Dictyostelia are common soil microbes that can aggregate when starved to form multicellular fruit... more Dictyostelia are common soil microbes that can aggregate when starved to form multicellular fruiting bodies, a characteristic that has also led to their long history of study and widespread use as model systems. Ribosomal RNA phylogeny of Dictyostelia identified four major divisions (Groups 1-4), none of which correspond to traditional genera. Group 1 was also tentatively identified as sister lineage to the other three Groups, although not consistently or with strong support. We tested the dictyostelid root using universal protein-coding genes identified by exhaustive comparison of six completely sequenced dictyostelid genomes, which include representatives of all four major molecular Groups. A set of 213 genes are low-copy number in all genomes, present in at least one amoebozoan outgroup taxon (Acanthamoeba castellanii or Physarum polycephalum), and phylogenetically congruent. Phylogenetic analysis of a concatenation of the deduced protein sequences produces a single topology dividing Dictyostelia into two major divisions: Groups 1 + 2 and Groups 3 + 4. All clades in the tree are fully supported by maximum likelihood and Bayesian inference, and all alternative roots are unambiguously rejected by the approximately unbiased (AU) test. The 1 + 2, 3 + 4 root is also fully supported even after deleting clusters with strong individual support for this root, or concatenating all clusters with low support for alternative roots. The 213 putatively ancestral amoebozoan proteins encode a wide variety of functions including 21 KOG categories out of a total of 25. These comprehensive analyses and consistent results indicate that it is time for full taxonomic revision of Dictyostelia, which will also enable more effective exploitation of its unique potential as an evolutionary model system.
Evolution of Fungi and Fungal-Like Organisms, 2011
Recent molecular studies suggest that Opisthokonta, the eukaryotic supergroup including animals a... more Recent molecular studies suggest that Opisthokonta, the eukaryotic supergroup including animals and fungi, should be expanded to include a diverse collection of primitively single-celled eukaryotes previously classified as Protozoa. These taxa include corallochytreans, nucleariids, ministeriids, choanoflagellates, and ichthyosporeans. Assignment of many of these taxa to Opisthokonta remains uncorroborated as it is based solely on small subunit ribosomal RNA trees lacking resolution and significant bootstrap support for critical nodes. Therefore, important details of the phylogenetic relationships of these putative opisthokonts with each other and with animals and fungi remain unclear. We have sequenced elongation factor 1-alpha (EF-1a), actin, b-tubulin, and HSP70, and/or a-tubulin from representatives of each of the proposed protistan opisthokont lineages, constituting the first protein-coding gene data for some of them. Our results show that members of all opisthokont protist groups encode a ;12-amino acid insertion in EF-1a, previously found exclusively in animals and fungi. Phylogenetic analyses of combined multigene data sets including a diverse set of opisthokont and nonopisthokont taxa place all of the proposed opisthokont protists unequivocally in an exclusive clade with animals and fungi. Within this clade, the nucleariid appears as the closest sister taxon to fungi, while the corallochytrean and ichthyosporean form a group which, together with the ministeriid and choanoflagellates, form two to three separate sister lineages to animals. These results further establish Opisthokonta as a bona fide taxonomic group and suggest that any further testing of the legitimacy of this taxon should, at the least, include data from opisthokont protists. Our results also underline the critical position of these ''animal-fungal allies'' with respect to the origin and early evolution of animals and fungi.
The social amoebas (Dictyostelia) display conditional multicellularity in a wide variety of forms... more The social amoebas (Dictyostelia) display conditional multicellularity in a wide variety of forms. Despite widespread interest in Dictyostelium discoideum as a model system, almost no molecular data exist from the rest of the group. We have constructed the first molecular phylogeny of the Dictyostelia with parallel small subunit ribosomal RNA and α-tubulin datasets, and we found that dictyostelid taxonomy requires complete revision. A mapping of characters onto the phylogeny shows that the dominant trend in dictyostelid evolution is increased size and cell-type specialization of fruiting structures, with some complex morphologies evolving several times independently. Thus, the latter may be controlled by only a few genes, making their underlying mechanisms relatively easy to unravel.
Mycetozoa, characterized by spore-bearing fruiting bodies, are the most diverse Amoebozoa. They t... more Mycetozoa, characterized by spore-bearing fruiting bodies, are the most diverse Amoebozoa. They traditionally comprise three taxa: Myxogastria, Dictyostelia and Protostelia. Myxogastria and Dictyostelia typically have multispored fruiting bodies, but controversy exists whether they are related or arose independently from different unicellular ancestors. Protostelid slime moulds, with single-spored fruiting bodies, are possible evolutionary intermediates between them and typical amoebae, but have received almost no molecular study. Protostelid morphology is so varied that they might not be monophyletic. We therefore provide 38 new 18S rRNA and/or EF-1a gene sequences from Mycetozoa and related species, including four protostelids and the enigmatic Ceratiomyxa fruticulosa. Phylogenetic analyses support the monophyly of Dictyostelia, Myxogastria, and Ceratiomyxa (here collectively called ''macromycetozoa'') and show that protostelids are Amoebozoa, mostly related to non-fruiting amoebae of the class Variosea, but may not be monophyletic; some phylogenetic relationships remain poorly resolved. Ceratiomyxa fruticulosa, originally regarded as a myxogastrid, but in recent decades included in Protostelia, is a deeply diverging sister to Myxogastria. The protostelids studied here plus varipodid amoebae and the flagellates Phalansterium and Multicilia together probably form the outgroup to macromycetozoa plus Archamoebae. Thus protostelids and Variosea are especially significant for understanding the evolutionary transition from solitary amoebae to macromycetozoa.
The dictyostelids possess a complex life cycle including aggregative and multicellular stages. Th... more The dictyostelids possess a complex life cycle including aggregative and multicellular stages. They also include one of the most widely studied protistan model organisms, Dictyostelium discoideum. The current molecular phylogeny of dictyostelids is based largely on SSU (18S) rDNA sequences and shows a deep taxon consisting of four major groups, none of which correspond to the three traditional morphologically-defined genera. However, due to the generally slowly evolving nature of SSU rDNA, these data fail to resolve the majority of branches within the four groups. Given the highly morphologically mixed nature of the dictyostelid groups, it is important to resolve relationships within them. We have determined sequences for the internal transcribed spacers (ITS) of rDNA for nearly all species in the original dictyostelid global phylogeny. Phylogenetic analyses of these data, in combination with the previously determined SSU rDNA sequences, confidently resolve nearly all branches in the tree. This now fully resolved phylogeny confirms the utility of ITS for dictyostelid systematics and lays the ground work for further evolutionary study of the group.
The choanoflagellates are a ubiquitous group of nanoflagellates and the sister group of Metazoa. ... more The choanoflagellates are a ubiquitous group of nanoflagellates and the sister group of Metazoa. Examination of the initial draft version of the first choanoflagellate genome, that of Monosiga brevicollis, reveals the presence of three novel families of long terminal repeat (LTR) retrotransposons and an apparent absence of non-LTR retrotransposons and transposons. One of the newly discovered LTR families falls in the chromovirus clade of the Ty3/gypsy group while the other two families are closely related members of the Ty1/copia group. Examination of EST sequences and nucleotide analyses show that all three families are transcriptionally active and potentially functional within the genome of M. brevicollis.
Proceedings of the Royal Society B: Biological Sciences, 2010
Comprising over half of all described species, the hexapods are central to understanding the evol... more Comprising over half of all described species, the hexapods are central to understanding the evolution of global biodiversity. Direct fossil evidence suggests that new hexapod orders continued to originate from the Jurassic onwards, and diversity is presently higher than ever. Previous studies also suggest that several shifts in net diversification rate have occurred at higher taxonomic levels. However, their inferred timing is phylogeny dependent. We re-examine these issues using the supertree approach to provide, to our knowledge, the first composite estimates of hexapod order-level phylogeny. The Purvis matrix representation with parsimony method provides the most optimal supertree, but alternative methods are considered. Inferring ghost ranges shows richness of terminal lineages in the order-level phylogeny to peak just before the end-Permian extinction, rather than the present day, indicating that at least 11 more lineages survived this extinction than implied by fossils alone. The major upshift in diversification is associated with the origin of wings/wing folding and for the first time, to our knowledge, significant downshifts are shown associated with the origin of species-poor taxa (e.g. Neuropterida, Zoraptera). Polyneopteran phylogeny, especially the position of Zoraptera, remains important resolve because this influences findings regarding shifts in diversification. Our study shows how combining fossil with phylogenetic information can improve macroevolutionary inferences.
Proceedings of the National Academy of Sciences, 2005
Phenotypic novelties can arise if integrated developmental pathways are expressed at new developm... more Phenotypic novelties can arise if integrated developmental pathways are expressed at new developmental stages and then recruited to serve new functions. We analyze the origin of a novel developmental trait of Dictyostelid amoebae: the evolution of cAMP as a developmental chemoattractant. We show that cAMP's role of attracting starving amoebae arose through recruitment of a pathway that originally evolved to coordinate fruiting body morphogenesis. Orthologues of the high-affinity cAMP receptor (cAR), cAR1, were identified in a selection of species that span the Dictyostelid phylogeny. The cAR1 orthologue from the basal species Dictyostelium minutum restored aggregation and development when expressed in an aggregation-defective mutant of the derived species Dictyostelium discoideum that lacks high-affinity cARs, thus demonstrating that the D. minutum cAR is a fully functional cAR. cAR1 orthologues from basal species are expressed during fruiting body formation, and only this process, and not aggregation, was disrupted by abrogation of cAR1 function. This is in contrast to derived species, where cAR1 is also expressed during aggregation and critically regulates this process. Our data show that coordination of fruiting body formation is the ancestral function of extracellular cAMP signaling, whereas its derived role in aggregation evolved by recruitment of a preexisting pathway to an earlier stage of development. This most likely occurred by addition of distal cis-regulatory regions to existing cAMP signaling genes.
Proceedings of the National Academy of Sciences, 1993
Phylogenetic relationships among plants, animals, and fungi were examined by using sequences from... more Phylogenetic relationships among plants, animals, and fungi were examined by using sequences from 25 proteins. Four insertions/deletions were found that are shared by two of the three taxonomic groups in question, and all four are uniquely shared by animals and fungi relative to plants, protists, and bacteria. These include a 12-amino acid insertion in translation elongation factor 1 alpha and three small gaps in enolase. Maximum-parsimony trees were constructed from published data for four of the most broadly sequenced of the 25 proteins, actin, alpha-tubulin, beta-tubulin, and elongation factor 1 alpha, with the latter supplemented by three new outgroup sequences. All four proteins place animals and fungi together as a monophyletic group to the exclusion of plants and a broad diversity of protists. In all cases, bootstrap analyses show no support for either an animal-plant or fungal-plant clade. This congruence among multiple lines of evidence strongly suggests, in contrast to traditional and current classification, that animals and fungi are sister groups while plants constitute an independent evolutionary lineage.
Proceedings of the National Academy of Sciences, 1996
The genes for the protein synthesis elongation factors Tu (EF-Tu) and G (EF-G) are the products o... more The genes for the protein synthesis elongation factors Tu (EF-Tu) and G (EF-G) are the products of an ancient gene duplication, which appears to predate the divergence of all extant organismal lineages. Thus, it should be possible to root a universal phylogeny based on either protein using the second protein as an outgroup. This approach was originally taken independently with two separate gene duplication pairs, (i) the regulatory and catalytic subunits of the proton ATPases and (ii) the protein synthesis elongation factors EF-Tu and EF-G. Questions about the orthology of the ATPase genes have obscured the former results, and the elongation factor data have been criticized for inadequate taxonomic representation and alignment errors. We have expanded the latter analysis using a broad representation of taxa from all three domains of life. All phylogenetic methods used strongly place the root of the universal tree between two highly distinct groups, the archaeons/eukaryotes and the eubacteria. We also find that a combined data set of EF-Tu and EF-G sequences favors placement of the eukaryotes within the Archaea, as the sister group to the Crenarchaeota. This relationship is supported by bootstrap values of 60-89% with various distance and maximum likelihood methods, while unweighted parsimony gives 58% support for archaeal monophyly.
Evolution of lineage diversification through time is an active area of research where much progre... more Evolution of lineage diversification through time is an active area of research where much progress has been made in the last decade. Contrary to the situation in animals and plants little is known about how diversification rates have evolved in most major groups of protist. This is mainly due to uncertainty about phylogenetic relationships, scarcity of the protist fossil record and the unknown diversity within these lineages. We have analyzed the evolutionary history of the supergroup Amoebozoa over the last 1000 million years using molecular dating and species number estimates. After an origin in the marine environment we have dated the colonization of terrestrial habitats by three distinct lineages of Amoebozoa: Dictyostelia, Myxogastria and Arcellinida. The common ancestor of the two sister taxa, Dictyostelia and Myxogastria, appears to have existed before the colonization of land by plants. In contrast Arcellinida seems to have diversify in synchrony with land plant radiation, and more specifically with that of mosses. Detection of acceleration of diversification rates in Myxogastria and Arcellinida points to a co-evolution within the terrestrial habitats, where land plants and the amoebozoans may have interacted during the evolution of these new ecosystems.
Expansins are a group of extracellular proteins that directly modify the mechanical properties of... more Expansins are a group of extracellular proteins that directly modify the mechanical properties of plant cell walls, leading to turgor-driven cell extension. Within the completely sequenced Arabidopsis genome, we identified 38 expansin sequences that fall into three discrete subfamilies. Based on phylogenetic analysis and shared intron patterns, we propose a new, systematic nomenclature of Arabidopsis expansins. Further phylogenetic analysis, including expansin sequences found here in monocots, pine (Pinus radiata, Pinus taeda), fern (Regnellidium diphyllum, Marsilea quadrifolia), and moss (Physcomitrella patens) indicate that the three plant expansin subfamilies arose and began diversifying very early in, if not before, colonization of land by plants. Closely related "expansin-like" sequences were also identified in the social amoeba, Dictyostelium discoidium, suggesting that these wall-modifying proteins have a very deep evolutionary origin. fax 44 -1904 -434312. Article, publication date, and citation information can be found at www.plantphysiol.org/cgi/
... Qing Yan Liu 1,2,3, Sandra L. Baldauf l'4 and Michael E. Reith 1,, 1 Institute for M... more ... Qing Yan Liu 1,2,3, Sandra L. Baldauf l'4 and Michael E. Reith 1,, 1 Institute for Marine Biosciences, National Research Council of Canada, 1411 Oxford Street, Halifax, NS, Canada B3H 3ZI (*author for correspondence); 2 Biology Department, Dalhousie University, Halifax, NS ...
With the quantity of genomic data increasing at an exponential rate, it is imperative that these ... more With the quantity of genomic data increasing at an exponential rate, it is imperative that these data be captured electronically, in a standard format. Standardization activities must proceed within the auspices of open-access and international working bodies. To tackle the issues surrounding the development of better descriptions of genomic investigations, we have formed the Genomic Standards Consortium (GSC). Here, we introduce the minimum information about a genome sequence (MIGS) specification with the intent of promoting participation in its development and discussing the resources that will be required to develop improved mechanisms of metadata capture and exchange. As part of its wider goals, the GSC also supports improving the 'transparency' of the information contained in existing genomic databases.
Evolutionary gene transfer is a basic corollary of the now widely accepted endosymbiotic theory, ... more Evolutionary gene transfer is a basic corollary of the now widely accepted endosymbiotic theory, which proposes that mitochondria and chloroplasts originated from once free-living eubacteria. The small organellar chromosomes are remnants of larger bacterial genomes, with most endosymbiont genes having been either transferred to the nucleus soon after endosymbiosis or lost entirely, with some being functionally replaced by pre-existing nuclear genes. Several lines of evidence indicate that relocation of some organelle genes could have been more recent. These include the abundance of non-functional organelle sequences of recent origin in nuclear DNA, successful artificial transfer of functional organelle genes to the nucleus, and several examples of recently lost organelle genes, although none of these is known to have been replaced by a nuclear homologue that is clearly of organellar ancestry. We present gene sequence and molecular phylogenetic evidence for the transfer of the chloroplast tufA gene to the nucleus in the green algal ancestor of land plants.
Dictyostelia are common soil microbes that can aggregate when starved to form multicellular fruit... more Dictyostelia are common soil microbes that can aggregate when starved to form multicellular fruiting bodies, a characteristic that has also led to their long history of study and widespread use as model systems. Ribosomal RNA phylogeny of Dictyostelia identified four major divisions (Groups 1-4), none of which correspond to traditional genera. Group 1 was also tentatively identified as sister lineage to the other three Groups, although not consistently or with strong support. We tested the dictyostelid root using universal protein-coding genes identified by exhaustive comparison of six completely sequenced dictyostelid genomes, which include representatives of all four major molecular Groups. A set of 213 genes are low-copy number in all genomes, present in at least one amoebozoan outgroup taxon (Acanthamoeba castellanii or Physarum polycephalum), and phylogenetically congruent. Phylogenetic analysis of a concatenation of the deduced protein sequences produces a single topology dividing Dictyostelia into two major divisions: Groups 1 + 2 and Groups 3 + 4. All clades in the tree are fully supported by maximum likelihood and Bayesian inference, and all alternative roots are unambiguously rejected by the approximately unbiased (AU) test. The 1 + 2, 3 + 4 root is also fully supported even after deleting clusters with strong individual support for this root, or concatenating all clusters with low support for alternative roots. The 213 putatively ancestral amoebozoan proteins encode a wide variety of functions including 21 KOG categories out of a total of 25. These comprehensive analyses and consistent results indicate that it is time for full taxonomic revision of Dictyostelia, which will also enable more effective exploitation of its unique potential as an evolutionary model system.
Evolution of Fungi and Fungal-Like Organisms, 2011
Recent molecular studies suggest that Opisthokonta, the eukaryotic supergroup including animals a... more Recent molecular studies suggest that Opisthokonta, the eukaryotic supergroup including animals and fungi, should be expanded to include a diverse collection of primitively single-celled eukaryotes previously classified as Protozoa. These taxa include corallochytreans, nucleariids, ministeriids, choanoflagellates, and ichthyosporeans. Assignment of many of these taxa to Opisthokonta remains uncorroborated as it is based solely on small subunit ribosomal RNA trees lacking resolution and significant bootstrap support for critical nodes. Therefore, important details of the phylogenetic relationships of these putative opisthokonts with each other and with animals and fungi remain unclear. We have sequenced elongation factor 1-alpha (EF-1a), actin, b-tubulin, and HSP70, and/or a-tubulin from representatives of each of the proposed protistan opisthokont lineages, constituting the first protein-coding gene data for some of them. Our results show that members of all opisthokont protist groups encode a ;12-amino acid insertion in EF-1a, previously found exclusively in animals and fungi. Phylogenetic analyses of combined multigene data sets including a diverse set of opisthokont and nonopisthokont taxa place all of the proposed opisthokont protists unequivocally in an exclusive clade with animals and fungi. Within this clade, the nucleariid appears as the closest sister taxon to fungi, while the corallochytrean and ichthyosporean form a group which, together with the ministeriid and choanoflagellates, form two to three separate sister lineages to animals. These results further establish Opisthokonta as a bona fide taxonomic group and suggest that any further testing of the legitimacy of this taxon should, at the least, include data from opisthokont protists. Our results also underline the critical position of these ''animal-fungal allies'' with respect to the origin and early evolution of animals and fungi.
The social amoebas (Dictyostelia) display conditional multicellularity in a wide variety of forms... more The social amoebas (Dictyostelia) display conditional multicellularity in a wide variety of forms. Despite widespread interest in Dictyostelium discoideum as a model system, almost no molecular data exist from the rest of the group. We have constructed the first molecular phylogeny of the Dictyostelia with parallel small subunit ribosomal RNA and α-tubulin datasets, and we found that dictyostelid taxonomy requires complete revision. A mapping of characters onto the phylogeny shows that the dominant trend in dictyostelid evolution is increased size and cell-type specialization of fruiting structures, with some complex morphologies evolving several times independently. Thus, the latter may be controlled by only a few genes, making their underlying mechanisms relatively easy to unravel.
Mycetozoa, characterized by spore-bearing fruiting bodies, are the most diverse Amoebozoa. They t... more Mycetozoa, characterized by spore-bearing fruiting bodies, are the most diverse Amoebozoa. They traditionally comprise three taxa: Myxogastria, Dictyostelia and Protostelia. Myxogastria and Dictyostelia typically have multispored fruiting bodies, but controversy exists whether they are related or arose independently from different unicellular ancestors. Protostelid slime moulds, with single-spored fruiting bodies, are possible evolutionary intermediates between them and typical amoebae, but have received almost no molecular study. Protostelid morphology is so varied that they might not be monophyletic. We therefore provide 38 new 18S rRNA and/or EF-1a gene sequences from Mycetozoa and related species, including four protostelids and the enigmatic Ceratiomyxa fruticulosa. Phylogenetic analyses support the monophyly of Dictyostelia, Myxogastria, and Ceratiomyxa (here collectively called ''macromycetozoa'') and show that protostelids are Amoebozoa, mostly related to non-fruiting amoebae of the class Variosea, but may not be monophyletic; some phylogenetic relationships remain poorly resolved. Ceratiomyxa fruticulosa, originally regarded as a myxogastrid, but in recent decades included in Protostelia, is a deeply diverging sister to Myxogastria. The protostelids studied here plus varipodid amoebae and the flagellates Phalansterium and Multicilia together probably form the outgroup to macromycetozoa plus Archamoebae. Thus protostelids and Variosea are especially significant for understanding the evolutionary transition from solitary amoebae to macromycetozoa.
The dictyostelids possess a complex life cycle including aggregative and multicellular stages. Th... more The dictyostelids possess a complex life cycle including aggregative and multicellular stages. They also include one of the most widely studied protistan model organisms, Dictyostelium discoideum. The current molecular phylogeny of dictyostelids is based largely on SSU (18S) rDNA sequences and shows a deep taxon consisting of four major groups, none of which correspond to the three traditional morphologically-defined genera. However, due to the generally slowly evolving nature of SSU rDNA, these data fail to resolve the majority of branches within the four groups. Given the highly morphologically mixed nature of the dictyostelid groups, it is important to resolve relationships within them. We have determined sequences for the internal transcribed spacers (ITS) of rDNA for nearly all species in the original dictyostelid global phylogeny. Phylogenetic analyses of these data, in combination with the previously determined SSU rDNA sequences, confidently resolve nearly all branches in the tree. This now fully resolved phylogeny confirms the utility of ITS for dictyostelid systematics and lays the ground work for further evolutionary study of the group.
The choanoflagellates are a ubiquitous group of nanoflagellates and the sister group of Metazoa. ... more The choanoflagellates are a ubiquitous group of nanoflagellates and the sister group of Metazoa. Examination of the initial draft version of the first choanoflagellate genome, that of Monosiga brevicollis, reveals the presence of three novel families of long terminal repeat (LTR) retrotransposons and an apparent absence of non-LTR retrotransposons and transposons. One of the newly discovered LTR families falls in the chromovirus clade of the Ty3/gypsy group while the other two families are closely related members of the Ty1/copia group. Examination of EST sequences and nucleotide analyses show that all three families are transcriptionally active and potentially functional within the genome of M. brevicollis.
Proceedings of the Royal Society B: Biological Sciences, 2010
Comprising over half of all described species, the hexapods are central to understanding the evol... more Comprising over half of all described species, the hexapods are central to understanding the evolution of global biodiversity. Direct fossil evidence suggests that new hexapod orders continued to originate from the Jurassic onwards, and diversity is presently higher than ever. Previous studies also suggest that several shifts in net diversification rate have occurred at higher taxonomic levels. However, their inferred timing is phylogeny dependent. We re-examine these issues using the supertree approach to provide, to our knowledge, the first composite estimates of hexapod order-level phylogeny. The Purvis matrix representation with parsimony method provides the most optimal supertree, but alternative methods are considered. Inferring ghost ranges shows richness of terminal lineages in the order-level phylogeny to peak just before the end-Permian extinction, rather than the present day, indicating that at least 11 more lineages survived this extinction than implied by fossils alone. The major upshift in diversification is associated with the origin of wings/wing folding and for the first time, to our knowledge, significant downshifts are shown associated with the origin of species-poor taxa (e.g. Neuropterida, Zoraptera). Polyneopteran phylogeny, especially the position of Zoraptera, remains important resolve because this influences findings regarding shifts in diversification. Our study shows how combining fossil with phylogenetic information can improve macroevolutionary inferences.
Proceedings of the National Academy of Sciences, 2005
Phenotypic novelties can arise if integrated developmental pathways are expressed at new developm... more Phenotypic novelties can arise if integrated developmental pathways are expressed at new developmental stages and then recruited to serve new functions. We analyze the origin of a novel developmental trait of Dictyostelid amoebae: the evolution of cAMP as a developmental chemoattractant. We show that cAMP's role of attracting starving amoebae arose through recruitment of a pathway that originally evolved to coordinate fruiting body morphogenesis. Orthologues of the high-affinity cAMP receptor (cAR), cAR1, were identified in a selection of species that span the Dictyostelid phylogeny. The cAR1 orthologue from the basal species Dictyostelium minutum restored aggregation and development when expressed in an aggregation-defective mutant of the derived species Dictyostelium discoideum that lacks high-affinity cARs, thus demonstrating that the D. minutum cAR is a fully functional cAR. cAR1 orthologues from basal species are expressed during fruiting body formation, and only this process, and not aggregation, was disrupted by abrogation of cAR1 function. This is in contrast to derived species, where cAR1 is also expressed during aggregation and critically regulates this process. Our data show that coordination of fruiting body formation is the ancestral function of extracellular cAMP signaling, whereas its derived role in aggregation evolved by recruitment of a preexisting pathway to an earlier stage of development. This most likely occurred by addition of distal cis-regulatory regions to existing cAMP signaling genes.
Proceedings of the National Academy of Sciences, 1993
Phylogenetic relationships among plants, animals, and fungi were examined by using sequences from... more Phylogenetic relationships among plants, animals, and fungi were examined by using sequences from 25 proteins. Four insertions/deletions were found that are shared by two of the three taxonomic groups in question, and all four are uniquely shared by animals and fungi relative to plants, protists, and bacteria. These include a 12-amino acid insertion in translation elongation factor 1 alpha and three small gaps in enolase. Maximum-parsimony trees were constructed from published data for four of the most broadly sequenced of the 25 proteins, actin, alpha-tubulin, beta-tubulin, and elongation factor 1 alpha, with the latter supplemented by three new outgroup sequences. All four proteins place animals and fungi together as a monophyletic group to the exclusion of plants and a broad diversity of protists. In all cases, bootstrap analyses show no support for either an animal-plant or fungal-plant clade. This congruence among multiple lines of evidence strongly suggests, in contrast to traditional and current classification, that animals and fungi are sister groups while plants constitute an independent evolutionary lineage.
Proceedings of the National Academy of Sciences, 1996
The genes for the protein synthesis elongation factors Tu (EF-Tu) and G (EF-G) are the products o... more The genes for the protein synthesis elongation factors Tu (EF-Tu) and G (EF-G) are the products of an ancient gene duplication, which appears to predate the divergence of all extant organismal lineages. Thus, it should be possible to root a universal phylogeny based on either protein using the second protein as an outgroup. This approach was originally taken independently with two separate gene duplication pairs, (i) the regulatory and catalytic subunits of the proton ATPases and (ii) the protein synthesis elongation factors EF-Tu and EF-G. Questions about the orthology of the ATPase genes have obscured the former results, and the elongation factor data have been criticized for inadequate taxonomic representation and alignment errors. We have expanded the latter analysis using a broad representation of taxa from all three domains of life. All phylogenetic methods used strongly place the root of the universal tree between two highly distinct groups, the archaeons/eukaryotes and the eubacteria. We also find that a combined data set of EF-Tu and EF-G sequences favors placement of the eukaryotes within the Archaea, as the sister group to the Crenarchaeota. This relationship is supported by bootstrap values of 60-89% with various distance and maximum likelihood methods, while unweighted parsimony gives 58% support for archaeal monophyly.
Evolution of lineage diversification through time is an active area of research where much progre... more Evolution of lineage diversification through time is an active area of research where much progress has been made in the last decade. Contrary to the situation in animals and plants little is known about how diversification rates have evolved in most major groups of protist. This is mainly due to uncertainty about phylogenetic relationships, scarcity of the protist fossil record and the unknown diversity within these lineages. We have analyzed the evolutionary history of the supergroup Amoebozoa over the last 1000 million years using molecular dating and species number estimates. After an origin in the marine environment we have dated the colonization of terrestrial habitats by three distinct lineages of Amoebozoa: Dictyostelia, Myxogastria and Arcellinida. The common ancestor of the two sister taxa, Dictyostelia and Myxogastria, appears to have existed before the colonization of land by plants. In contrast Arcellinida seems to have diversify in synchrony with land plant radiation, and more specifically with that of mosses. Detection of acceleration of diversification rates in Myxogastria and Arcellinida points to a co-evolution within the terrestrial habitats, where land plants and the amoebozoans may have interacted during the evolution of these new ecosystems.
Expansins are a group of extracellular proteins that directly modify the mechanical properties of... more Expansins are a group of extracellular proteins that directly modify the mechanical properties of plant cell walls, leading to turgor-driven cell extension. Within the completely sequenced Arabidopsis genome, we identified 38 expansin sequences that fall into three discrete subfamilies. Based on phylogenetic analysis and shared intron patterns, we propose a new, systematic nomenclature of Arabidopsis expansins. Further phylogenetic analysis, including expansin sequences found here in monocots, pine (Pinus radiata, Pinus taeda), fern (Regnellidium diphyllum, Marsilea quadrifolia), and moss (Physcomitrella patens) indicate that the three plant expansin subfamilies arose and began diversifying very early in, if not before, colonization of land by plants. Closely related "expansin-like" sequences were also identified in the social amoeba, Dictyostelium discoidium, suggesting that these wall-modifying proteins have a very deep evolutionary origin. fax 44 -1904 -434312. Article, publication date, and citation information can be found at www.plantphysiol.org/cgi/
... Qing Yan Liu 1,2,3, Sandra L. Baldauf l'4 and Michael E. Reith 1,, 1 Institute for M... more ... Qing Yan Liu 1,2,3, Sandra L. Baldauf l'4 and Michael E. Reith 1,, 1 Institute for Marine Biosciences, National Research Council of Canada, 1411 Oxford Street, Halifax, NS, Canada B3H 3ZI (*author for correspondence); 2 Biology Department, Dalhousie University, Halifax, NS ...
With the quantity of genomic data increasing at an exponential rate, it is imperative that these ... more With the quantity of genomic data increasing at an exponential rate, it is imperative that these data be captured electronically, in a standard format. Standardization activities must proceed within the auspices of open-access and international working bodies. To tackle the issues surrounding the development of better descriptions of genomic investigations, we have formed the Genomic Standards Consortium (GSC). Here, we introduce the minimum information about a genome sequence (MIGS) specification with the intent of promoting participation in its development and discussing the resources that will be required to develop improved mechanisms of metadata capture and exchange. As part of its wider goals, the GSC also supports improving the 'transparency' of the information contained in existing genomic databases.
Evolutionary gene transfer is a basic corollary of the now widely accepted endosymbiotic theory, ... more Evolutionary gene transfer is a basic corollary of the now widely accepted endosymbiotic theory, which proposes that mitochondria and chloroplasts originated from once free-living eubacteria. The small organellar chromosomes are remnants of larger bacterial genomes, with most endosymbiont genes having been either transferred to the nucleus soon after endosymbiosis or lost entirely, with some being functionally replaced by pre-existing nuclear genes. Several lines of evidence indicate that relocation of some organelle genes could have been more recent. These include the abundance of non-functional organelle sequences of recent origin in nuclear DNA, successful artificial transfer of functional organelle genes to the nucleus, and several examples of recently lost organelle genes, although none of these is known to have been replaced by a nuclear homologue that is clearly of organellar ancestry. We present gene sequence and molecular phylogenetic evidence for the transfer of the chloroplast tufA gene to the nucleus in the green algal ancestor of land plants.
Uploads
Papers by Sandra Baldauf