Journal of immunology (Baltimore, Md. : 1950), Jan 15, 2015
Plasmodium remains a major pathogen causing malaria and impairing defense against other infection... more Plasmodium remains a major pathogen causing malaria and impairing defense against other infections. Defining how Plasmodium increases susceptibility to heterologous pathogens may lead to interventions that mitigate the severity of coinfections. Previous studies proposed that reduced T cell responses during coinfections are due to diminished recruitment of naive T cells through infection-induced decreases in chemokine CCL21. We found that, although Listeria infections reduced expression of CCL21 in murine spleens, lymphocytic choriomeningitis virus (LCMV)-specific T cell responses were not impaired during Listeria + LCMV coinfection, arguing against a major role for this chemokine in coinfection-induced T cell suppression. In our experiments, Plasmodium yoelii infection led to a reduced CD8(+) T cell response to a subsequent Listeria infection. We propose an alternative mechanism whereby P. yoelii suppresses Listeria-specific T cell responses. We found that Listeria-specific T cells ...
Using a unique combination of visual, statistical, and data mining methods, we tested the hypothe... more Using a unique combination of visual, statistical, and data mining methods, we tested the hypothesis that an immune cell's movement pattern can convey key information about the cell's function, antigen specificity, and environment. We applied clustering, statistical tests, and a support vector machine (SVM) to assess our ability to classify different datasets of imaged flouresently labelled T cells in mouse liver. We additionally saw clusters of different movement patterns of T cells of identical antigenic specificity. We found that the movement patterns of T cells specific and non-specific for malaria parasites are differentiable with 72% accuracy, and that specific cells have a higher tendency to move towards the parasite than non-specific cells. Movements of antigen-specific T cells in uninfected mice vs. infected mice were differentiable with 69.8% accuracy. We additionally saw clusters of different movement patterns of T cells of identical antigenic specificity. We concluded that our combination of methods has the potential to advance the understanding of cell movements in vivo.
Single genome sequencing of early HIV-1 genomes provides a sensitive, dynamic assessment of virus... more Single genome sequencing of early HIV-1 genomes provides a sensitive, dynamic assessment of virus evolution and insight into the earliest anti-viral immune responses in vivo. By using this approach, together with deep sequencing, site-directed mutagenesis, antibody adsorptions and virus-entry assays, we found evidence in three subjects of neutralizing antibody (Nab) responses as early as 2 weeks post-seroconversion, with Nab titers
The CFSE dye dilution assay is widely used to determine the number of divisions a given CFSE labe... more The CFSE dye dilution assay is widely used to determine the number of divisions a given CFSE labelled cell has undergone in vitro and in vivo. In this paper, we consider how the data obtained with the use of CFSE (CFSE data) can be used to estimate the parameters determining cell division and death. For a homogeneous cell population (i.e., a population with the parameters for cell division and death being independent of time and the number of divisions cells have undergone), we consider a specific biologically based bSmith-MartinQ model of cell turnover and analyze three different techniques for estimation of its parameters: direct fitting, indirect fitting and rescaling method. We find that using only CFSE data, the duration of the division phase (i.e., approximately the S+G2+M phase of the cell cycle) can be estimated with the use of either technique. In some cases, the average division or cell cycle time can be estimated using the direct fitting of the model solution to the data ...
Quantitative understanding of immunology requires the development of experimental and mathematica... more Quantitative understanding of immunology requires the development of experimental and mathematical techniques for estimation of rates of division and death of lymphocytes under different conditions. Here, we review the advantages and limitations of several labelling methods that are currently used to quantify turnover of lymphocytes in vivo. In addition to highlighting insights into lymphocyte kinetics which have recently been gained thanks to the development of novel techniques, we discuss important directions for future experimental and theoretical work in the field of lymphocyte turnover.
It has been difficult to correlate the quality of CD8 z T cell responses with protection against ... more It has been difficult to correlate the quality of CD8 z T cell responses with protection against viral infections. To investigate the relationship between efficacy and magnitude of T cell responses, we quantify the rate at which individual CD8 z effector and memory T cells kill target cells in the mouse spleen. Using mathematical modeling, we analyze recent data on the loss of target cells pulsed with three different peptides from the mouse lymphocytic choriomeningitis virus (LCMV) in mouse spleens with varying numbers of epitope-specific CD8 z T cells. We find that the killing of targets follows the law of massaction, i.e., the death rate of individual target cells remains proportional to the frequency (or the total number) of specific CD8 z T cells in the spleen despite the fact that effector cell densities and effector to target ratios vary about a 1000-fold. The killing rate of LCMV-specific CD8 z T cells is largely independent of T cell specificity and differentiation stage. Our results thus allow one to calculate the critical T cell concentration at which growth of a virus with a given replication rate can be prevented from the start of infection by memory CD8 z T cell response.
Quantitative understanding of the kinetics of lymphocyte proliferation and death upon activation ... more Quantitative understanding of the kinetics of lymphocyte proliferation and death upon activation with an antigen is crucial for elucidating factors determining the magnitude, duration and efficiency of the immune response. Recent advances in quantitative experimental techniques, in particular intracellular labeling and multi-channel flow cytometry, allow one to measure the population structure of proliferating and dying lymphocytes for several generations with high precision. These new experimental techniques require novel quantitative methods of analysis. We review several recent mathematical approaches used to describe and analyze cell proliferation data. Using a rigorous mathematical framework, we show that two commonly used models that are based on the theories of age-structured cell populations and of branching processes, are mathematically identical. We provide several simple analytical solutions for a model in which the distribution of interdivision times follows a gamma distribution and show that this model can fit both simulated and experimental data. We also show that the estimates of some critical kinetic parameters, such as the average inter-division time, obtained by fitting models to data may depend on the assumed distribution of inter-division times, highlighting the challenges in quantitative understanding of cell kinetics. Citation: Zilman A, Ganusov VV, Perelson AS (2010) Stochastic Models of Lymphocyte Proliferation and Death. PLoS ONE 5(9): e12775.
We used ultra-deep sequencing to obtain tens of thousands of HIV-1 sequences from regions targete... more We used ultra-deep sequencing to obtain tens of thousands of HIV-1 sequences from regions targeted by CD8+ T lymphocytes from longitudinal samples from three acutely infected subjects, and modeled viral evolution during the critical first weeks of infection. Previous studies suggested that a single virus established productive infection, but these conclusions were tempered because of limited sampling; now, we have greatly increased our confidence in this observation through modeling the observed earliest sample diversity based on vastly more extensive sampling. Conventional sequencing of HIV-1 from acute/early infection has shown different patterns of escape at different epitopes; we investigated the earliest escapes in exquisite detail. Over 3-6 weeks, ultradeep sequencing revealed that the virus explored an extraordinary array of potential escape routes in the process of evading the earliest CD8 T-lymphocyte responses -using 454 sequencing, we identified over 50 variant forms of each targeted epitope during early immune escape, while only 2-7 variants were detected in the same samples via conventional sequencing. In contrast to the diversity seen within epitopes, non-epitope regions, including the Envelope V3 region, which was sequenced as a control in each subject, displayed very low levels of variation. In early infection, in the regions sequenced, the consensus forms did not have a fitness advantage large enough to trigger reversion to consensus amino acids in the absence of immune pressure. In one subject, a genetic bottleneck was observed, with extensive diversity at the second time point narrowing to two dominant escape forms by the third time point, all within two months of infection. Traces of immune escape were observed in the earliest samples, suggesting that immune pressure is present and effective earlier than previously reported; quantifying the loss rate of the founder virus suggests a direct role for CD8 T-lymphocyte responses in viral containment after peak viremia. Dramatic shifts in the frequencies of epitope variants during the first weeks of infection revealed a complex interplay between viral fitness and immune escape.
Johne's d... more Johne's disease (JD), a persistent and slow progressing infection of ruminants such as cows and sheep, is caused by slow replicating bacilli Mycobacterium avium subspecies paratuberculosis (MAP) infecting macrophages in the gut. Infected animals initially mount a cell-mediated CD4 T cell response against MAP which is characterized by the production of interferon gamma (Th1 response). Over time, Th1 response diminishes in most animals and antibody response to MAP antigens becomes dominant (Th2 response). The switch from Th1 to Th2 response occurs concomitantly with disease progression and shedding of the bacteria in feces. Mechanisms controlling this Th1/Th2 switch remain poorly understood. Because Th1 and Th2 responses are known to cross-inhibit each other, it is unclear why initially strong Th1 response is lost over time. Using a novel mathematical model of the immune response to MAP infection we show that the ability of extracellular bacteria to persist outside of macrophages naturally leads to switch of the cellular response to antibody production. Several additional mechanisms may also contribute to the timing of the Th1/Th2 switch including the rate of proliferation of Th1/Th2 responses at the site of infection, efficiency at which immune responses cross-inhibit each other, and the rate at which Th1 response becomes exhausted over time. Our basic model reasonably well explains four different kinetic patterns of the Th1/Th2 responses in MAP-infected sheep by variability in the initial bacterial dose and the efficiency of the MAP-specific T cell responses. Taken together, our novel mathematical model identifies factors of bacterial and host origin that drive kinetics of the immune response to MAP and provides the basis for testing the impact of vaccination or early treatment on the duration of infection.
Estimation of division and death rates of lymphocytes in different conditions is vital for quanti... more Estimation of division and death rates of lymphocytes in different conditions is vital for quantitative understanding of the immune system. Deuterium, in the form of deuterated glucose or heavy water, can be used to measure rates of proliferation and death of lymphocytes in vivo. Inferring these rates from labeling and delabeling curves has been subject to considerable debate with different groups suggesting different mathematical models for that purpose. We show that the three most common models, which are based on quite different biological assumptions, actually predict mathematically identical labeling curves with one parameter for the exponential up and down slope, and one parameter defining the maximum labeling level. By extending these previous models, we here propose a novel approach for the analysis of data from deuterium labeling experiments. We construct a model of ''kinetic heterogeneity'' in which the total cell population consists of many sub-populations with different rates of cell turnover. In this model, for a given distribution of the rates of turnover, the predicted fraction of labeled DNA accumulated and lost can be calculated. Our model reproduces several previously made experimental observations, such as a negative correlation between the length of the labeling period and the rate at which labeled DNA is lost after label cessation. We demonstrate the reliability of the new explicit kinetic heterogeneity model by applying it to artificially generated datasets, and illustrate its usefulness by fitting experimental data. In contrast to previous models, the explicit kinetic heterogeneity model 1) provides a novel way of interpreting labeling data; 2) allows for a non-exponential loss of labeled cells during delabeling, and 3) can be used to describe data with variable labeling length.
Immunological memory-the ability to ''remember'' previously encountered pathogens and respond fas... more Immunological memory-the ability to ''remember'' previously encountered pathogens and respond faster upon reexposure is a central feature of the immune response in vertebrates. The cross-reactive stimulation hypothesis for the maintenance of memory proposes that memory cells specific for a given pathogen are maintained by cross-reactive stimulation following infections with other (unrelated) pathogens. We use mathematical models to examine the crossreactive stimulation hypothesis. We find that: (i) the direct boosting of cross-reactive lineages only provides a very small increase in the average longevity of immunological memory; (ii) the expansion of cross-reactive lineages can indirectly increase the longevity of memory by reducing the magnitude of expansion of new naive lineages which occupy space in the memory compartment and are responsible for the decline in memory; (iii) cross-reactive stimulation results in variation in the rates of decline of different lineages of memory cells and enrichment of memory cell population for cells that are cross-reactive for the pathogens to which the individual has been exposed.
Journal of Statistical Mechanics: Theory and Experiment, 2013
Human immunodeficiency virus (HIV-1 or simply HIV) induces a persistent infection, which in the a... more Human immunodeficiency virus (HIV-1 or simply HIV) induces a persistent infection, which in the absence of treatment leads to AIDS and death in almost all infected individuals. HIV infection elicits a vigorous immune response starting about 2-3 weeks post infection that can lower the amount of virus in the body, but which cannot eradicate the virus. How HIV establishes a chronic infection in the face of a strong immune response remains poorly understood. It has been shown that HIV is able to rapidly change its proteins via mutation to evade recognition by virus-specific cytotoxic T lymphocytes (CTLs). Typically, an HIVinfected patient will generate 4-12 CTL responses specific for parts of viral proteins called epitopes. Such CTL responses lead to strong selective pressure to change the viral sequences encoding these epitopes so as to avoid CTL recognition. Indeed, the viral population "escapes" from about half of the CTL responses by mutation in the first year. Here we review experimental data on HIV evolution in response to CTL pressure, mathematical models developed to explain this evolution, and highlight problems associated with the data and previous modeling efforts. We show that estimates of the strength of the epitopespecific CTL response depend on the method used to fit models to experimental data and on the assumptions made regarding how mutants are generated during infection. We illustrate that allowing CTL responses to decay over time may improve the fit to experimental data and provides higher estimates of the killing efficacy of HIV-specific CTLs. We also propose a novel method for simultaneously estimating the killing efficacy of multiple CTL populations * Authors contributed equally to this report 1 arXiv:1207.5684v1 [q-bio.PE] 24 Jul 2012 specific for different epitopes of HIV using stochastic simulations. Lastly, we show that current estimates of the efficacy at which HIV-specific CTLs clear virus-infected cells can be improved by more frequent sampling of viral sequences and by combining data on sequence evolution with experimentally measured CTL dynamics.
HIV infection is characterized by a gradual deterioration of immune function, mainly in the CD4 c... more HIV infection is characterized by a gradual deterioration of immune function, mainly in the CD4 compartment. To better understand the dynamics of HIV-specific T cells, we analyzed the kinetics and polyfunctional profiles of Gag-specific CD4 + and CD8 + T cell responses in 12 subtype C-infected individuals with different disease-progression profiles, ranging from acute to chronic HIV infection. The frequencies of Gag-responsive CD4 + and CD8 + T cells showed distinct temporal kinetics. The peak frequency of Gag-responsive IFN-g + CD4 + T cells was observed at a median of 28 d (interquartile range: 21-81 d) post-Fiebig I/II staging, whereas Gag-specific IFN-g + CD8 + T cell responses peaked at a median of 253 d (interquartile range: 136-401 d) and showed a significant biphasic expansion. The proportion of TNF-a-expressing cells within the IFN-g + CD4 + T cell population increased (p = 0.001) over time, whereas TNF-a-expressing cells within IFN-g + CD8 + T cells declined (p = 0.005). Both Gagresponsive CD4 + and CD8 + T cells showed decreased Ki67 expression within the first 120 d post-Fiebig I/II staging. Prior to the disappearance of Gag-responsive Ki67 + CD4 + T cells, these cells positively correlated (p = 0.00038) with viremia, indicating that early Gag-responsive CD4 events are shaped by viral burden. No such associations were observed in the Gag-specific CD8 + T cell compartment. Overall, these observations indicated that circulating Gag-responsive CD4 + and CD8 + T cell frequencies and functions are not synchronous, and properties change rapidly at different tempos during early HIV infection.
Journal of immunology (Baltimore, Md. : 1950), Jan 15, 2015
Plasmodium remains a major pathogen causing malaria and impairing defense against other infection... more Plasmodium remains a major pathogen causing malaria and impairing defense against other infections. Defining how Plasmodium increases susceptibility to heterologous pathogens may lead to interventions that mitigate the severity of coinfections. Previous studies proposed that reduced T cell responses during coinfections are due to diminished recruitment of naive T cells through infection-induced decreases in chemokine CCL21. We found that, although Listeria infections reduced expression of CCL21 in murine spleens, lymphocytic choriomeningitis virus (LCMV)-specific T cell responses were not impaired during Listeria + LCMV coinfection, arguing against a major role for this chemokine in coinfection-induced T cell suppression. In our experiments, Plasmodium yoelii infection led to a reduced CD8(+) T cell response to a subsequent Listeria infection. We propose an alternative mechanism whereby P. yoelii suppresses Listeria-specific T cell responses. We found that Listeria-specific T cells ...
Using a unique combination of visual, statistical, and data mining methods, we tested the hypothe... more Using a unique combination of visual, statistical, and data mining methods, we tested the hypothesis that an immune cell's movement pattern can convey key information about the cell's function, antigen specificity, and environment. We applied clustering, statistical tests, and a support vector machine (SVM) to assess our ability to classify different datasets of imaged flouresently labelled T cells in mouse liver. We additionally saw clusters of different movement patterns of T cells of identical antigenic specificity. We found that the movement patterns of T cells specific and non-specific for malaria parasites are differentiable with 72% accuracy, and that specific cells have a higher tendency to move towards the parasite than non-specific cells. Movements of antigen-specific T cells in uninfected mice vs. infected mice were differentiable with 69.8% accuracy. We additionally saw clusters of different movement patterns of T cells of identical antigenic specificity. We concluded that our combination of methods has the potential to advance the understanding of cell movements in vivo.
Single genome sequencing of early HIV-1 genomes provides a sensitive, dynamic assessment of virus... more Single genome sequencing of early HIV-1 genomes provides a sensitive, dynamic assessment of virus evolution and insight into the earliest anti-viral immune responses in vivo. By using this approach, together with deep sequencing, site-directed mutagenesis, antibody adsorptions and virus-entry assays, we found evidence in three subjects of neutralizing antibody (Nab) responses as early as 2 weeks post-seroconversion, with Nab titers
The CFSE dye dilution assay is widely used to determine the number of divisions a given CFSE labe... more The CFSE dye dilution assay is widely used to determine the number of divisions a given CFSE labelled cell has undergone in vitro and in vivo. In this paper, we consider how the data obtained with the use of CFSE (CFSE data) can be used to estimate the parameters determining cell division and death. For a homogeneous cell population (i.e., a population with the parameters for cell division and death being independent of time and the number of divisions cells have undergone), we consider a specific biologically based bSmith-MartinQ model of cell turnover and analyze three different techniques for estimation of its parameters: direct fitting, indirect fitting and rescaling method. We find that using only CFSE data, the duration of the division phase (i.e., approximately the S+G2+M phase of the cell cycle) can be estimated with the use of either technique. In some cases, the average division or cell cycle time can be estimated using the direct fitting of the model solution to the data ...
Quantitative understanding of immunology requires the development of experimental and mathematica... more Quantitative understanding of immunology requires the development of experimental and mathematical techniques for estimation of rates of division and death of lymphocytes under different conditions. Here, we review the advantages and limitations of several labelling methods that are currently used to quantify turnover of lymphocytes in vivo. In addition to highlighting insights into lymphocyte kinetics which have recently been gained thanks to the development of novel techniques, we discuss important directions for future experimental and theoretical work in the field of lymphocyte turnover.
It has been difficult to correlate the quality of CD8 z T cell responses with protection against ... more It has been difficult to correlate the quality of CD8 z T cell responses with protection against viral infections. To investigate the relationship between efficacy and magnitude of T cell responses, we quantify the rate at which individual CD8 z effector and memory T cells kill target cells in the mouse spleen. Using mathematical modeling, we analyze recent data on the loss of target cells pulsed with three different peptides from the mouse lymphocytic choriomeningitis virus (LCMV) in mouse spleens with varying numbers of epitope-specific CD8 z T cells. We find that the killing of targets follows the law of massaction, i.e., the death rate of individual target cells remains proportional to the frequency (or the total number) of specific CD8 z T cells in the spleen despite the fact that effector cell densities and effector to target ratios vary about a 1000-fold. The killing rate of LCMV-specific CD8 z T cells is largely independent of T cell specificity and differentiation stage. Our results thus allow one to calculate the critical T cell concentration at which growth of a virus with a given replication rate can be prevented from the start of infection by memory CD8 z T cell response.
Quantitative understanding of the kinetics of lymphocyte proliferation and death upon activation ... more Quantitative understanding of the kinetics of lymphocyte proliferation and death upon activation with an antigen is crucial for elucidating factors determining the magnitude, duration and efficiency of the immune response. Recent advances in quantitative experimental techniques, in particular intracellular labeling and multi-channel flow cytometry, allow one to measure the population structure of proliferating and dying lymphocytes for several generations with high precision. These new experimental techniques require novel quantitative methods of analysis. We review several recent mathematical approaches used to describe and analyze cell proliferation data. Using a rigorous mathematical framework, we show that two commonly used models that are based on the theories of age-structured cell populations and of branching processes, are mathematically identical. We provide several simple analytical solutions for a model in which the distribution of interdivision times follows a gamma distribution and show that this model can fit both simulated and experimental data. We also show that the estimates of some critical kinetic parameters, such as the average inter-division time, obtained by fitting models to data may depend on the assumed distribution of inter-division times, highlighting the challenges in quantitative understanding of cell kinetics. Citation: Zilman A, Ganusov VV, Perelson AS (2010) Stochastic Models of Lymphocyte Proliferation and Death. PLoS ONE 5(9): e12775.
We used ultra-deep sequencing to obtain tens of thousands of HIV-1 sequences from regions targete... more We used ultra-deep sequencing to obtain tens of thousands of HIV-1 sequences from regions targeted by CD8+ T lymphocytes from longitudinal samples from three acutely infected subjects, and modeled viral evolution during the critical first weeks of infection. Previous studies suggested that a single virus established productive infection, but these conclusions were tempered because of limited sampling; now, we have greatly increased our confidence in this observation through modeling the observed earliest sample diversity based on vastly more extensive sampling. Conventional sequencing of HIV-1 from acute/early infection has shown different patterns of escape at different epitopes; we investigated the earliest escapes in exquisite detail. Over 3-6 weeks, ultradeep sequencing revealed that the virus explored an extraordinary array of potential escape routes in the process of evading the earliest CD8 T-lymphocyte responses -using 454 sequencing, we identified over 50 variant forms of each targeted epitope during early immune escape, while only 2-7 variants were detected in the same samples via conventional sequencing. In contrast to the diversity seen within epitopes, non-epitope regions, including the Envelope V3 region, which was sequenced as a control in each subject, displayed very low levels of variation. In early infection, in the regions sequenced, the consensus forms did not have a fitness advantage large enough to trigger reversion to consensus amino acids in the absence of immune pressure. In one subject, a genetic bottleneck was observed, with extensive diversity at the second time point narrowing to two dominant escape forms by the third time point, all within two months of infection. Traces of immune escape were observed in the earliest samples, suggesting that immune pressure is present and effective earlier than previously reported; quantifying the loss rate of the founder virus suggests a direct role for CD8 T-lymphocyte responses in viral containment after peak viremia. Dramatic shifts in the frequencies of epitope variants during the first weeks of infection revealed a complex interplay between viral fitness and immune escape.
Johne's d... more Johne's disease (JD), a persistent and slow progressing infection of ruminants such as cows and sheep, is caused by slow replicating bacilli Mycobacterium avium subspecies paratuberculosis (MAP) infecting macrophages in the gut. Infected animals initially mount a cell-mediated CD4 T cell response against MAP which is characterized by the production of interferon gamma (Th1 response). Over time, Th1 response diminishes in most animals and antibody response to MAP antigens becomes dominant (Th2 response). The switch from Th1 to Th2 response occurs concomitantly with disease progression and shedding of the bacteria in feces. Mechanisms controlling this Th1/Th2 switch remain poorly understood. Because Th1 and Th2 responses are known to cross-inhibit each other, it is unclear why initially strong Th1 response is lost over time. Using a novel mathematical model of the immune response to MAP infection we show that the ability of extracellular bacteria to persist outside of macrophages naturally leads to switch of the cellular response to antibody production. Several additional mechanisms may also contribute to the timing of the Th1/Th2 switch including the rate of proliferation of Th1/Th2 responses at the site of infection, efficiency at which immune responses cross-inhibit each other, and the rate at which Th1 response becomes exhausted over time. Our basic model reasonably well explains four different kinetic patterns of the Th1/Th2 responses in MAP-infected sheep by variability in the initial bacterial dose and the efficiency of the MAP-specific T cell responses. Taken together, our novel mathematical model identifies factors of bacterial and host origin that drive kinetics of the immune response to MAP and provides the basis for testing the impact of vaccination or early treatment on the duration of infection.
Estimation of division and death rates of lymphocytes in different conditions is vital for quanti... more Estimation of division and death rates of lymphocytes in different conditions is vital for quantitative understanding of the immune system. Deuterium, in the form of deuterated glucose or heavy water, can be used to measure rates of proliferation and death of lymphocytes in vivo. Inferring these rates from labeling and delabeling curves has been subject to considerable debate with different groups suggesting different mathematical models for that purpose. We show that the three most common models, which are based on quite different biological assumptions, actually predict mathematically identical labeling curves with one parameter for the exponential up and down slope, and one parameter defining the maximum labeling level. By extending these previous models, we here propose a novel approach for the analysis of data from deuterium labeling experiments. We construct a model of ''kinetic heterogeneity'' in which the total cell population consists of many sub-populations with different rates of cell turnover. In this model, for a given distribution of the rates of turnover, the predicted fraction of labeled DNA accumulated and lost can be calculated. Our model reproduces several previously made experimental observations, such as a negative correlation between the length of the labeling period and the rate at which labeled DNA is lost after label cessation. We demonstrate the reliability of the new explicit kinetic heterogeneity model by applying it to artificially generated datasets, and illustrate its usefulness by fitting experimental data. In contrast to previous models, the explicit kinetic heterogeneity model 1) provides a novel way of interpreting labeling data; 2) allows for a non-exponential loss of labeled cells during delabeling, and 3) can be used to describe data with variable labeling length.
Immunological memory-the ability to ''remember'' previously encountered pathogens and respond fas... more Immunological memory-the ability to ''remember'' previously encountered pathogens and respond faster upon reexposure is a central feature of the immune response in vertebrates. The cross-reactive stimulation hypothesis for the maintenance of memory proposes that memory cells specific for a given pathogen are maintained by cross-reactive stimulation following infections with other (unrelated) pathogens. We use mathematical models to examine the crossreactive stimulation hypothesis. We find that: (i) the direct boosting of cross-reactive lineages only provides a very small increase in the average longevity of immunological memory; (ii) the expansion of cross-reactive lineages can indirectly increase the longevity of memory by reducing the magnitude of expansion of new naive lineages which occupy space in the memory compartment and are responsible for the decline in memory; (iii) cross-reactive stimulation results in variation in the rates of decline of different lineages of memory cells and enrichment of memory cell population for cells that are cross-reactive for the pathogens to which the individual has been exposed.
Journal of Statistical Mechanics: Theory and Experiment, 2013
Human immunodeficiency virus (HIV-1 or simply HIV) induces a persistent infection, which in the a... more Human immunodeficiency virus (HIV-1 or simply HIV) induces a persistent infection, which in the absence of treatment leads to AIDS and death in almost all infected individuals. HIV infection elicits a vigorous immune response starting about 2-3 weeks post infection that can lower the amount of virus in the body, but which cannot eradicate the virus. How HIV establishes a chronic infection in the face of a strong immune response remains poorly understood. It has been shown that HIV is able to rapidly change its proteins via mutation to evade recognition by virus-specific cytotoxic T lymphocytes (CTLs). Typically, an HIVinfected patient will generate 4-12 CTL responses specific for parts of viral proteins called epitopes. Such CTL responses lead to strong selective pressure to change the viral sequences encoding these epitopes so as to avoid CTL recognition. Indeed, the viral population "escapes" from about half of the CTL responses by mutation in the first year. Here we review experimental data on HIV evolution in response to CTL pressure, mathematical models developed to explain this evolution, and highlight problems associated with the data and previous modeling efforts. We show that estimates of the strength of the epitopespecific CTL response depend on the method used to fit models to experimental data and on the assumptions made regarding how mutants are generated during infection. We illustrate that allowing CTL responses to decay over time may improve the fit to experimental data and provides higher estimates of the killing efficacy of HIV-specific CTLs. We also propose a novel method for simultaneously estimating the killing efficacy of multiple CTL populations * Authors contributed equally to this report 1 arXiv:1207.5684v1 [q-bio.PE] 24 Jul 2012 specific for different epitopes of HIV using stochastic simulations. Lastly, we show that current estimates of the efficacy at which HIV-specific CTLs clear virus-infected cells can be improved by more frequent sampling of viral sequences and by combining data on sequence evolution with experimentally measured CTL dynamics.
HIV infection is characterized by a gradual deterioration of immune function, mainly in the CD4 c... more HIV infection is characterized by a gradual deterioration of immune function, mainly in the CD4 compartment. To better understand the dynamics of HIV-specific T cells, we analyzed the kinetics and polyfunctional profiles of Gag-specific CD4 + and CD8 + T cell responses in 12 subtype C-infected individuals with different disease-progression profiles, ranging from acute to chronic HIV infection. The frequencies of Gag-responsive CD4 + and CD8 + T cells showed distinct temporal kinetics. The peak frequency of Gag-responsive IFN-g + CD4 + T cells was observed at a median of 28 d (interquartile range: 21-81 d) post-Fiebig I/II staging, whereas Gag-specific IFN-g + CD8 + T cell responses peaked at a median of 253 d (interquartile range: 136-401 d) and showed a significant biphasic expansion. The proportion of TNF-a-expressing cells within the IFN-g + CD4 + T cell population increased (p = 0.001) over time, whereas TNF-a-expressing cells within IFN-g + CD8 + T cells declined (p = 0.005). Both Gagresponsive CD4 + and CD8 + T cells showed decreased Ki67 expression within the first 120 d post-Fiebig I/II staging. Prior to the disappearance of Gag-responsive Ki67 + CD4 + T cells, these cells positively correlated (p = 0.00038) with viremia, indicating that early Gag-responsive CD4 events are shaped by viral burden. No such associations were observed in the Gag-specific CD8 + T cell compartment. Overall, these observations indicated that circulating Gag-responsive CD4 + and CD8 + T cell frequencies and functions are not synchronous, and properties change rapidly at different tempos during early HIV infection.
Uploads
Papers by Vitaly Ganusov