarse las primeras carreteras que permitieron enlazar las numerosas ciudades mesopotámicas. Así, la primera carretera de larga distancia es la llamada “Ruta Real”, que ya en el siglo VI a.C. unían las ciudades de Persépolis con Sardes (capital de Lidia), a más de 2500 km de distancia. Su prolongación hacia el este formaría la Ruta de la Seda.

Los arcos y las bóvedas tuvieron su origen en las marismas del bajo Egipto o en Mesopotamia. El prototipo de estos lo constituía una serie de haces de juncos colocados verticalmente en el suelo, doblados hacia el centro y unidos por su extremo superior, formando así un techo. La superficie exterior se cubría con una capa de barro. Los historiadores indican que en Mesopotamia se inició la tradición de que un político inaugure la construcción de un edificio público con una palada de tierra.

Durante la mayor parte de la historia faraónica se construyeron arcos y bóvedas radiales, de manera esporádica, en tumbas y puertas monumentales. El arco y la bóveda radial fueron, sin embargo, más utilizados en Mesopotamia, en donde evolucionaron seguramente de forma independiente y más o menos al mismo tiempo que en Egipto. Los constructores de Asiria conocían la bóveda de ladrillo y la empleaban a causa de la falta de madera, aunque las únicas que han llegado hasta nuestros días son bóvedas de galerías.

Mención especial hay que hacer de los zigurats o pirámides escalonadas representativas de las culturas sumerias, babilónicas y asirias. La bíblica Torre de Babel podría ser una de estas construcciones babilónicas.

Dur-Untash, o Choqa zanbil, construido en el siglo XIII a. C. por Untash Napirisha, es uno de los zigurats mejor conservados. Se encuentra cerca de Susa, Irán.

Es evidente, por tanto, que el mundo antiguo percibió a la ingeniería como un quehacer que competía con las fuerzas naturales y las dominaba, como una profesión atenta a la invención de los ingenios de guerra, de las máquinas de extracción del agua, de los caminos, de los canales, de los puentes, del desecamiento de los pantanos, de las galerías subterráneas, de los grandes ingenios portuarios, de las defensas de las ciudades…

Resulta también de gran interés destacar la primera huella demostrada de la existencia de normas legales reguladoras de la responsabilidad civil de la profesión. Se trata del famoso código de Hammurabi, rey babilónico entre los años 1792 y 1750 a.C., cuyos artículos 229 y 230 establecen que, de producirse el derrumbe culpable de una obra o edificio causando la muerte del cliente, el arquitecto, amén de reparar a su costa los daños, debía pagar con su vida, o con la de un hijo suyo si la víctima fuese uno del propietario. Un comienzo algo brusco desde nuestra perspectiva moderna, pero ciertamente precursor de las normativas que sobre construcción han ido apareciendo a lo largo de la Historia.

Referencias

YEPES, V. (2009). Breve historia de la ingeniería civil y sus procedimientos. Universidad Politécnica de Valencia.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Límites de utilización y tendencias en la utilización de puentes con dovelas prefabricadas

Lanzado-De-Porticos-02
Viga de lanzamiento de dovelas. Fuente: http://www.tecsa.com.mx/

La luz máxima económica para puentes construidos mediante dovelas prefabricadas es de unos 150 m. Por encima de 120 m, el coste de los dispositivos de colocación, en particular la viga de lanzamiento, crece rápidamente, al igual que el peso de las dovelas. En cuanto a luces mínimas, se han construido pasos superiores de 18 m con este sistema. Además, la prefabricación se ve favorecida con el número de obras idénticas a construir. Otro factor a tener en cuenta es la superficie total del tablero. Así, y dependiendo de la disponibilidad de los medios auxiliares de la empresa, se necesitaría un mínimo de 5000 m2 de tablero para considerar la utilización de dovelas prefabricadas mediante grúas, cerchas o puentes-grúa, e incluso con equipos móviles que se desplacen por el tablero. En cambio, es necesario un mínimo de 10000 m2 de tablero para colocar las dovelas prefabricadas con una viga de lanzamiento.

En cuanto a las tendencias actuales en este tipo de puentes, podemos citar las siguientes:

  • Supresión de la cola en las juntas: Su eliminación presenta ventajas, no solo por el coste de la cola, sino por reducir el tiempo de ensamblaje al permitir la unión en una sola operación de todas las dovelas de un vano. Sin embargo, su supresión significa renunciar al efecto rubricante e implica una mayor precisión en el ensamblaje de las dovelas para no fisurar las llaves al concentrarse sobre ellas los esfuerzos. La cola permite el reparto de las cargas y la eliminación de los puntos duros originados por rebabas, retracciones diferenciales u otros defectos. Además, las recientes investigaciones muestran que la resistencia a rotura de las uniones con junta seca son inferiores a las de juntas con cola.
  • Elementos prefabricados como encofrado: En paramentos con formas complejas o para acabados de gran calidad, a veces se utilizan paneles prefabricados montados sobre cimbra para su uso como encofrado perdido. Sin embargo, esta solución es más cara.
  • Prefabricación parcial: En obras de tamaño medio muchas veces no se puede amortizar la instalación de prefabricación de las dovelas, por lo que se recurre a prefabricar únicamente las almas y dejar para un hormigonado “in situ” las losas superior e inferior. Los puentes de Brotonne y de Clichy se construyeron con almas prefabricadas. Ello permite reducir la potencia de los medios de montaje, así como la posibilidad de dar continuidad a las armaduras pasivas de la losa inferior y en buena parte de la superior.
  • Pretensado exterior: Permite eliminar las operaciones de montaje y replanteo de vainas, disminuyen las anchuras de almas y se reducen las pérdidas por rozamiento, todo lo cual mejora la eficiencia del pretensado.

 

Pretensado exterior. Fuente: http://www.bbrpte.com/
Pretensado exterior. Fuente: http://www.bbrpte.com/

 

¿Existió ingeniería en la “oscura” Edad Media?

Puente Alcántara en Toledo
Puente Alcántara en Toledo (Fotografía de V. Yepes, 2012).

Muchos catalogan, desde mi punto de vista de forma poco acertada, a la extensa Edad Media como un periodo oscuro y bárbaro, en el que la civilización conocida retrocedió considerablemente y no hubo hitos o avances dignos de mención, ni tampoco en el ámbito de la construcción y la ingeniería. En esta pequeña nota, veremos que este extremo no es del todo cierto. Seguimos en este post con otros anteriores que ya trataron de la historia de la ingeniería en la prehistoria, en la antigua China, Mesopotamia, Grecia, etc.

La caída de Roma es sinónimo del fin de los tiempos antiguos. En el tiempo que siguió, el periodo medieval, la legislación de castas y la influencia religiosa retardaron considerablemente el desarrollo de la ingeniería. Hasta casi el siglo XIX la evolución de la construcción se centra en la arquitectura y los tipos estructurales, y muy poco en otros aspectos como los materiales. Muchos historiadores llaman “El Oscurantismo” al periodo de 600 a 1000 d.C., la denominada Alta Edad Media. Durante este lapso dejaron de existir la ingeniería y arquitectura como profesiones. La construcción queda en manos de los artesanos, tales como los maestros albañiles , que diseñaban las catedrales, delineaban los planos y supervisaban el trabajo de construcción, mientras que los mamposteros y otros artesanos proporcionaban la mano de obra especializada para construir. Europa entra en una recesión constructiva muy importante, mientras que esto no ocurre en los países islámicos mediterráneos ni incluso en otros más lejanos como China e India. Fue durante este período cuando se usó por primera vez la palabra Ingeniero. El término ingeniator aparece ya a finales del siglo VIII o principios del IX relacionado con obras públicas, fortificaciones y máquinas de carácter militar. Ese era el nombre del operador de una catapulta usada en el ataque de las murallas de defensa de las ciudades.

Normalmente se piensa en la Edad Media como un periodo de estancamiento caracterizado por la falta de progreso social. Sin embargo, algunas de las más grandes creaciones arquitectónicas de la Humanidad, las catedrales y los castillos, datan de la época que podríamos llamar como Baja Edad Media, que terminaría en 1492 con el descubrimiento de América, o en 1453 con la caída del Imperio bizantino, fecha que tiene la ventaja de coincidir con la invención de la imprenta (Biblia de Gutenberg) y con el fin de la Guerra de los Cien Años.  En esta misma época, y gracias al Islam, en España existe un desarrollo técnico, e incluso científico, muy superior al del resto de Europa, como, por ejemplo, la importancia y perfección de los sistemas de riego y diques construidos en nuestro país, superado únicamente por los romanos.

Catedral de Burgos
Catedral de Burgos. Su construcción comenzó en 1221, siguiendo patrones góticos franceses.

Los siglos XI y XII fueron testigos de una explosión constructora, tanto pública como privada, en edificación de castillos e iglesias. Los maestros constructores reemplazaron los techos planos de madera por grandes cúpulas de piedra conocidas como bóvedas de cañón o bóvedas cilíndricas. Las catedrales se construyeron en estilo románico, con maestros constructores que se desplazaban a lo largo de toda Europa, lo cual garantizó cierta homogeneidad. Las pesadas bóvedas de piedra de las iglesias románicas exigían pilares y muros masivos para soportarlas, con estrechas ventanas que también fueron características de los castillos de dicho periodo.

A partir del siglo XII se incorporó la bóveda y los arcos punteados dando lugar a las construcciones más esbeltas y de mayor altura de las catedrales góticas. También se introdujo el concepto de contrafuerte, que básicamente era un pilar de piedra muy arqueado que se construía fuera de los muros, posibilitando la distribución del peso de los techos abovedados de la iglesia en dirección hacia abajo y hacia afuera, lo cual eliminó los pesados muros que soportaban las enormes bóvedas cilíndricas.

En España se configuró durante la baja Edad Media dos sistemas constructivos diferentes. Uno, con predominio de la cantería, que construyó las catedrales románicas y góticas; el otro, con predominio de la albañilería y la carpintería, que construye los edificios islámicos y mudéjares. Durante el siglo XV hasta el XVI, poco a poco se produce una hibridación que culmina con El Escorial donde cuaja un sistema constructivo español, que con algunas variantes, perdurará hasta la Revolución Industrial.

Una gran parte de los conocimientos logrados por los árabes en enseñanza y técnica y que se depositaron en España durante la Reconquista, fueron absorbidos posteriormente por la cultura europea en un proceso que duró dos siglos y que terminó hacia el año 1100. Las prolongadas contiendas entre el Islam y el Cristianismo en España hicieron que se diera gran importancia a la construcción de castillos y ciudades amuralladas. En la España musulmana fueron, obviamente, hispanoárabes los ingenieros que construyeron y repararon los puentes, las calzadas y los azudes. Entre los más conocidos destacamos Halaf, que construyó el puente de Alcántara de Toledo en el siglo X; o bien El Hach Yaix que tendió el primitivo puente de Triana en Sevilla y restauró la conducción romana de Los Caños de Carmona y llevó el agua a Sevilla en 1172.

Castillo medieval del siglo XII, actualmente Parador de Sigüenza (Guadalajara).
Castillo medieval del siglo XII, actualmente Parador de Sigüenza (Guadalajara).

La construcción de los castillos era una tarea ardua y costosa. Se requerían oficios especializados, como el de maestro albañil o cantero, y las personas que los ejercían eran muy demandadas y se desplazaban de un lugar a otro. Una de las técnicas constructivas más habituales era la mampostería, que consistía en rellenar los espacios con escombros y argamasa.

Una figura interesante entre los ingenieros medievales es la del «cavacequias», que abundó en los territorios de la Corona de Aragón tras la conquista. Pedro Raimundo de Sassala, conocido como Pere Cavacèquies, construyó la acequia de Piñana hacia 1180. Entre los constructores de la Acequia Real del Júcar hay que señalar a Arnaldo Vidal y al maestro acequiero Bofill, a quien el rey don Jaime I autorizó en 1260 para vender las heredades que le habían correspondido en pago por su trabajo.

Cuando, a partir del siglo XI, empezaron a repararse las infraestructuras, fue la Iglesia la encargada de reconstruir puentes y calzadas. Las calzadas son la primera expresión constructiva de la Alta Edad Media y gracias a ellas se transmite el conocimiento arquitectónico que permite pasar del románico al gótico. En toda Europa surgieron monjes ingenieros que estudiaron a los clásicos y transmitieron oralmente la tradición constructora. Entre los más conocidos se encuentran el francés San Benezet, autor del famoso puente de Avignon y el inglés Meter Colechurch que, entre los siglos XII y XIII, construyó el puente viejo de Londres. En España hubo monjes pontoneros muy célebres que fueron incluso venerados como santos: San Pedro González construyó un puente sobre el Miño, o San Ermengol, autor de un puente sobre el Segre. Sin embargo el más famoso fue Santo Domingo de la Calzada (patrono de las obras públicas españolas), que reparó el camino de Santiago y edificó un puente sobre el Oja y los de Logroño sobre el Ebro, y Nájera, sobre el Najerilla. Conviene resaltar aquí también que el primer puente sobre pontones del cual se tiene referencia lo construyeron los ingenieros militares en la toma de Sevilla por Fernando III el Santo, en 1248, para facilitar el paso de las tropas por el río Guadalquivir. Estas infraestructuras de caminos y puentes van a facilitar la Reconquista en España.

En el siglo XIII, Santo Tomás de Aquino argumentó que ciencia y religión eran compatibles. Ghazzali, erudito en ciencia y filosofía griegas, llegó a la conclusión de que la ciencia alejaba a las personas de Dios, por lo que la consideraba negativa. Los europeos siguieron a Santo Tomás, mientras que el islamismo siguió a Ghazzali. Esta diferencia en filosofía es la que subyace al tan distinto desarrollo técnico en estas dos culturas. El historiador Harvey (1970) afirma: «La principal gloria de la Edad Media no fueron sus catedrales, su épica o su escolástica, sino la construcción, por primera vez en la historia, de una civilización compleja que no se basó en el esfuerzo de esclavos o peones, sino principalmente en la fuerza no humana». Esto se debe a que la revolución medieval de la fuerza y la potencia es uno de los desarrollos más dramáticos e importantes de la historia. Obviamente, la decadencia de la institución de la esclavitud y el continuo crecimiento del cristianismo fueron un estímulo para este desarrollo. Las principales fuentes de potencia fueron la fuerza hidráulica, el viento y el caballo, que se concretaron en ruedas y turbinas hidráulicas, molinos de viento y velas, carretas y carruajes. Tampoco hay que olvidar el uso de palancas y poleas, ni el aumento de la capacidad de carga de los barcos.

El cristianismo hizo que se desarrollara la construcción en expresiones tan maravillosas y sacras como las catedrales góticas, y el islam, las mezquitas. Los ingenieros medievales elevaron la técnica de la construcción con el estilo del gótico y los arbotantes hasta alturas desconocidas para los romanos. La mayoría de las catedrales góticas presenta una estructura optimizada desde el punto de vista geométrico y compositivo para resistir las cargas gravitatorias (Roca y Lodos, 2001). Sus constructores supieron aprovechar al máximo el material disponible, otorgando a los elementos unas dimensiones y unas esbelteces que prácticamente se hallan en el extremo de lo razonablemente posible. Lo más admirable es que dichos constructores no tuvieron a su disposición la capacidad de cálculo de la que se dispone en la actualidad.

Los estilos arquitectónicos de la Edad Media, el románico y el gótico se caracterizan por la utilización de bóvedas de piedra para cubrir espacios públicos, tanto religiosos como civiles. El románico utiliza la bóveda de cañón y la bóveda de arista, mientras que el gótico emplea las bóvedas nervadas de crucería. Este dominio se refleja claramente en los puentes de este periodo. Pero, tal y como indica Fernández Troyano (2005), ello no quiere decir que se superara la calidad de los puentes romanos, aunque sí se puede decir que, en general, los puentes medievales son más esbeltos en lo que se refiere a la esbeltez de los arcos y a la relación entre el ancho de las pilas y la luz de los arcos.

La utilización de la zapata independiente en edificios se debe a la aparición del estilo gótico, pues las grandes luces y el uso de columnas aisladas provocaban la separación de las plataformas utilizadas anteriormente. En raras ocasiones, las dimensiones de los cimientos estaban determinadas por las cargas que actuaban sobre ellos. Cuando se producía un accidente, se ensanchaba la parte defectuosa hasta que la carga podía ser soportada de manera adecuada.

Construyendo una iglesia en el siglo XIV. (Jensenius, 2000)
Construyendo una iglesia en el siglo XIV.

Durante el siglo XI en Italia se produce el colapso de importantes edificios, debido a fallos de sus cimentaciones y son muchos los campaniles que sufren inclinaciones, algunos de los cuales han continuado su movimiento hasta nuestros días, como es el caso de la torre de Pisa. Esta puede considerarse una de las grandes equivocaciones de los constructores y arquitectos de la Edad Media en Italia, ya que la torre era excesivamente pesada para la escasa calidad del suelo en el que se cimentó.

Vías, puentes, canales, túneles, diques, puertos, muelles y máquinas se construyeron en la Edad Media con un conocimiento que todavía maravilla en la actualidad. El libro de bosquejos del ingeniero francés Villard de Honnecourt revela un amplio conocimiento de las matemáticas, la geometría, las ciencias naturales y la artesanía. Sin embargo, desde la alta Edad Media y hasta finales de la Edad Moderna el oficio de ingeniero fue una actividad gremial cuyos conocimientos se transmitían de padres a hijos o entre convecinos del mismo concejo.

Como se puede comprobar, no falta materia para evaluar los logros en construcción e ingeniería de esta época. Seguro que nos hemos dejado por el camino muchísima información de gran interés. Pero siempre tendremos la oportunidad de publicar más entradas para ampliar la información y comentarla.

Referencias

FERNÁNDEZ TROYANO, L. (2005). Variantes morfológicas de los puentes medievales españoles. Revista de Obras Públicas, 3459: 11-32.

HARVEY, J. (1970). The Gothic World 1100-1600. B.T. Bastford, London.

ROCA, P.; LODOS, J.C. (2001). Análisis estructural de catedrales góticas. OP ingeniería y territorio, 56: 38-47.

YEPES, V. (2009). Breve historia de la ingeniería civil y sus procedimientos. Universidad Politécnica de Valencia.

Licencia de Creative Commons
Esta obra está bajo una licencia de Creative Commons Reconocimiento-NoComercial-SinObraDerivada 4.0 Internacional.

Valoración de las herramientas y metodologías activas en el Grado en Ingeniería de Obras Públicas

Resumen: El cambio en la orientación del sistema de educación superior ha dado lugar a un modelo de enseñanza centrada en el aprendizaje del estudiante y la adquisición de habilidades. La comunicación presenta la valoración por parte de los alumnos de los recursos utilizados en la docencia de la “clase inversa”. Se ha diseñado un cuestionario para evaluar la metodología activa y herramientas utilizadas. De los resultados se destaca que la herramienta mejor valorada es Lessons, seguida de Recursos de Poliformat y diapositivas en pdf. Los vídeos de polimedia y los vídeos de procedimientos constructivos presentan poca desviación, indicando que todos los alumnos están de acuerdo con la utilidad de dichas tecnologías. También es importante destacar que no hay ningún alumno en desacuerdo con la metodología activa. En concreto, la corrección de entregables es la actividad más valorada en el proceso del aprendizaje.

Palabras clave: recursos tecnológicos, herramientas, metodología activa, clase inversa, cuestionario

Referencia:

GARCÍA-SEGURA, T.; MARTÍ, J.V.; YEPES, V. (2017). Valoración de las herramientas y metodologías activas en el Grado en Ingeniería de Obras Públicas. Congreso Nacional de Innovación Educativa y de Docencia en Red IN-RED 2017, Valencia, 13 y 14 de julio de 2017, 9 pp.

Descargar (PDF, 502KB)