Papers by Greger Thornell
Micronano System Workshop (MSW 2018), 2018
IEEE Sensors Journal, 2017
Blooms taxonomi kategoriserar olika larstrategierefter komplexitetsgrad. Nyborjare ar faktafokuse... more Blooms taxonomi kategoriserar olika larstrategierefter komplexitetsgrad. Nyborjare ar faktafokuserade eftersomdet ar mer kravande att analysera, bedoma och varderakunskaper. Valet av larstrategi ar ...
Comprehensive understanding of the principles governing the geological activity of the Earth was ... more Comprehensive understanding of the principles governing the geological activity of the Earth was obtained in continental and oceanic mountains. It is not expected that the principles governing the overall geologic activity and evolution of other planetary bodies such as Mars will be understood if exploration is limited to nearly flat terrains, either imposed by the used exploration platform capabilities, the risk of getting stuck, or by the time required to cross the border of a landing ellipse. Surface exploration of mountains is additionally to be coupled to two-or three-dimensional geophysical surveys to correlate the surface observations with deeper processes. On the small bodies where ultra-low gravity prevails, the weight of wheel-driven platforms is not sufficient to generate the friction at the contact with the ground that is required to trigger motion of the rover relative to the ground. Under such circumstances, hopping is one of the mobility solutions. We present a new lo...
IEEE Sensors Journal, 2017
A first realization of membranes by draping a graphite insert with ceramic green body sheets, and... more A first realization of membranes by draping a graphite insert with ceramic green body sheets, and a study on the relationship between circuit metallization, made by doublelayer screen-printing of platinum and electroplating of silver on top of platinum, and the practical read range of ceramic LC resonators for high-temperature pressure measurements, are presented. As a quality factor reference, two-port microstrip meander devices were positively evaluated. To study interdiffusion between silver and platinum, test samples were annealed at 500, 700, and 900 °C for 4, 36, 72, and 96 hours. The LC resonators were fabricated with both metallization methods, and the practical read range at room temperature was evaluated. Pressure sensitive membranes were characterized for pressures up to 2.5 bar at room temperature, 500 and up to 900°C. Samples electroplated with silver exhibited performance equal to or better than double-layer platinum samples for up to 60 hours at 500°C, 20 hours at 700°C, and for 1 hour at 900°C, which was correlated with the degree of interdiffusion as determined from crosssectional analysis. The LC resonator samples with double-layer platinum exhibited a read range of 61 mm, and the samples with platinum and silver exhibited a read range of 59 mm. The lowest sheet resistance, and, thereby, the highest read range of 86 mm, was obtained with a silver electroplated LC resonator sample after 36 hours of annealing at 500°C.
Journal of Micromechanics and Microengineering, 2017
Monopropellant ceramic microthrusters with an integrated heater, catalytic bed and two temperatur... more Monopropellant ceramic microthrusters with an integrated heater, catalytic bed and two temperature sensors, but of various designs, were manufactured by milling a fluidic channel and chamber, and a nozzle, and screen printing platinum patterns on green tapes of alumina that were stacked and laminated before sintering. In order to increase the surface area of the catalytic bed, the platinum paste was mixed with a sacrificial paste that disappeared during sintering, to leave behind a porous and rough layer. As an early development level in manufacturing robust and high-temperature tolerant microthrusters, the influence of design on the temperature gradients and dry temperature tolerance of the devices was studied. On average, the small reaction chambers showed a more than 1.5 times higher dry temperature tolerance (in centigrade) compared to devices with larger chambers, independent of the heater and device size. However, for a given temperature, big devices consumed on average 2.9 times more power than the small ones. It was also found that over the same area and under the same heating conditions, devices with small chambers were subjected to approximately 40% smaller temperature differences. A pressure test done on two small devices with small chambers revealed that pressures of at least 26.3 bar could be tolerated. Above this pressure, the interfaces failed but the devices were not damaged. To investigate the cooling effect of the micropropellant, the endurance of a full thruster was also studied under wet testing where it was fed with 31 wt.% hydrogen peroxide. The thruster demonstrated complete evaporation and/or full decomposition at a power above 3.7 W for a propellant flow of 50 µl min−1. At this power, the catalytic bed locally reached a temperature of 147 °C. The component was successfully heated to an operating temperature of 307 °C, where it cracked. Under these firing conditions, and assuming complete decomposition, calculations give a thrust and specific impulse of 0.96 mN and 106 s, respectively. In the case of evaporation, the corresponding values are calculated to be 0.84 mN and 92 s.
Journal of Physics: Conference Series, 2016
A liquid propellant alumina microthruster with an integrated heater, catalytic bed and two temper... more A liquid propellant alumina microthruster with an integrated heater, catalytic bed and two temperature sensors has been developed and tested using 30 wt. % hydrogen peroxide. The temperature sensors and the catalytic bed were screen-printed using platinum paste on tapes of alumina that was stacked and laminated before sintering. In order to increase the surface of the catalytic bed, the platinum paste was mixed with a sacrificial paste that disappeared during sintering, leaving behind a porous and rough layer. Complete evaporation and combustion, resulting in only gas coming from the outlet, was achieved with powers above 3.7 W for a propellant flow of 50 µl/min. At this power, the catalytic bed reached a maximum temperature of 147°C. The component was successfully operated up to a temperature of 307°C, where it cracked.
Acta Astronautica, 2016
Comprehensive understanding of the principles governing the geological activity of the Earth was ... more Comprehensive understanding of the principles governing the geological activity of the Earth was obtained in continental and oceanic mountains. It is not expected that the principles governing the overall geologic activity and evolution of other planetary bodies such as Mars will be understood if exploration is limited to nearly flat terrains, either imposed by the used exploration platform capabilities, the risk of getting stuck, or by the time required to cross the border of a landing ellipse. Surface exploration of mountains is additionally to be coupled to two-or three-dimensional geophysical surveys to correlate the surface observations with deeper processes. On the small bodies where ultra-low gravity prevails, the weight of wheel-driven platforms is not sufficient to generate the friction at the contact with the ground that is required to trigger motion of the rover relative to the ground. Under such circumstances, hopping is one of the mobility solutions. We present a new locomotion system, the hopter platform, which is adapted to these challenges on Solar System bodies having a gravity field lower than on Earth. The hopter is a robust, versatile and highly manoeuvrable platform based on simple mechanical concepts that accurately jumps to distances of metres to tens of metres and more, depending on the gravity field of the studied body. Its low mass of 10 kg (including up to 3 kg of miniaturised payload), makes it possible to simultaneously launch several hopters to work as a fractionated explorer at a very competitive cost. After reviewing the payload that may be placed onboard hopters, we illustrate the scientific capabilities of hopters and hopter networks in performing basic geologic observations at distinct study sites in a variety of geological environments, obtaining data along steep geological cross sections, surveying geophysical anomalies in the subsurface, prospecting resources, monitoring microenvironments, meteorological events, and geodetic deformation, or characterizing dust activity on Mars, the Moon, and Phobos.
Journal of Micromechanics and Microengineering, 2015
This paper has been peer-reviewed but does not include the final publisher proof-corrections or j... more This paper has been peer-reviewed but does not include the final publisher proof-corrections or journal pagination.
Journal of Micromechanics and Microengineering, 2015
This paper has been peer-reviewed but does not include the final publisher proof-corrections or j... more This paper has been peer-reviewed but does not include the final publisher proof-corrections or journal pagination.
ABSTRACT A novel microplasma source, based on a microstrip split-ring resonator design with elect... more ABSTRACT A novel microplasma source, based on a microstrip split-ring resonator design with electrodes integrated in its silicon substrate, was designed, manufactured and evaluated. This device should offer straightforward integration with other MEMS components, and has a plasma discharge gap with a controlled volume and geometry, with potential for microfluidics. Two realized devices were resonant at around 2.9 GHz with quality factors of 26.6 and 18.7. Two different plasma ignition modes were observed, where the plasma at low pressures was not confined to the gap but rather appeared between the ends of the electrodes on the backside.
Journal of Applied Physics, Jul 21, 2013
The demand for analysis of smaller samples in isotopic ratio measurements of rare isotopes is con... more The demand for analysis of smaller samples in isotopic ratio measurements of rare isotopes is continuously rising with the development of new applications, particularly in biomedicine. Interesting in this aspect are methods based on optogalvanic spectroscopy, which have been reported to facilitate both 13 C-to-12 C and 14 C-to-12 C ratio measurements with high sensitivity. These methods also facilitate analysis of very small samples, down to the microgram range, which makes them very competitive to other technologies, e.g., accelerator mass spectroscopy. However, there exists a demand for moving beyond the microgram range, especially from regenerative medicine, where samples consist of, e.g., DNA, and, hence, the total sample amount is extremely small. Making optogalvanic spectroscopy of carbon isotopes applicable to such small samples, requires miniaturization of the key component of the system, namely the plasma source, in which the sample is ionized before analysis. In this paper, a novel design of such a microplasma source based on a stripline split-ring resonator is presented and evaluated in a basic optogalvanic spectrometer. The investigations focus on the capability of the plasma source to measure the optogalvanic signal in general, and the effect of different system and device specific parameters on the amplitude and stability of the optogalvanic signal in particular. Different sources of noise and instabilities are identified, and methods of mitigating these issues are discussed. Finally, the ability of the cell to handle analysis of samples down to the nanogram range is investigated, pinpointing the great prospects of stripline split-ring resonators in optogalvanic spectroscopy. V
For aggressive environments, the material properties of silicon become a limitation. Macroscopica... more For aggressive environments, the material properties of silicon become a limitation. Macroscopically, ceramics are as common for high-temperature applications as is silicon in miniaturized systems, but this group of materials has been little exploited for MEMS components. This paper describes the design, manufacturing and characterization of a ceramic, heated cold-gas microthruster with integrated flow sensor, using HTCC processing and silicon tools. The calorimetric flow sensor is integrated in the structure, and heaters are embedded in the stagnation chamber of the nozzle. The heater was shown to improve the efficiency of the thruster, as confirmed by measurements of the flow rate. Flow rate changes were seen as changes in resistance of the fabricated flow sensor. The choice of yttria stabilized zirconia as material for the components make them robust and capable of withstanding very high temperatures. Samples have been shown capable of achieving temperatures locally exceeding 1000ºC.
Journal of physics, Oct 1, 2016
Extreme-temperature lab on a chip for optogalvanic spectroscopy of ultra small sampleskey compone... more Extreme-temperature lab on a chip for optogalvanic spectroscopy of ultra small sampleskey components and a first integration attempt
For aggressive environments, the material properties of silicon become a limitation. Macroscopica... more For aggressive environments, the material properties of silicon become a limitation. Macroscopically, ceramics are as abundant for high-temperature applications as is silicon in miniaturized systems, but this group of materials has been little exploited for MEMS components. A major reason is the lack of means for high-resolution structuring. This paper describes the application of silicon-based manufacturing processes in the fabrication of ceramic yet truly micromechanical structures and devices for very high-temperature applications, and demonstrates the technique's implementation in, and significance for, high-temperature microfluidics. Embossing of structures down to 2 µm wide is demonstrated, as well as deep embossing (50 µm), punching through 15 µm tape, and lamination of structured layers. The resulting samples survive temperatures of 1400ºC.
Journal of Micromechanics and Microengineering, May 19, 2015
This paper describes the design, fabrication and characterization of a flow sensor for high-tempe... more This paper describes the design, fabrication and characterization of a flow sensor for high-temperature, or otherwise aggressive, environments, like, e.g. the propulsion system of a small spacecraft. The sensor was fabricated using 8 mol% yttria stabilized zirconia (YSZ8) high-temperature co-fired ceramic (HTCC) tape and screen printed platinum paste. A calorimetric flow sensor design was used, with five 80 µm wide conductors, separated by 160 µm, in a 0.4 mm wide, 0.1 mm deep and 12.5 mm long flow channel. The central conductor was used as a heater for the sensor, and the two adjacent conductors were used to resistively measure the heat transferred from the heater by forced convection. The two outermost conductors were used to study the influence of an auxiliary heat source on the sensor. The resistances of the sensor conductors were measured using four-point connections, as the gas flow rate was slowly increased from 0 to 40 sccm, with different power supplied through the central heater, as well as with an upstream or downstream heater powered. In this study, the thermal and electrical integrability of microcomponents on the YSZ8 substrate was of particular interest and, hence, the influence of thermal and ionic conduction in the substrate was studied in detail. The effect of the ion conductivity of YSZ8 was studied by measuring the resistance of a platinum conductor and the resistance between two adjacent conductors on YSZ8, in a furnace at temperatures from 20 to 930 °C and by measuring the resistance with increasing current through a conductor. With this design, the influence of ion conductivity through the substrate became apparent above 700 °C. The sensitivity of the sensor was up to 1 mΩ sccm−1 in a range of 0–10 sccm. The results show that the signal from the sensor is influenced by the integrated auxiliary heating conductors and that these auxiliary heaters provide a way to balance disturbing heat sources, e.g. thrusters or other electronics, in conjunction with the flow sensor.
Uploads
Papers by Greger Thornell