Page 1. Protoplasma (1996) 194:195-207 PROTOPLASMA 9 Springer-Verlag 1996 Printed in Austria Cort... more Page 1. Protoplasma (1996) 194:195-207 PROTOPLASMA 9 Springer-Verlag 1996 Printed in Austria Cortical actin filaments fragment and aggregate to form chloroplast-associated and free F-actin rings in mechanically isolated Zinnia mesophyll cells ...
Summary Developing tracheary elements in suspension cultures ofZinnia elegans fluoresce intensely... more Summary Developing tracheary elements in suspension cultures ofZinnia elegans fluoresce intensely relative to non-differentiating cells when stained with chlorotetracycline (CTC), a fluorescent chelate probe for membrane associated calcium. This suggests that a change in calcium uptake or subcellular distribution accompanies the onset of tracheary element differentiation. A few cells in early differentiating cultures were brightly fluorescent, but did not have visible cell wall thickenings, suggesting that a rise in sequestered calcium may precede visible differentiation. Diffuse CTC fluorescence in early differentiation most likely results from sequestration of calcium in the endoplasmic reticulum. Late in differentiation, CTC fluorescence becomes punctate in appearance, probably due to loss of plasma membrane integrity occurring at the onset of autolysis.Zinnia suspension culture cells were found to be very sensitive to CTC and low concentrations (10 µM) were used to assure accurate localization of membrane-associated calcium in healthy cells.
Tracheary-element (TE) differentiation in suspension cultures ofZinnia elegans L. mesophyll cells... more Tracheary-element (TE) differentiation in suspension cultures ofZinnia elegans L. mesophyll cells was inhibited by blocking calcium uptake in three ways: 1) reducing the [Ca(2+)] of the culture medium, 2) blocking calcium channels with the non-permeant cation La(3+), and 3) blocking calcium channels with permeant dihydropyridine calcium-channel blockers. Calcium-channel blockers were effective when added at any time between 0 and 48 h after culture initiation; after 48h, calcium sequestration and secondary cell-wall deposition began. In contrast, calmodulin antagonists inhibited TE differentiation when added at the beginning of culture, but not when added after 24h. These results indicate that TE differentiation involves at least two calcium-regulated events: one calmodulin-dependent and occurring shortly after exposure to inductive conditions, and the other calmodulin-independent and occurring just prior to secondary cell-wall deposition.
Tracheary-element (TE) differentiation in suspension-cultured mesophyll cells of Zinnia elegans L... more Tracheary-element (TE) differentiation in suspension-cultured mesophyll cells of Zinnia elegans L. was completely inhibited by caffeine and theophylline only when these methylxanthines were applied at least 8 h prior to the appearance of secondary cell-wall thickenings. In contrast, the calcium-channel blocker nifedipine completely inhibited TE differentiation when applied only 2-3 h prior to the onset of secondary cell-wall deposition. This indicates the involvement of a methylxanthine-inhibitable event in TE differentiation that is distinguishable from an event dependent on influx of extracellular calcium. The correlation between the time of appearance of chlorotetracycline fluorescence (an indicator of sequestered Ca(2+)) and loss of methylxanthine effectiveness indicates that inhibition by methylxanthines may result from release of Ca(2+) from intracellular stores. Methylxanthines with high potencies against adenosine 3' ∶ 5'-cyclic monophosphate (cAMP) phosphodiesterase and adenosine receptors were less effective inhibitors of TE differentiation, indicating that inhibition of differentiation by methylxanthines is independent of cAMP metabolism. The role of cAMP in transduction of the cytokinin signal, which was proposed previously on the basis of stimulation of TE differentiation by theophylline, was investigated using the non-hydrolyzable analog 8-bromo-cAMP. Although 8-bromo-cAMP stimulated differentiation in the absence of inductive concentrations of cytokinin, the non-cyclic analog 8-bromo-AMP was even more effective, indicating that 8-bromo-cAMP behaves as a cytokinin analog, rather than a second messenger, in stimulating TE differentiation.
... Alison W. Roberts ~, Linda T. Koonce & Candace H. Haigler* Department of Biological Scien... more ... Alison W. Roberts ~, Linda T. Koonce & Candace H. Haigler* Department of Biological Sciences, Texas Tech University, PO Box 4149, Lubbock, TX ... To compare the percen-tage of dead and differentiated cells, 'cell clus-ters' formed by septation of a single mesophyll cell were ...
A method for rapid in vivo functional analysis of engineered proteins was developed using Physcom... more A method for rapid in vivo functional analysis of engineered proteins was developed using Physcomitrella patens. A complementation assay was designed for testing structure/function relationships in cellulose synthase (CESA) proteins. The components of the assay include (1) construction of test vectors that drive expression of epitope-tagged PpCESA5 carrying engineered mutations, (2) transformation of a ppcesa5 knockout line that fails to produce gametophores with test and control vectors, (3) scoring the stable transformants for gametophore production, (4) statistical analysis comparing complementation rates for test vectors to positive and negative control vectors, and (5) analysis of transgenic protein expression by Western blotting. The assay distinguished mutations that generate fully functional, nonfunctional, and partially functional proteins. Compared with existing methods for in vivo testing of protein function, this complementation assay provides a rapid method for investig...
Methods in molecular biology (Clifton, N.J.), 2011
The moss Physcomitrella patens has become established as a model for investigating plant gene fun... more The moss Physcomitrella patens has become established as a model for investigating plant gene function due to the feasibility of gene targeting. The chemical composition of the P. patens cell wall is similar to that of vascular plants and phylogenetic analyses of glycosyltransferase sequences from the P. patens genome have identified genes that putatively encode cell wall biosynthetic enzymes, providing a basis for investigating the evolution of cell wall polysaccharides and the enzymes that synthesize them. The protocols described in this chapter provide methods for targeted gene knockout in P. patens, from constructing vectors and maintaining cultures to transforming protoplasts and analyzing the genotypes and phenotypes of the resulting transformed lines.
The genome sequence of the moss Physcomitrella patens has stimulated new research examining the c... more The genome sequence of the moss Physcomitrella patens has stimulated new research examining the cell wall polysaccharides of mosses and the glycosyl transferases that synthesize them as a means to understand fundamental processes of cell wall biosynthesis and plant cell wall evolution. The cell walls of mosses and vascular plants are composed of the same classes of polysaccharides, but with differences in side chain composition and structure. Similarly, the genomes of P. patens and angiosperms encode the same families of cell wall glycosyl transferases, yet, in many cases these families have diversified independently in each lineage. Our understanding of land plant evolution could be enhanced by more complete knowledge of the relationships among glycosyl transferase functional diversification, cell wall structural and biochemical specialization, and the roles of cell walls in plant adaptation. As a foundation for these studies, we review the features of P. patens as an experimental system, analyses of cell wall composition in various moss species, recent studies that elucidate the structure and biosynthesis of cell wall polysaccharides in P. patens, and phylogenetic analysis of P. patens genes potentially involved in cell wall biosynthesis.
We report the genome sequence of the nonseed vascular plant, Selaginella moellendorffii, and by c... more We report the genome sequence of the nonseed vascular plant, Selaginella moellendorffii, and by comparative genomics identify genes that likely played important roles in the early evolution of vascular plants and their subsequent evolution
We describe here a methodology that enables the occurrence of cell-wall glycans to be systematica... more We describe here a methodology that enables the occurrence of cell-wall glycans to be systematically mapped throughout plants in a semi-quantitative high-throughput fashion. The technique (comprehensive microarray polymer profiling, or CoMPP) integrates the sequential extraction of glycans from multiple organs or tissues with the generation of microarrays, which are probed with monoclonal antibodies (mAbs) or carbohydrate-binding modules (CBMs) with specificities for cell-wall components. The profiles generated provide a global snapshot of cell-wall composition, and also allow comparative analysis of mutant and wild-type plants, as demonstrated here for the Arabidopsis thaliana mutants fra8, mur1 and mur3. CoMPP was also applied to Physcomitrella patens cell walls and was validated by carbohydrate linkage analysis. These data provide new insights into the structure and functions of plant cell walls, and demonstrate the potential of CoMPP as a component of systems-based approaches to cell-wall biology.
... Alison W. Roberts* and Kenneth S. Uhnak ... To test whether reduced tip fluorescence represen... more ... Alison W. Roberts* and Kenneth S. Uhnak ... To test whether reduced tip fluorescence represented the addition of new cell wall material or simply stretching of previously deposited cell wall material, we post-stained pulse-labeled cells with Tinopal LPW by wicking a 0.002 ...
Spike mosses are among the most basal vascular plants, and one species, Selaginella moellendorffi... more Spike mosses are among the most basal vascular plants, and one species, Selaginella moellendorffii, was recently selected for full genome sequencing by the Joint Genome Institute (JGI). Glycosyltransferases (GTs) are involved in many aspects of a plant life, including cell wall biosynthesis, protein glycosylation, primary and secondary metabolism. Here, we present a comparative study of the S. moellendorffii genome across 92 GT families and an additional family (DUF266) likely to include GTs. The study encompasses the moss Physcomitrella patens, a non-vascular land plant, while rice and Arabidopsis represent commelinid and non-commelinid seed plants. Analysis of the subset of GT-families particularly relevant to cell wall polysaccharide biosynthesis was complemented by a detailed analysis of S. moellendorffii cell walls. The S. moellendorffii cell wall contains many of the same components as seed plant cell walls, but appears to differ somewhat in its detailed architecture. The S. moellendorffii genome encodes fewer GTs (287 GTs including DUF266s) than the reference genomes. In a few families, notably GT51 and GT78, S. moellendorffii GTs have no higher plant orthologs, but in most families S. moellendorffii GTs have clear orthologies with Arabidopsis and rice. A gene naming convention of GTs is proposed which takes orthologies and GT-family membership into account. The evolutionary significance of apparently modern and ancient traits in S. moellendorffii is discussed, as is its use as a reference organism for functional annotation of GTs. Citation: Harholt J, Sørensen I, Fangel J, Roberts A, Willats WGT, et al. (2012) The Glycosyltransferase Repertoire of the Spikemoss Selaginella moellendorffii and a Comparative Study of Its Cell Wall. PLoS ONE 7(5): e35846.
Mannan polysaccharides are widespread among plants, where they serve as structural elements in ce... more Mannan polysaccharides are widespread among plants, where they serve as structural elements in cell walls, as carbohydrate reserves, and potentially perform other important functions. Previous work has demonstrated that members of the cellulose synthase-like A (CslA) family of glycosyltransferases from Arabidopsis (Arabidopsis thaliana), guar (Cyamopsis tetragonolobus), and Populus trichocarpa catalyze b-1,4-mannan and glucomannan synthase reactions in vitro. Mannan polysaccharides and homologs of CslA genes appear to be present in all lineages of land plants analyzed to date. In many plants, the CslA genes are members of extended multigene families; however, it is not known whether all CslA proteins are glucomannan synthases. CslA proteins from diverse land plant species, including representatives of the mono-and dicotyledonous angiosperms, gymnosperms, and bryophytes, were produced in insect cells, and each CslA protein catalyzed mannan and glucomannan synthase reactions in vitro. Microarray mining and quantitative real-time reverse transcription-polymerase chain reaction analysis demonstrated that transcripts of Arabidopsis and loblolly pine (Pinus taeda) CslA genes display tissue-specific expression patterns in vegetative and floral tissues. Glycan microarray analysis of Arabidopsis indicated that mannans are present throughout the plant and are especially abundant in flowers, siliques, and stems. Mannans are also present in chloronemal and caulonemal filaments of Physcomitrella patens, where they are prevalent at cell junctions and in buds. Taken together, these results demonstrate that members of the CslA gene family from diverse plant species encode glucomannan synthases and support the hypothesis that mannans function in metabolic networks devoted to other cellular processes in addition to cell wall structure and carbohydrate storage.
The CESA gene superfamily of Arabidopsis and other seed plants comprises the CESA family, which e... more The CESA gene superfamily of Arabidopsis and other seed plants comprises the CESA family, which encodes the catalytic subunits of cellulose synthase, and eight families of CESA-like (CSL) genes whose functions are largely unknown. The CSL genes have been proposed to encode processive beta-glycosyl transferases that synthesize noncellulosic cell wall polysaccharides. BLAST searches of EST and shotgun genomic sequences from the moss Physcomitrella patens (Hedw.) B.S.G. were used to identify genes with high similarity to vascular plant CESAs, CSLAs, CSLCs, and CSLDs. However, searches using Arabidopsis CSLBs, CSLEs, and CSLGs or rice CSLFs or CSLHs as queries identified no additional CESA superfamily members in P. patens, indicating that this moss lacks representatives of these families. Intron insertion sites are highly conserved between Arabidopsis and P. patens in all four shared gene families. However, phylogenetic analysis strongly supports independent diversification of the shared families in mosses and vascular plants. The lack of orthologs of vascular plant CESAs in the P. patens genome indicates that the divergence of mosses and vascular plants predated divergence and specialization of CESAs for primary and secondary cell wall syntheses and for distinct roles within the rosette terminal complexes. In contrast to Arabidopsis, the CSLD family is highly represented among P. patens ESTs. This is consistent with the proposed function of CSLDs in tip growth and the central role of tip growth in the development of the moss protonema.
The cell walls of Porphyra species, like those of land plants, contain cellulose microfibrils tha... more The cell walls of Porphyra species, like those of land plants, contain cellulose microfibrils that are synthesized by clusters of cellulose synthase enzymes (''terminal complexes''), which move in the plasma membrane. However, the morphologies of the Porphyra terminal complexes and the cellulose microfibrils they produce differ from those of land plants. To characterize the genetic basis for these differences, we have identified, cloned, and sequenced a cellulose synthase (CESA) gene from Porphyra yezoensis Ueda strain TU-1. A partial cDNA sequence was identified in the P. yezoensis expressed sequence tag (EST) index using a land plant CESA sequence as a query. High-efficiency thermal asymmetric interlaced PCR was used to amplify sequences upstream of the cDNA sequence from P. yezoensis genomic DNA. Using the resulting genomic sequences as queries, we identified additional EST sequences and a full-length cDNA clone, which we named PyCESA1. The conceptual translation of PyCESA1 includes the four catalytic domains and the N-and C-terminal transmembrane domains that characterize CESA proteins. Genomic PCR demonstrated that PyCESA1 contains no introns. Southern blot analysis indicated that P. yezoensis has at least three genomic sequences with high similarity to the cloned gene; two of these are pseudogenes based on analysis of amplified genomic sequences. The P. yezoensis CESA peptide sequence is most similar to cellulose synthase sequences from the oomycete Phytophthora infestans and from cyanobacteria. Comparing the CESA genes of P. yezoensis and land plants may facilitate identification of sequences that control terminal complex and cellulose microfibril morphology.
Through exploring potential analogies between cotton seed trichomes (or cotton fiber) and arabido... more Through exploring potential analogies between cotton seed trichomes (or cotton fiber) and arabidopsis shoot trichomes we discovered that CesAs from either the primary or secondary wall phylogenetic clades can support secondary wall thickening. CesA genes that typically support primary wall synthesis, AtCesA1,2,3,5, and 6, underpin expansion and secondary wall thickening of arabidopsis shoot trichomes. In contrast, apparent orthologs of CesA genes that support secondary wall synthesis in arabidopsis xylem, AtCesA4,7, and 8, are up-regulated for cotton fiber secondary wall deposition. These conclusions arose from: (a) analyzing the expression of CesA genes in arabidopsis shoot trichomes; (b) observing birefringent secondary walls in arabidopsis shoot trichomes with mutations in AtCesA4, 7, or 8; (c) assaying up-regulated genes during different stages of cotton fiber development; and (d) comparing genes that were co-expressed with primary or secondary wall CesAs in arabidopsis with genes upregulated in arabidopsis trichomes, arabidopsis secondary xylem, or cotton fiber during primary or secondary wall deposition. Cumulatively, the data show that: (a) the xylem of arabidopsis provides the best model for secondary wall cellulose synthesis in cotton fiber; and (b) CesA genes within a "cell wall toolbox" are used in diverse ways for the construction of particular specialized cell walls.
Vascular plants appeared ~410 million years ago, then diverged into several lineages of which onl... more Vascular plants appeared ~410 million years ago, then diverged into several lineages of which only two survive: the euphyllophytes (ferns and seed plants) and the lycophytes. We report here the genome sequence of the lycophyte Selaginella moellendorffii (Selaginella), the first nonseed vascular plant genome reported. By comparing gene content in evolutionarily diverse taxa, we found that the transition from a gametophyte- to a sporophyte-dominated life cycle required far fewer new genes than the transition from a nonseed vascular to a flowering plant, whereas secondary metabolic genes expanded extensively and in parallel in the lycophyte and angiosperm lineages. Selaginella differs in posttranscriptional gene regulation, including small RNA regulation of repetitive elements, an absence of the trans-acting small interfering RNA pathway, and extensive RNA editing of organellar genes.
Page 1. Protoplasma (1996) 194:195-207 PROTOPLASMA 9 Springer-Verlag 1996 Printed in Austria Cort... more Page 1. Protoplasma (1996) 194:195-207 PROTOPLASMA 9 Springer-Verlag 1996 Printed in Austria Cortical actin filaments fragment and aggregate to form chloroplast-associated and free F-actin rings in mechanically isolated Zinnia mesophyll cells ...
Summary Developing tracheary elements in suspension cultures ofZinnia elegans fluoresce intensely... more Summary Developing tracheary elements in suspension cultures ofZinnia elegans fluoresce intensely relative to non-differentiating cells when stained with chlorotetracycline (CTC), a fluorescent chelate probe for membrane associated calcium. This suggests that a change in calcium uptake or subcellular distribution accompanies the onset of tracheary element differentiation. A few cells in early differentiating cultures were brightly fluorescent, but did not have visible cell wall thickenings, suggesting that a rise in sequestered calcium may precede visible differentiation. Diffuse CTC fluorescence in early differentiation most likely results from sequestration of calcium in the endoplasmic reticulum. Late in differentiation, CTC fluorescence becomes punctate in appearance, probably due to loss of plasma membrane integrity occurring at the onset of autolysis.Zinnia suspension culture cells were found to be very sensitive to CTC and low concentrations (10 µM) were used to assure accurate localization of membrane-associated calcium in healthy cells.
Tracheary-element (TE) differentiation in suspension cultures ofZinnia elegans L. mesophyll cells... more Tracheary-element (TE) differentiation in suspension cultures ofZinnia elegans L. mesophyll cells was inhibited by blocking calcium uptake in three ways: 1) reducing the [Ca(2+)] of the culture medium, 2) blocking calcium channels with the non-permeant cation La(3+), and 3) blocking calcium channels with permeant dihydropyridine calcium-channel blockers. Calcium-channel blockers were effective when added at any time between 0 and 48 h after culture initiation; after 48h, calcium sequestration and secondary cell-wall deposition began. In contrast, calmodulin antagonists inhibited TE differentiation when added at the beginning of culture, but not when added after 24h. These results indicate that TE differentiation involves at least two calcium-regulated events: one calmodulin-dependent and occurring shortly after exposure to inductive conditions, and the other calmodulin-independent and occurring just prior to secondary cell-wall deposition.
Tracheary-element (TE) differentiation in suspension-cultured mesophyll cells of Zinnia elegans L... more Tracheary-element (TE) differentiation in suspension-cultured mesophyll cells of Zinnia elegans L. was completely inhibited by caffeine and theophylline only when these methylxanthines were applied at least 8 h prior to the appearance of secondary cell-wall thickenings. In contrast, the calcium-channel blocker nifedipine completely inhibited TE differentiation when applied only 2-3 h prior to the onset of secondary cell-wall deposition. This indicates the involvement of a methylxanthine-inhibitable event in TE differentiation that is distinguishable from an event dependent on influx of extracellular calcium. The correlation between the time of appearance of chlorotetracycline fluorescence (an indicator of sequestered Ca(2+)) and loss of methylxanthine effectiveness indicates that inhibition by methylxanthines may result from release of Ca(2+) from intracellular stores. Methylxanthines with high potencies against adenosine 3' ∶ 5'-cyclic monophosphate (cAMP) phosphodiesterase and adenosine receptors were less effective inhibitors of TE differentiation, indicating that inhibition of differentiation by methylxanthines is independent of cAMP metabolism. The role of cAMP in transduction of the cytokinin signal, which was proposed previously on the basis of stimulation of TE differentiation by theophylline, was investigated using the non-hydrolyzable analog 8-bromo-cAMP. Although 8-bromo-cAMP stimulated differentiation in the absence of inductive concentrations of cytokinin, the non-cyclic analog 8-bromo-AMP was even more effective, indicating that 8-bromo-cAMP behaves as a cytokinin analog, rather than a second messenger, in stimulating TE differentiation.
... Alison W. Roberts ~, Linda T. Koonce & Candace H. Haigler* Department of Biological Scien... more ... Alison W. Roberts ~, Linda T. Koonce & Candace H. Haigler* Department of Biological Sciences, Texas Tech University, PO Box 4149, Lubbock, TX ... To compare the percen-tage of dead and differentiated cells, 'cell clus-ters' formed by septation of a single mesophyll cell were ...
A method for rapid in vivo functional analysis of engineered proteins was developed using Physcom... more A method for rapid in vivo functional analysis of engineered proteins was developed using Physcomitrella patens. A complementation assay was designed for testing structure/function relationships in cellulose synthase (CESA) proteins. The components of the assay include (1) construction of test vectors that drive expression of epitope-tagged PpCESA5 carrying engineered mutations, (2) transformation of a ppcesa5 knockout line that fails to produce gametophores with test and control vectors, (3) scoring the stable transformants for gametophore production, (4) statistical analysis comparing complementation rates for test vectors to positive and negative control vectors, and (5) analysis of transgenic protein expression by Western blotting. The assay distinguished mutations that generate fully functional, nonfunctional, and partially functional proteins. Compared with existing methods for in vivo testing of protein function, this complementation assay provides a rapid method for investig...
Methods in molecular biology (Clifton, N.J.), 2011
The moss Physcomitrella patens has become established as a model for investigating plant gene fun... more The moss Physcomitrella patens has become established as a model for investigating plant gene function due to the feasibility of gene targeting. The chemical composition of the P. patens cell wall is similar to that of vascular plants and phylogenetic analyses of glycosyltransferase sequences from the P. patens genome have identified genes that putatively encode cell wall biosynthetic enzymes, providing a basis for investigating the evolution of cell wall polysaccharides and the enzymes that synthesize them. The protocols described in this chapter provide methods for targeted gene knockout in P. patens, from constructing vectors and maintaining cultures to transforming protoplasts and analyzing the genotypes and phenotypes of the resulting transformed lines.
The genome sequence of the moss Physcomitrella patens has stimulated new research examining the c... more The genome sequence of the moss Physcomitrella patens has stimulated new research examining the cell wall polysaccharides of mosses and the glycosyl transferases that synthesize them as a means to understand fundamental processes of cell wall biosynthesis and plant cell wall evolution. The cell walls of mosses and vascular plants are composed of the same classes of polysaccharides, but with differences in side chain composition and structure. Similarly, the genomes of P. patens and angiosperms encode the same families of cell wall glycosyl transferases, yet, in many cases these families have diversified independently in each lineage. Our understanding of land plant evolution could be enhanced by more complete knowledge of the relationships among glycosyl transferase functional diversification, cell wall structural and biochemical specialization, and the roles of cell walls in plant adaptation. As a foundation for these studies, we review the features of P. patens as an experimental system, analyses of cell wall composition in various moss species, recent studies that elucidate the structure and biosynthesis of cell wall polysaccharides in P. patens, and phylogenetic analysis of P. patens genes potentially involved in cell wall biosynthesis.
We report the genome sequence of the nonseed vascular plant, Selaginella moellendorffii, and by c... more We report the genome sequence of the nonseed vascular plant, Selaginella moellendorffii, and by comparative genomics identify genes that likely played important roles in the early evolution of vascular plants and their subsequent evolution
We describe here a methodology that enables the occurrence of cell-wall glycans to be systematica... more We describe here a methodology that enables the occurrence of cell-wall glycans to be systematically mapped throughout plants in a semi-quantitative high-throughput fashion. The technique (comprehensive microarray polymer profiling, or CoMPP) integrates the sequential extraction of glycans from multiple organs or tissues with the generation of microarrays, which are probed with monoclonal antibodies (mAbs) or carbohydrate-binding modules (CBMs) with specificities for cell-wall components. The profiles generated provide a global snapshot of cell-wall composition, and also allow comparative analysis of mutant and wild-type plants, as demonstrated here for the Arabidopsis thaliana mutants fra8, mur1 and mur3. CoMPP was also applied to Physcomitrella patens cell walls and was validated by carbohydrate linkage analysis. These data provide new insights into the structure and functions of plant cell walls, and demonstrate the potential of CoMPP as a component of systems-based approaches to cell-wall biology.
... Alison W. Roberts* and Kenneth S. Uhnak ... To test whether reduced tip fluorescence represen... more ... Alison W. Roberts* and Kenneth S. Uhnak ... To test whether reduced tip fluorescence represented the addition of new cell wall material or simply stretching of previously deposited cell wall material, we post-stained pulse-labeled cells with Tinopal LPW by wicking a 0.002 ...
Spike mosses are among the most basal vascular plants, and one species, Selaginella moellendorffi... more Spike mosses are among the most basal vascular plants, and one species, Selaginella moellendorffii, was recently selected for full genome sequencing by the Joint Genome Institute (JGI). Glycosyltransferases (GTs) are involved in many aspects of a plant life, including cell wall biosynthesis, protein glycosylation, primary and secondary metabolism. Here, we present a comparative study of the S. moellendorffii genome across 92 GT families and an additional family (DUF266) likely to include GTs. The study encompasses the moss Physcomitrella patens, a non-vascular land plant, while rice and Arabidopsis represent commelinid and non-commelinid seed plants. Analysis of the subset of GT-families particularly relevant to cell wall polysaccharide biosynthesis was complemented by a detailed analysis of S. moellendorffii cell walls. The S. moellendorffii cell wall contains many of the same components as seed plant cell walls, but appears to differ somewhat in its detailed architecture. The S. moellendorffii genome encodes fewer GTs (287 GTs including DUF266s) than the reference genomes. In a few families, notably GT51 and GT78, S. moellendorffii GTs have no higher plant orthologs, but in most families S. moellendorffii GTs have clear orthologies with Arabidopsis and rice. A gene naming convention of GTs is proposed which takes orthologies and GT-family membership into account. The evolutionary significance of apparently modern and ancient traits in S. moellendorffii is discussed, as is its use as a reference organism for functional annotation of GTs. Citation: Harholt J, Sørensen I, Fangel J, Roberts A, Willats WGT, et al. (2012) The Glycosyltransferase Repertoire of the Spikemoss Selaginella moellendorffii and a Comparative Study of Its Cell Wall. PLoS ONE 7(5): e35846.
Mannan polysaccharides are widespread among plants, where they serve as structural elements in ce... more Mannan polysaccharides are widespread among plants, where they serve as structural elements in cell walls, as carbohydrate reserves, and potentially perform other important functions. Previous work has demonstrated that members of the cellulose synthase-like A (CslA) family of glycosyltransferases from Arabidopsis (Arabidopsis thaliana), guar (Cyamopsis tetragonolobus), and Populus trichocarpa catalyze b-1,4-mannan and glucomannan synthase reactions in vitro. Mannan polysaccharides and homologs of CslA genes appear to be present in all lineages of land plants analyzed to date. In many plants, the CslA genes are members of extended multigene families; however, it is not known whether all CslA proteins are glucomannan synthases. CslA proteins from diverse land plant species, including representatives of the mono-and dicotyledonous angiosperms, gymnosperms, and bryophytes, were produced in insect cells, and each CslA protein catalyzed mannan and glucomannan synthase reactions in vitro. Microarray mining and quantitative real-time reverse transcription-polymerase chain reaction analysis demonstrated that transcripts of Arabidopsis and loblolly pine (Pinus taeda) CslA genes display tissue-specific expression patterns in vegetative and floral tissues. Glycan microarray analysis of Arabidopsis indicated that mannans are present throughout the plant and are especially abundant in flowers, siliques, and stems. Mannans are also present in chloronemal and caulonemal filaments of Physcomitrella patens, where they are prevalent at cell junctions and in buds. Taken together, these results demonstrate that members of the CslA gene family from diverse plant species encode glucomannan synthases and support the hypothesis that mannans function in metabolic networks devoted to other cellular processes in addition to cell wall structure and carbohydrate storage.
The CESA gene superfamily of Arabidopsis and other seed plants comprises the CESA family, which e... more The CESA gene superfamily of Arabidopsis and other seed plants comprises the CESA family, which encodes the catalytic subunits of cellulose synthase, and eight families of CESA-like (CSL) genes whose functions are largely unknown. The CSL genes have been proposed to encode processive beta-glycosyl transferases that synthesize noncellulosic cell wall polysaccharides. BLAST searches of EST and shotgun genomic sequences from the moss Physcomitrella patens (Hedw.) B.S.G. were used to identify genes with high similarity to vascular plant CESAs, CSLAs, CSLCs, and CSLDs. However, searches using Arabidopsis CSLBs, CSLEs, and CSLGs or rice CSLFs or CSLHs as queries identified no additional CESA superfamily members in P. patens, indicating that this moss lacks representatives of these families. Intron insertion sites are highly conserved between Arabidopsis and P. patens in all four shared gene families. However, phylogenetic analysis strongly supports independent diversification of the shared families in mosses and vascular plants. The lack of orthologs of vascular plant CESAs in the P. patens genome indicates that the divergence of mosses and vascular plants predated divergence and specialization of CESAs for primary and secondary cell wall syntheses and for distinct roles within the rosette terminal complexes. In contrast to Arabidopsis, the CSLD family is highly represented among P. patens ESTs. This is consistent with the proposed function of CSLDs in tip growth and the central role of tip growth in the development of the moss protonema.
The cell walls of Porphyra species, like those of land plants, contain cellulose microfibrils tha... more The cell walls of Porphyra species, like those of land plants, contain cellulose microfibrils that are synthesized by clusters of cellulose synthase enzymes (''terminal complexes''), which move in the plasma membrane. However, the morphologies of the Porphyra terminal complexes and the cellulose microfibrils they produce differ from those of land plants. To characterize the genetic basis for these differences, we have identified, cloned, and sequenced a cellulose synthase (CESA) gene from Porphyra yezoensis Ueda strain TU-1. A partial cDNA sequence was identified in the P. yezoensis expressed sequence tag (EST) index using a land plant CESA sequence as a query. High-efficiency thermal asymmetric interlaced PCR was used to amplify sequences upstream of the cDNA sequence from P. yezoensis genomic DNA. Using the resulting genomic sequences as queries, we identified additional EST sequences and a full-length cDNA clone, which we named PyCESA1. The conceptual translation of PyCESA1 includes the four catalytic domains and the N-and C-terminal transmembrane domains that characterize CESA proteins. Genomic PCR demonstrated that PyCESA1 contains no introns. Southern blot analysis indicated that P. yezoensis has at least three genomic sequences with high similarity to the cloned gene; two of these are pseudogenes based on analysis of amplified genomic sequences. The P. yezoensis CESA peptide sequence is most similar to cellulose synthase sequences from the oomycete Phytophthora infestans and from cyanobacteria. Comparing the CESA genes of P. yezoensis and land plants may facilitate identification of sequences that control terminal complex and cellulose microfibril morphology.
Through exploring potential analogies between cotton seed trichomes (or cotton fiber) and arabido... more Through exploring potential analogies between cotton seed trichomes (or cotton fiber) and arabidopsis shoot trichomes we discovered that CesAs from either the primary or secondary wall phylogenetic clades can support secondary wall thickening. CesA genes that typically support primary wall synthesis, AtCesA1,2,3,5, and 6, underpin expansion and secondary wall thickening of arabidopsis shoot trichomes. In contrast, apparent orthologs of CesA genes that support secondary wall synthesis in arabidopsis xylem, AtCesA4,7, and 8, are up-regulated for cotton fiber secondary wall deposition. These conclusions arose from: (a) analyzing the expression of CesA genes in arabidopsis shoot trichomes; (b) observing birefringent secondary walls in arabidopsis shoot trichomes with mutations in AtCesA4, 7, or 8; (c) assaying up-regulated genes during different stages of cotton fiber development; and (d) comparing genes that were co-expressed with primary or secondary wall CesAs in arabidopsis with genes upregulated in arabidopsis trichomes, arabidopsis secondary xylem, or cotton fiber during primary or secondary wall deposition. Cumulatively, the data show that: (a) the xylem of arabidopsis provides the best model for secondary wall cellulose synthesis in cotton fiber; and (b) CesA genes within a "cell wall toolbox" are used in diverse ways for the construction of particular specialized cell walls.
Vascular plants appeared ~410 million years ago, then diverged into several lineages of which onl... more Vascular plants appeared ~410 million years ago, then diverged into several lineages of which only two survive: the euphyllophytes (ferns and seed plants) and the lycophytes. We report here the genome sequence of the lycophyte Selaginella moellendorffii (Selaginella), the first nonseed vascular plant genome reported. By comparing gene content in evolutionarily diverse taxa, we found that the transition from a gametophyte- to a sporophyte-dominated life cycle required far fewer new genes than the transition from a nonseed vascular to a flowering plant, whereas secondary metabolic genes expanded extensively and in parallel in the lycophyte and angiosperm lineages. Selaginella differs in posttranscriptional gene regulation, including small RNA regulation of repetitive elements, an absence of the trans-acting small interfering RNA pathway, and extensive RNA editing of organellar genes.
Uploads
Papers by Alison Roberts