Papers by Heroen Verbruggen
The genus Pseudochlorodesmis (Bryopsidales) is composed of diminutive siphons of extreme morpholo... more The genus Pseudochlorodesmis (Bryopsidales) is composed of diminutive siphons of extreme morphological simplicity. The discovery of Pseudochlorodesmis-like juveniles in more complex Bryopsidales (e.g., the Halimeda microthallus stage) jeopardized the recognition of this genus. Confronted with this uncertainty, taxonomists transferred many simple siphons into a new genus, Siphonogramen. In this study, we used a multimarker approach to clarify the phylogenetic and taxonomic affinities of the Pseudochlorodesmis-Siphonogramen (PS) complex within the more morphologically complex bryopsidalean taxa. Our analyses reveal a new layer of diversity largely distinct from the lineages containing the structurally complex genera. The PS complex shows profound cryptic diversity exceeding the family level. We discuss a potential link between thallus complexity and the prevalence and profundity of cryptic diversity. For taxonomic simplicity and as a first step toward clarifying the taxonomy of these simple siphons, we propose to maintain Pseudochlorodesmis as a form genus and subsume Siphonogramen and Botryodesmis therein.
Ecology and evolution, 2013
The North-Atlantic has warmed faster than all other ocean basins and climate change scenarios pre... more The North-Atlantic has warmed faster than all other ocean basins and climate change scenarios predict sea surface temperature isotherms to shift up to 600 km northwards by the end of the 21st century. The pole-ward shift has already begun for many temperate seaweed species that are important intertidal foundation species. We asked the question: Where will climate change have the greatest impact on three foundational, macroalgal species that occur along North-Atlantic shores: Fucus serratus, Fucus vesiculosus, and Ascophyllum nodosum? To predict distributional changes of these key species under three IPCC (Intergovernmental Panel on Climate Change) climate change scenarios (A2, A1B, and B1) over the coming two centuries, we generated Ecological Niche Models with the program MAXENT. Model predictions suggest that these three species will shift northwards as an assemblage or "unit" and that phytogeographic changes will be most pronounced in the southern Arctic and the souther...
Algae have a particularly rich evolutionary history that has not yet been comprehensively explore... more Algae have a particularly rich evolutionary history that has not yet been comprehensively explored. We review statistical techniques to infer patterns of trait evolution and species diversification from phylogenies. We illustrate these methods using the evolution of algal thermal niches and its interaction with species diversification as a case study. We offer some perspectives for the application of these methods in other fields of phycology and the integration of micro-and macroevolutionary approaches.
European Journal of Phycology, 2014
PLoS ONE, 2012
The sea slug Plakobranchus ocellatus (Sacoglossa, Gastropoda) retains photosynthetically active c... more The sea slug Plakobranchus ocellatus (Sacoglossa, Gastropoda) retains photosynthetically active chloroplasts from ingested algae (functional kleptoplasts) in the epithelial cells of its digestive gland for up to 10 months. While its feeding behavior has not been observed in natural habitats, two hypotheses have been proposed: 1) adult P. ocellatus uses kleptoplasts to obtain photosynthates and nutritionally behaves as a photoautotroph without replenishing the kleptoplasts; or 2) it behaves as a mixotroph (photoautotroph and herbivorous consumer) and replenishes kleptoplasts continually or periodically. To address the question of which hypothesis is more likely, we examined the source algae for kleptoplasts and temporal changes in kleptoplast composition and nutritional contribution. By characterizing the temporal diversity of P. ocellatus kleptoplasts using rbcL sequences, we found that P. ocellatus harvests kleptoplasts from at least 8 different siphonous green algal species, that kleptoplasts from more than one species are present in each individual sea slug, and that the kleptoplast composition differs temporally. These results suggest that wild P. ocellatus often feed on multiple species of siphonous algae from which they continually obtain fresh chloroplasts. By estimating the trophic position of wild and starved P. ocellatus using the stable nitrogen isotopic composition of amino acids, we showed that despite the abundance of kleptoplasts, their photosynthates do not contribute greatly to the nutrition of wild P. ocellatus, but that kleptoplast photosynthates form a significant source of nutrition for starved sea slugs. The herbivorous nature of wild P. ocellatus is consistent with insights from molecular analyses indicating that kleptoplasts are frequently replenished from ingested algae, leading to the conclusion that natural populations of P. ocellatus do not rely on photosynthesis but mainly on the digestion of ingested algae.
PLoS ONE, 2013
The utility of species distribution models for applications in invasion and global change biology... more The utility of species distribution models for applications in invasion and global change biology is critically dependent on their transferability between regions or points in time, respectively. We introduce two methods that aim to improve the transferability of presence-only models: density-based occurrence thinning and performance-based predictor selection. We evaluate the effect of these methods along with the impact of the choice of model complexity and geographic background on the transferability of a species distribution model between geographic regions. Our multifactorial experiment focuses on the notorious invasive seaweed Caulerpa cylindracea (previously Caulerpa racemosa var. cylindracea) and uses Maxent, a commonly used presence-only modeling technique. We show that model transferability is markedly improved by appropriate predictor selection, with occurrence thinning, model complexity and background choice having relatively minor effects. The data shows that, if available, occurrence records from the native and invaded regions should be combined as this leads to models with high predictive power while reducing the sensitivity to choices made in the modeling process. The inferred distribution model of Caulerpa cylindracea shows the potential for this species to further spread along the coasts of Western Europe, western Africa and the south coast of Australia.
Phycological Research, 2011
The green seaweed genus Chaetomorpha is characterized by unbranched filaments. Molecular phylogen... more The green seaweed genus Chaetomorpha is characterized by unbranched filaments. Molecular phylogenetic data indicate that Chaetomorpha forms a clade that is nested in a paraphyletic assemblage of branched species (Cladophora). It follows that the unbranched condition is evolutionarily conserved and likely evolved early in the evolution of this clade. In this study we show that under laboratory culture conditions, the filaments of C. antennina frequently produce lateral branches, similar to Cladophora. Our results thus indicate that the unbranched thallus architecture is not entirely genetically constrained, but at least in part subject to morphological plasticity. Additionally, culture observations of C. antennina allowed a detailed study of rhizoidal development, which seems unique among Cladophorales.
Phycologia, 2013
FREDERICQ S. 2013. Molecular diversity of the Caulerpa racemosa-Caulerpa peltata complex (Caulerp... more FREDERICQ S. 2013. Molecular diversity of the Caulerpa racemosa-Caulerpa peltata complex (Caulerpaceae, Bryopsidales) in New Caledonia, with new Australasian records for C. racemosa var. cylindracea. Phycologia 52: 6-13.
Critical Reviews in Plant Sciences, 2012
The green lineage (Viridiplantae) comprises the green algae and their descendants the land plants... more The green lineage (Viridiplantae) comprises the green algae and their descendants the land plants, and is one of the major groups of oxygenic photosynthetic eukaryotes. Current hypotheses posit the early divergence of two discrete clades from an ancestral green flagellate. One clade, the Chlorophyta, comprises the early diverging prasinophytes, which gave rise to the core chlorophytes. The other clade, the
Phycologia, 2011
CLERCK O. 2011. Rhipidosiphon lewmanomontiae sp. nov., a new calcified udoteacean species from th... more CLERCK O. 2011. Rhipidosiphon lewmanomontiae sp. nov., a new calcified udoteacean species from the central Indo-Pacific on the basis of morphological and molecular investigations (Bryopsidales, Chlorophyta). Phycologia 50: 403-412.
PLoS ONE, 2012
Background: Many tropical marine macroalgae are reported from all three ocean basins, though thes... more Background: Many tropical marine macroalgae are reported from all three ocean basins, though these very wide distributions may simply be an artifact resulting from inadequate taxonomy that fails to take into account cryptic diversity. Alternatively, pantropical distributions challenge the belief of limited intrinsic dispersal capacity of marine seaweeds and the effectiveness of the north-south oriented continents as dispersal barriers. We aimed to re-assess the distribution of two allegedly circumtropical brown algae, Dictyota ciliolata and D. crenulata, and interpret the realized geographical range of the respective species in relation to their thermal tolerance and major tectonic and climatic events during the Cenozoic.
Uploads
Papers by Heroen Verbruggen