Osteogenic differentiation of multipotent mesenchymal stem cells (MSCs) plays a crucial role in b... more Osteogenic differentiation of multipotent mesenchymal stem cells (MSCs) plays a crucial role in bone remodeling. Numerous studies have described the deleterious effect of iron overload on bone density and microarchitecture. Excess iron decreases osteoblast activity, leading to impaired extracellular matrix (ECM) mineralization. Additionally, iron overload facilitates osteoclast differentiation and bone resorption. These processes contribute to iron overload-associated bone loss. In this study we investigated the effect of iron on osteogenic differentiation of human bone marrow MSCs (BMSCs), the third player in bone remodeling. We induced osteogenic differentiation of BMSCs in the presence or absence of iron (0-50μmol/L) and examined ECM mineralization, Ca content of the ECM, mRNA and protein expressions of the osteogenic transcription factor runt-related transcription factor 2 (Runx2), and its targets osteocalcin (OCN) and alkaline phosphatase (ALP). Iron dose-dependently attenuated ECM mineralization and decreased the expressions of Runx2 and OCN. Iron accomplished complete inhibition of osteogenic differentiation of BMSCs at 50μmol/L concentration. We demonstrated that in response to iron BMSCs upregulated the expression of ferritin. Administration of exogenous ferritin mimicked the anti-osteogenic effect of iron, and blocked the upregulation of Runx2, OCN and ALP. Iron overload in mice was associated with elevated ferritin and decreased Runx2 mRNA levels in compact bone osteoprogenitor cells. The inhibitory effect of iron is specific toward osteogenic differentiation of MSCs as neither chondrogenesis nor adipogenesis were influenced by excess iron. We concluded that iron and ferritin specifically inhibit osteogenic commitment and differentiation of BMSCs both in vitro and in vivo.
Cerebral malaria claims more than 1 million lives per year. We report that heme oxygenase-1 (HO-1... more Cerebral malaria claims more than 1 million lives per year. We report that heme oxygenase-1 (HO-1, encoded by Hmox1) prevents the development of experimental cerebral malaria (ECM). BALB/c mice infected with Plasmodium berghei ANKA upregulated HO-1 expression and activity and did not develop ECM. Deletion of Hmox1 and inhibition of HO activity increased ECM incidence to 83% and 78%, respectively. HO-1 upregulation was lower in infected C57BL/6 compared to BALB/c mice, and all infected C57BL/6 mice developed ECM (100% incidence). Pharmacological induction of HO-1 and exposure to the end-product of HO-1 activity, carbon monoxide (CO), reduced ECM incidence in C57BL/6 mice to 10% and 0%, respectively. Whereas neither HO-1 nor CO affected parasitemia, both prevented blood-brain barrier (BBB) disruption, brain microvasculature congestion and neuroinflammation, including CD8 + T-cell brain sequestration. These effects were mediated by the binding of CO to hemoglobin, preventing hemoglobin oxidation and the generation of free heme, a molecule that triggers ECM pathogenesis.
Hemochromatosis is a known cause of osteoporosis, and iron overload has deleterious effects on bo... more Hemochromatosis is a known cause of osteoporosis, and iron overload has deleterious effects on bone. Although iron overload and its association with osteoporosis has long been recognized, the pathogenesis and exact role of iron have been undefined. Bone is an active tissue with constant remodeling capacity. Osteoblast (OB) development and maturation are under the influence of core binding factor a-1 (CBF-a1), which induces expression of OBspecific genes, including alkaline phosphatase, an important enzyme in early osteogenesis, and osteocalcin, a noncollagenous protein deposited within the osteoid. This study investigates the mechanism by which iron inhibits human OB activity, which in vivo may lead to decreased mineralization, osteopenia, and osteoporosis. We demonstrate that iron-provoked inhibition of OB activity is mediated by ferritin and its ferroxidase activity. We confirm this notion by using purified ferritin H-chain and ceruloplasmin, both known to possess ferroxidase activity that inhibited calcification, whereas a sitedirected mutant of ferritin H-chain lacking ferroxidase activity failed to provide any inhibition. Furthermore, we are reporting that such suppression is not restricted to inhibition of calcification, but OB-specific genes such as alkaline phosphatase, osteocalcin, and CBF-a1 are all downregulated by ferritin in a dose-responsive manner. This study corroborates that iron decreases mineralization and demonstrates that this suppression is provided by iron-induced upregulation of ferritin. In addition, we conclude that inhibition of OB activity, mineralization, and specific gene expression is attributed to the ferroxidase activity of ferritin. ß subunit (19 kDa) is associated with iron nucleation, mineralization, and long-term iron storage. The ratio between H and L subunits in a ferritin shell varies widely in different tissues, and the expression of ferritin is JBMR091002 ORIGINAL ARTICLE J JBMR
Intracellular free heme predisposes to oxidant-mediated tissue damage. We hypothesized that free ... more Intracellular free heme predisposes to oxidant-mediated tissue damage. We hypothesized that free heme causes alterations in myocardial contractility via disturbed structure and/or regulation of the contractile proteins. Isometric force production and its Ca(2+)-sensitivity (pCa50) were monitored in permeabilized human ventricular cardiomyocytes. Heme exposure altered cardiomyocyte morphology and evoked robust decreases in Ca(2+)-activated maximal active force (Fo) while increasing Ca(2+)-independent passive force (Fpassive). Heme treatments, either alone or in combination with H2O2, did not affect pCa50. The increase in Fpassive started at 3µM heme exposure and could be partially reversed by the antioxidant dithiothreitol. Protein sulfhydryl (SH) groups of thick myofilament content decreased and sulfenic acid formation increased after treatment with heme. Partial restoration in the SH group content was observed in a protein running at 140kDa after treatment with dithiothreitol, but ...
Soluble cell-bound and extracellular cyclodextrin glycosyltransferases of Bacillus macerans show ... more Soluble cell-bound and extracellular cyclodextrin glycosyltransferases of Bacillus macerans show identical enzymological characteristics and antigenicity NOlhlI N 6 G d D Y , ISTVAN P~C S I , fiVA KATONA', VIKT6RlA JENEY, PI%ER BOROSS2, J6ZSEF TOZSfiR', J6ZSEF FACHET I and ATTILA SZENTIRMAI (
The extracellular superoxide dismutase (ecSOD or SOD3) is a copper-containing enzyme which is hig... more The extracellular superoxide dismutase (ecSOD or SOD3) is a copper-containing enzyme which is highly expressed in the vasculature. Copper-containing enzymes require copper chaperones for their activity however the chaperone which delivers copper to SOD3 has not previously been defined. Atox1 is a copper chaperone proposed to deliver copper to the trans-Golgi network. Because SOD3 is secreted via the trans-Golgi network, we sought to determine whether Atox1 acts as a copper chaperone for SOD3. Using recombinant human SOD3, we found that the specific activity of SOD3 directly correlates with its copper content (R 2 ϭ0.99). SOD3 specific activity in the conditioned medium from cultured Atox1 Ϫ/Ϫ fibroblasts was markedly decreased, but could be recovered to that of wild-type cells by copper addition. These results indicated that Atox1 is required for delivering copper to SOD3 for its full activity. Unexpectedly, the protein and mRNA levels of SOD3 were dramatically decreased in cultured Atox1 Ϫ/Ϫ fibroblasts. This was associated with a marked decrease in SOD3 transcription rate but no change in SOD3 mRNA stability. Overexpression of Atox1 markedly increased SOD3 mRNA in both Atox1 Ϫ/Ϫ and Atox1 ϩ/ϩ cells. These findings indicate that Atox1 positively regulates SOD3 transcription. Because SOD3 protein is upregulated in atherosclerotic vessels, we examined expression of Atox1 in vessels from ApoE Ϫ/Ϫ mice. Western and immunohistochemical analysis in ApoE Ϫ/Ϫ mice revealed that both Atox1 and SOD3 protein levels are markedly increased in atherosclerotic intimal lesions. In summary, Atox1 functions not only as a copper chaperone for SOD3 but also as a positive regulator for SOD3 transcription and may have an important role in modulating oxidative stress in the cardiovascular system. (Circ Res. 2005;96:723-729.)
Page 1. EGYETEMI DOKTORI (Ph.D.) ÉRTEKEZÉS JENEY VIKTÓRIA DEBRECEN, 2002 Page 2. VAS-PORFIRINEK É... more Page 1. EGYETEMI DOKTORI (Ph.D.) ÉRTEKEZÉS JENEY VIKTÓRIA DEBRECEN, 2002 Page 2. VAS-PORFIRINEK ÉS HEM-PROTEINEK HATÁSÁRA KIALAKULÓ OXIDATÍV STRESSZ-INDUKCIÓ ÉS STRESSZ-ADAPTÁCIÓ EGYETEMI DOKTORI (Ph.D.) ÉRTEKEZÉS ...
... of Structure and Antioxidant Activity of Synthetic Silybin-and Isosilybin Derived Molecules: ... more ... of Structure and Antioxidant Activity of Synthetic Silybin-and Isosilybin Derived Molecules: Identification of Molecular Structure Responsible for Antioxidant Activity Employing Various Models for Inducing Oxidative Stress Zsuzsa Varga1, Emoke Nagy1, Monika Katko, Viktoria ...
Hydrogen sulfide Low-density lipoprotein Lipid hydroperoxide Hemin Heme oxygenase-1 Heme-mediated... more Hydrogen sulfide Low-density lipoprotein Lipid hydroperoxide Hemin Heme oxygenase-1 Heme-mediated oxidative modification of low-density lipoprotein (LDL) plays a crucial role in early atherogenesis. It has been shown that hydrogen sulfide (H 2 S) produced by vascular smooth muscle cells is present in plasma at a concentration of about 50 µmol/L. H 2 S is a strong reductant which can react with reactive oxygen species like superoxide anion and hydrogen peroxide. The current study investigated the effect of H 2 S on hemin-mediated oxidation of LDL and oxidized LDL (oxLDL)-induced endothelial reactions. H 2 S dose dependently delayed the accumulation of lipid peroxidation products-conjugated dienes, lipid hydroperoxides (LOOH), and thiobarbituric acid reactive substances-during hemin-mediated oxidation. Moreover, H 2 S decreased the LOOH content of both oxidized LDL and lipid extracts derived from soft atherosclerotic plaque, which was accompanied by reduced cytotoxicity. OxLDL-mediated induction of the oxidative stress responsive gene, heme oxygenase-1, was also abolished by H 2 S. Finally we have shown that H 2 S can directly protect endothelium against hydrogen peroxide and oxLDL-mediated endothelial cytotoxicity. These results demonstrate novel functions of H 2 S in preventing hemin-mediated oxidative modification of LDL, and consequent deleterious effects, suggesting a possible antiatherogenic action of H 2 S.
Inflammation culminating in fibrosis contributes to progressive kidney disease. Cross-talk betwee... more Inflammation culminating in fibrosis contributes to progressive kidney disease. Cross-talk between the tubular epithelium and interstitial cells regulates inflammation by a coordinated release of cytokines and chemokines. Here we studied the role of heme oxygenase-1 (HO-1) and the heavy subunit of ferritin (FtH) in macrophage polarization and renal inflammation. Deficiency in HO-1 was associated with increased FtH expression, accumulation of macrophages with a dysregulated polarization profile, and increased fibrosis following unilateral ureteral obstruction in mice: a model of renal inflammation and fibrosis. Macrophage polarization in vitro was predominantly dependent on FtH expression in isolated bone marrow-derived mouse monocytes. Using transgenic mice with conditional deletion of FtH in the proximal tubules (FtH(PT-/-)) or myeloid cells (FtH(LysM-/-)), we found that myeloid FtH deficiency did not affect polarization or accumulation of macrophages in the injured kidney compared...
No part of this digital document may be reproduced, stored in a retrieval system or transmitted c... more No part of this digital document may be reproduced, stored in a retrieval system or transmitted commercially in any form or by any means. The publisher has taken reasonable care in the preparation of this digital document, but makes no expressed or implied warranty of any kind and assumes no responsibility for any errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of information contained herein. This digital document is sold with the clear understanding that the publisher is not engaged in rendering legal, medical or any other professional services.
Oxidized cell-free hemoglobin (Hb), including covalently cross-linked Hb multimers, is present in... more Oxidized cell-free hemoglobin (Hb), including covalently cross-linked Hb multimers, is present in advanced atherosclerotic lesions. Oxidation of Hb produces methemoglobin (Fe 3+ ) and ferryl hemoglobin (Fe 4+ = O 2− ). Ferryl iron is unstable and can return to the Fe 3+ state by reacting with specific amino acids of the globin chains. In these reactions globin radicals are produced followed by termination reactions yielding covalently cross-linked Hb multimers. Despite the evanescent nature of the ferryl state, herein we refer to this oxidized Hb as "ferryl Hb. " Our aim in this work was to study formation and biological effects of ferrylHb. We demonstrate that ferrylHb, like metHb, can release its heme group, leading to sensitization of endothelial cells (ECs) to oxidantmediated killing and to oxidation of low-density lipoprotein (LDL). Furthermore, we observed that both oxidized LDL and lipids derived from human atherosclerotic lesions trigger Hb oxidation and subsequent production of covalently cross-linked ferrylHb multimers. Previously we showed that ferrylHb disrupts EC monolayer integrity and induces expression of inflammatory cell adhesion molecules. Here we show that when exposed to ferrylHb, EC monolayers exhibit increased permeability and enhanced monocyte adhesion. Taken together, interactions between cell-free Hb and atheroma lipids engage in a vicious cycle, amplifying oxidation of plaque lipids and Hb. These processes trigger EC activation and cytotoxicity.
Journal of the American Society of Nephrology, 2009
Vascular calcification plays a role in the pathogenesis of atherosclerosis, diabetes, and chronic... more Vascular calcification plays a role in the pathogenesis of atherosclerosis, diabetes, and chronic kidney disease. Human aortic smooth muscle cells (HSMCs) undergo mineralization in response to elevated levels of inorganic phosphate (Pi) in an active and well-regulated process. This process involves increased activity of alkaline phosphatase and increased expression of core binding factor ␣-1, a bone-specific transcription factor, with the subsequent induction of osteocalcin. Mounting evidence suggests an essential role for the heme oxygenase 1 (HO-1)/ferritin system to maintain homeostasis of vascular function. We examined whether induction of HO-1 and ferritin alters mineralization of HSMCs provoked by high Pi. Upregulation of the HO-1/ferritin system inhibited HSMC calcification and osteoblastic differentiation. Of the products of the system, only ferritin and, to a lesser extent, biliverdin were responsible for the inhibition. Ferritin heavy chain and ceruloplasmin, which both possess ferroxidase activity, inhibited calcification; a site-directed mutant of ferritin heavy chain, which lacked ferroxidase activity, failed to inhibit calcification. In addition, osteoblastic transformation of HSMCs provoked by elevated Pi (assessed by upregulation of core binding factor ␣-1, osteocalcin, and alkaline phosphatase activity) was diminished by ferritin/ferroxidase activity. We conclude that induction of the HO-1/ferritin system prevents Pi-mediated calcification and osteoblastic differentiation of human smooth muscle cells mainly via the ferroxidase activity of ferritin.
Iron is essential for all living organism, although in excess amount it is dangerous via catalyzi... more Iron is essential for all living organism, although in excess amount it is dangerous via catalyzing the formation of reactive oxygen species. Absorption of iron is strictly controlled resulting in a fine balance of iron-loss and iron-uptake. In countries where the ingestion of heme-iron is significant by meal, great part of iron content in the body originates from heme. Heme derived from food is absorbed by a receptor-mediated manner by enterocytes of small intestine then it is degraded in a reaction catalyzed by heme oxygenase. Iron released from the porphyrin ring leaves enterocytes as transferrin associated iron. Prosthetic group of several proteins contains heme, therefore, it is synthesized by all cells. One of the most significant heme proteins is hemoglobin which transports oxygen in the erythrocytes. Hemoglobin released from erythrocyte during intravascular hemolysis binds to haptoglobin and is taken up by cells of the monocyte-macrophage lineage. Oxidation of hemoglobin (ferro) to methemoglobin (ferri) is inhibited by the structure of hemoglobin although it is not hindered. Superoxide anion is also formed in the reaction that initiates further free radical reactions. In contrast to ferrohemoglobin, methemoglobin readily releases heme, therefore, oxidation of hemoglobin drives the formation of free heme in plasma. Heme binds to a plasma protein, hemopexin, and is internalized by cells of monocyte-macrophage lineage in a receptor-mediated manner, then degraded in reaction catalysed by heme oxygenase. Heme is also taken up by plasma lipoproteins and endothelial cells leading to oxidation of LDL and subsequent endothelial cell damage. The purpose of this work was to summarize the processes related to heme.
Background and Purpose-Several factors have been held responsible for the development of atherosc... more Background and Purpose-Several factors have been held responsible for the development of atherosclerosis. To avoid the masking effect of age, we evaluated correlates of carotid atherosclerosis in patients Ͻ55 years of age. Methods-Plasma lipids, oxidative resistance of low-density lipoprotein, homocysteine, inflammatory markers, plasma viscosity, and red cell deformability were measured in fasting blood samples of 100 subjects: 45 patients with Ͼ30% stenosis of the internal carotid artery, 20 patients with carotid occlusion, and 35 control subjects. Stenosis and intima-media thickness (IMT) of the carotid artery were evaluated by duplex ultrasound. Results-White blood cell (WBC) count, plasma fibrinogen, C-reactive protein (CRP), and lipoprotein(a) levels were significantly higher in patients than in control subjects, and patients had increased IMT (PϽ0.01 for all comparisons). There was a tendency for higher homocysteine levels in patients. Smokers had higher WBC, fibrinogen, and CRP levels.
Osteogenic differentiation of multipotent mesenchymal stem cells (MSCs) plays a crucial role in b... more Osteogenic differentiation of multipotent mesenchymal stem cells (MSCs) plays a crucial role in bone remodeling. Numerous studies have described the deleterious effect of iron overload on bone density and microarchitecture. Excess iron decreases osteoblast activity, leading to impaired extracellular matrix (ECM) mineralization. Additionally, iron overload facilitates osteoclast differentiation and bone resorption. These processes contribute to iron overload-associated bone loss. In this study we investigated the effect of iron on osteogenic differentiation of human bone marrow MSCs (BMSCs), the third player in bone remodeling. We induced osteogenic differentiation of BMSCs in the presence or absence of iron (0-50μmol/L) and examined ECM mineralization, Ca content of the ECM, mRNA and protein expressions of the osteogenic transcription factor runt-related transcription factor 2 (Runx2), and its targets osteocalcin (OCN) and alkaline phosphatase (ALP). Iron dose-dependently attenuated ECM mineralization and decreased the expressions of Runx2 and OCN. Iron accomplished complete inhibition of osteogenic differentiation of BMSCs at 50μmol/L concentration. We demonstrated that in response to iron BMSCs upregulated the expression of ferritin. Administration of exogenous ferritin mimicked the anti-osteogenic effect of iron, and blocked the upregulation of Runx2, OCN and ALP. Iron overload in mice was associated with elevated ferritin and decreased Runx2 mRNA levels in compact bone osteoprogenitor cells. The inhibitory effect of iron is specific toward osteogenic differentiation of MSCs as neither chondrogenesis nor adipogenesis were influenced by excess iron. We concluded that iron and ferritin specifically inhibit osteogenic commitment and differentiation of BMSCs both in vitro and in vivo.
Cerebral malaria claims more than 1 million lives per year. We report that heme oxygenase-1 (HO-1... more Cerebral malaria claims more than 1 million lives per year. We report that heme oxygenase-1 (HO-1, encoded by Hmox1) prevents the development of experimental cerebral malaria (ECM). BALB/c mice infected with Plasmodium berghei ANKA upregulated HO-1 expression and activity and did not develop ECM. Deletion of Hmox1 and inhibition of HO activity increased ECM incidence to 83% and 78%, respectively. HO-1 upregulation was lower in infected C57BL/6 compared to BALB/c mice, and all infected C57BL/6 mice developed ECM (100% incidence). Pharmacological induction of HO-1 and exposure to the end-product of HO-1 activity, carbon monoxide (CO), reduced ECM incidence in C57BL/6 mice to 10% and 0%, respectively. Whereas neither HO-1 nor CO affected parasitemia, both prevented blood-brain barrier (BBB) disruption, brain microvasculature congestion and neuroinflammation, including CD8 + T-cell brain sequestration. These effects were mediated by the binding of CO to hemoglobin, preventing hemoglobin oxidation and the generation of free heme, a molecule that triggers ECM pathogenesis.
Hemochromatosis is a known cause of osteoporosis, and iron overload has deleterious effects on bo... more Hemochromatosis is a known cause of osteoporosis, and iron overload has deleterious effects on bone. Although iron overload and its association with osteoporosis has long been recognized, the pathogenesis and exact role of iron have been undefined. Bone is an active tissue with constant remodeling capacity. Osteoblast (OB) development and maturation are under the influence of core binding factor a-1 (CBF-a1), which induces expression of OBspecific genes, including alkaline phosphatase, an important enzyme in early osteogenesis, and osteocalcin, a noncollagenous protein deposited within the osteoid. This study investigates the mechanism by which iron inhibits human OB activity, which in vivo may lead to decreased mineralization, osteopenia, and osteoporosis. We demonstrate that iron-provoked inhibition of OB activity is mediated by ferritin and its ferroxidase activity. We confirm this notion by using purified ferritin H-chain and ceruloplasmin, both known to possess ferroxidase activity that inhibited calcification, whereas a sitedirected mutant of ferritin H-chain lacking ferroxidase activity failed to provide any inhibition. Furthermore, we are reporting that such suppression is not restricted to inhibition of calcification, but OB-specific genes such as alkaline phosphatase, osteocalcin, and CBF-a1 are all downregulated by ferritin in a dose-responsive manner. This study corroborates that iron decreases mineralization and demonstrates that this suppression is provided by iron-induced upregulation of ferritin. In addition, we conclude that inhibition of OB activity, mineralization, and specific gene expression is attributed to the ferroxidase activity of ferritin. ß subunit (19 kDa) is associated with iron nucleation, mineralization, and long-term iron storage. The ratio between H and L subunits in a ferritin shell varies widely in different tissues, and the expression of ferritin is JBMR091002 ORIGINAL ARTICLE J JBMR
Intracellular free heme predisposes to oxidant-mediated tissue damage. We hypothesized that free ... more Intracellular free heme predisposes to oxidant-mediated tissue damage. We hypothesized that free heme causes alterations in myocardial contractility via disturbed structure and/or regulation of the contractile proteins. Isometric force production and its Ca(2+)-sensitivity (pCa50) were monitored in permeabilized human ventricular cardiomyocytes. Heme exposure altered cardiomyocyte morphology and evoked robust decreases in Ca(2+)-activated maximal active force (Fo) while increasing Ca(2+)-independent passive force (Fpassive). Heme treatments, either alone or in combination with H2O2, did not affect pCa50. The increase in Fpassive started at 3µM heme exposure and could be partially reversed by the antioxidant dithiothreitol. Protein sulfhydryl (SH) groups of thick myofilament content decreased and sulfenic acid formation increased after treatment with heme. Partial restoration in the SH group content was observed in a protein running at 140kDa after treatment with dithiothreitol, but ...
Soluble cell-bound and extracellular cyclodextrin glycosyltransferases of Bacillus macerans show ... more Soluble cell-bound and extracellular cyclodextrin glycosyltransferases of Bacillus macerans show identical enzymological characteristics and antigenicity NOlhlI N 6 G d D Y , ISTVAN P~C S I , fiVA KATONA', VIKT6RlA JENEY, PI%ER BOROSS2, J6ZSEF TOZSfiR', J6ZSEF FACHET I and ATTILA SZENTIRMAI (
The extracellular superoxide dismutase (ecSOD or SOD3) is a copper-containing enzyme which is hig... more The extracellular superoxide dismutase (ecSOD or SOD3) is a copper-containing enzyme which is highly expressed in the vasculature. Copper-containing enzymes require copper chaperones for their activity however the chaperone which delivers copper to SOD3 has not previously been defined. Atox1 is a copper chaperone proposed to deliver copper to the trans-Golgi network. Because SOD3 is secreted via the trans-Golgi network, we sought to determine whether Atox1 acts as a copper chaperone for SOD3. Using recombinant human SOD3, we found that the specific activity of SOD3 directly correlates with its copper content (R 2 ϭ0.99). SOD3 specific activity in the conditioned medium from cultured Atox1 Ϫ/Ϫ fibroblasts was markedly decreased, but could be recovered to that of wild-type cells by copper addition. These results indicated that Atox1 is required for delivering copper to SOD3 for its full activity. Unexpectedly, the protein and mRNA levels of SOD3 were dramatically decreased in cultured Atox1 Ϫ/Ϫ fibroblasts. This was associated with a marked decrease in SOD3 transcription rate but no change in SOD3 mRNA stability. Overexpression of Atox1 markedly increased SOD3 mRNA in both Atox1 Ϫ/Ϫ and Atox1 ϩ/ϩ cells. These findings indicate that Atox1 positively regulates SOD3 transcription. Because SOD3 protein is upregulated in atherosclerotic vessels, we examined expression of Atox1 in vessels from ApoE Ϫ/Ϫ mice. Western and immunohistochemical analysis in ApoE Ϫ/Ϫ mice revealed that both Atox1 and SOD3 protein levels are markedly increased in atherosclerotic intimal lesions. In summary, Atox1 functions not only as a copper chaperone for SOD3 but also as a positive regulator for SOD3 transcription and may have an important role in modulating oxidative stress in the cardiovascular system. (Circ Res. 2005;96:723-729.)
Page 1. EGYETEMI DOKTORI (Ph.D.) ÉRTEKEZÉS JENEY VIKTÓRIA DEBRECEN, 2002 Page 2. VAS-PORFIRINEK É... more Page 1. EGYETEMI DOKTORI (Ph.D.) ÉRTEKEZÉS JENEY VIKTÓRIA DEBRECEN, 2002 Page 2. VAS-PORFIRINEK ÉS HEM-PROTEINEK HATÁSÁRA KIALAKULÓ OXIDATÍV STRESSZ-INDUKCIÓ ÉS STRESSZ-ADAPTÁCIÓ EGYETEMI DOKTORI (Ph.D.) ÉRTEKEZÉS ...
... of Structure and Antioxidant Activity of Synthetic Silybin-and Isosilybin Derived Molecules: ... more ... of Structure and Antioxidant Activity of Synthetic Silybin-and Isosilybin Derived Molecules: Identification of Molecular Structure Responsible for Antioxidant Activity Employing Various Models for Inducing Oxidative Stress Zsuzsa Varga1, Emoke Nagy1, Monika Katko, Viktoria ...
Hydrogen sulfide Low-density lipoprotein Lipid hydroperoxide Hemin Heme oxygenase-1 Heme-mediated... more Hydrogen sulfide Low-density lipoprotein Lipid hydroperoxide Hemin Heme oxygenase-1 Heme-mediated oxidative modification of low-density lipoprotein (LDL) plays a crucial role in early atherogenesis. It has been shown that hydrogen sulfide (H 2 S) produced by vascular smooth muscle cells is present in plasma at a concentration of about 50 µmol/L. H 2 S is a strong reductant which can react with reactive oxygen species like superoxide anion and hydrogen peroxide. The current study investigated the effect of H 2 S on hemin-mediated oxidation of LDL and oxidized LDL (oxLDL)-induced endothelial reactions. H 2 S dose dependently delayed the accumulation of lipid peroxidation products-conjugated dienes, lipid hydroperoxides (LOOH), and thiobarbituric acid reactive substances-during hemin-mediated oxidation. Moreover, H 2 S decreased the LOOH content of both oxidized LDL and lipid extracts derived from soft atherosclerotic plaque, which was accompanied by reduced cytotoxicity. OxLDL-mediated induction of the oxidative stress responsive gene, heme oxygenase-1, was also abolished by H 2 S. Finally we have shown that H 2 S can directly protect endothelium against hydrogen peroxide and oxLDL-mediated endothelial cytotoxicity. These results demonstrate novel functions of H 2 S in preventing hemin-mediated oxidative modification of LDL, and consequent deleterious effects, suggesting a possible antiatherogenic action of H 2 S.
Inflammation culminating in fibrosis contributes to progressive kidney disease. Cross-talk betwee... more Inflammation culminating in fibrosis contributes to progressive kidney disease. Cross-talk between the tubular epithelium and interstitial cells regulates inflammation by a coordinated release of cytokines and chemokines. Here we studied the role of heme oxygenase-1 (HO-1) and the heavy subunit of ferritin (FtH) in macrophage polarization and renal inflammation. Deficiency in HO-1 was associated with increased FtH expression, accumulation of macrophages with a dysregulated polarization profile, and increased fibrosis following unilateral ureteral obstruction in mice: a model of renal inflammation and fibrosis. Macrophage polarization in vitro was predominantly dependent on FtH expression in isolated bone marrow-derived mouse monocytes. Using transgenic mice with conditional deletion of FtH in the proximal tubules (FtH(PT-/-)) or myeloid cells (FtH(LysM-/-)), we found that myeloid FtH deficiency did not affect polarization or accumulation of macrophages in the injured kidney compared...
No part of this digital document may be reproduced, stored in a retrieval system or transmitted c... more No part of this digital document may be reproduced, stored in a retrieval system or transmitted commercially in any form or by any means. The publisher has taken reasonable care in the preparation of this digital document, but makes no expressed or implied warranty of any kind and assumes no responsibility for any errors or omissions. No liability is assumed for incidental or consequential damages in connection with or arising out of information contained herein. This digital document is sold with the clear understanding that the publisher is not engaged in rendering legal, medical or any other professional services.
Oxidized cell-free hemoglobin (Hb), including covalently cross-linked Hb multimers, is present in... more Oxidized cell-free hemoglobin (Hb), including covalently cross-linked Hb multimers, is present in advanced atherosclerotic lesions. Oxidation of Hb produces methemoglobin (Fe 3+ ) and ferryl hemoglobin (Fe 4+ = O 2− ). Ferryl iron is unstable and can return to the Fe 3+ state by reacting with specific amino acids of the globin chains. In these reactions globin radicals are produced followed by termination reactions yielding covalently cross-linked Hb multimers. Despite the evanescent nature of the ferryl state, herein we refer to this oxidized Hb as "ferryl Hb. " Our aim in this work was to study formation and biological effects of ferrylHb. We demonstrate that ferrylHb, like metHb, can release its heme group, leading to sensitization of endothelial cells (ECs) to oxidantmediated killing and to oxidation of low-density lipoprotein (LDL). Furthermore, we observed that both oxidized LDL and lipids derived from human atherosclerotic lesions trigger Hb oxidation and subsequent production of covalently cross-linked ferrylHb multimers. Previously we showed that ferrylHb disrupts EC monolayer integrity and induces expression of inflammatory cell adhesion molecules. Here we show that when exposed to ferrylHb, EC monolayers exhibit increased permeability and enhanced monocyte adhesion. Taken together, interactions between cell-free Hb and atheroma lipids engage in a vicious cycle, amplifying oxidation of plaque lipids and Hb. These processes trigger EC activation and cytotoxicity.
Journal of the American Society of Nephrology, 2009
Vascular calcification plays a role in the pathogenesis of atherosclerosis, diabetes, and chronic... more Vascular calcification plays a role in the pathogenesis of atherosclerosis, diabetes, and chronic kidney disease. Human aortic smooth muscle cells (HSMCs) undergo mineralization in response to elevated levels of inorganic phosphate (Pi) in an active and well-regulated process. This process involves increased activity of alkaline phosphatase and increased expression of core binding factor ␣-1, a bone-specific transcription factor, with the subsequent induction of osteocalcin. Mounting evidence suggests an essential role for the heme oxygenase 1 (HO-1)/ferritin system to maintain homeostasis of vascular function. We examined whether induction of HO-1 and ferritin alters mineralization of HSMCs provoked by high Pi. Upregulation of the HO-1/ferritin system inhibited HSMC calcification and osteoblastic differentiation. Of the products of the system, only ferritin and, to a lesser extent, biliverdin were responsible for the inhibition. Ferritin heavy chain and ceruloplasmin, which both possess ferroxidase activity, inhibited calcification; a site-directed mutant of ferritin heavy chain, which lacked ferroxidase activity, failed to inhibit calcification. In addition, osteoblastic transformation of HSMCs provoked by elevated Pi (assessed by upregulation of core binding factor ␣-1, osteocalcin, and alkaline phosphatase activity) was diminished by ferritin/ferroxidase activity. We conclude that induction of the HO-1/ferritin system prevents Pi-mediated calcification and osteoblastic differentiation of human smooth muscle cells mainly via the ferroxidase activity of ferritin.
Iron is essential for all living organism, although in excess amount it is dangerous via catalyzi... more Iron is essential for all living organism, although in excess amount it is dangerous via catalyzing the formation of reactive oxygen species. Absorption of iron is strictly controlled resulting in a fine balance of iron-loss and iron-uptake. In countries where the ingestion of heme-iron is significant by meal, great part of iron content in the body originates from heme. Heme derived from food is absorbed by a receptor-mediated manner by enterocytes of small intestine then it is degraded in a reaction catalyzed by heme oxygenase. Iron released from the porphyrin ring leaves enterocytes as transferrin associated iron. Prosthetic group of several proteins contains heme, therefore, it is synthesized by all cells. One of the most significant heme proteins is hemoglobin which transports oxygen in the erythrocytes. Hemoglobin released from erythrocyte during intravascular hemolysis binds to haptoglobin and is taken up by cells of the monocyte-macrophage lineage. Oxidation of hemoglobin (ferro) to methemoglobin (ferri) is inhibited by the structure of hemoglobin although it is not hindered. Superoxide anion is also formed in the reaction that initiates further free radical reactions. In contrast to ferrohemoglobin, methemoglobin readily releases heme, therefore, oxidation of hemoglobin drives the formation of free heme in plasma. Heme binds to a plasma protein, hemopexin, and is internalized by cells of monocyte-macrophage lineage in a receptor-mediated manner, then degraded in reaction catalysed by heme oxygenase. Heme is also taken up by plasma lipoproteins and endothelial cells leading to oxidation of LDL and subsequent endothelial cell damage. The purpose of this work was to summarize the processes related to heme.
Background and Purpose-Several factors have been held responsible for the development of atherosc... more Background and Purpose-Several factors have been held responsible for the development of atherosclerosis. To avoid the masking effect of age, we evaluated correlates of carotid atherosclerosis in patients Ͻ55 years of age. Methods-Plasma lipids, oxidative resistance of low-density lipoprotein, homocysteine, inflammatory markers, plasma viscosity, and red cell deformability were measured in fasting blood samples of 100 subjects: 45 patients with Ͼ30% stenosis of the internal carotid artery, 20 patients with carotid occlusion, and 35 control subjects. Stenosis and intima-media thickness (IMT) of the carotid artery were evaluated by duplex ultrasound. Results-White blood cell (WBC) count, plasma fibrinogen, C-reactive protein (CRP), and lipoprotein(a) levels were significantly higher in patients than in control subjects, and patients had increased IMT (PϽ0.01 for all comparisons). There was a tendency for higher homocysteine levels in patients. Smokers had higher WBC, fibrinogen, and CRP levels.
Uploads
Papers by Viktória Jeney