N-methyl-d-aspartate (NMDA) preconditioning is induced by subtoxic doses of NMDA and it promotes ... more N-methyl-d-aspartate (NMDA) preconditioning is induced by subtoxic doses of NMDA and it promotes a transient state of resistance against subsequent lethal insults. Interestingly, this mechanism of neuroprotection depends on adenosine A1 receptors (A1R), since blockade of A1R precludes this phenomenon. In this study we evaluated the consequences of NMDA preconditioning on the hippocampal A1R biology (i.e. expression, binding properties and functionality). Accordingly, we measured A1R expression in NMDA preconditioned mice (75mg/kg, i.p.; 24h) and showed that neither the total amount of receptor, nor the A1R levels in the synaptic fraction was altered. In addition, the A1R binding affinity to the antagonist [(3)H] DPCPX was slightly increased in total membrane extracts of hippocampus from preconditioned mice. Next, we evaluated the impact of NMDA preconditioning on A1R functioning by measuring the A1R-mediated regulation of glutamate uptake into hippocampal slices and on behavioral re...
Familial hypercholesterolemia is caused by inherited genetic abnormalities that directly or indir... more Familial hypercholesterolemia is caused by inherited genetic abnormalities that directly or indirectly affect the function of the low-density lipoprotein (LDL) receptor. This condition is characterized by defective catabolism of LDL which results in increased plasma cholesterol concentrations and premature coronary artery disease. Nevertheless, there is increasing preclinical and clinical evidence indicating that familial hypercholesterolemia subjects show a particularly high incidence of mild cognitive impairment. Moreover, the LDL receptor (LDLr) has been implicated as the main central nervous system apolipoprotein E receptor that regulates amyloid deposition in distinct mouse models of β-amyloidosis. In this regard, herein we hypothesized that the lack of LDLr would enhance the susceptibility to amyloid-β-(Aβ)-induced neurotoxicity in mice. Using the acute intracerebroventricular injection of aggregated Aβ(1-40) peptide (400 pmol/mouse), a useful approach for the investigation of...
Ethnopharmacological relevance: Aloysia gratissima (Gill. et Hook) Tronc. (Verbenaceae) is used t... more Ethnopharmacological relevance: Aloysia gratissima (Gill. et Hook) Tronc. (Verbenaceae) is used traditionally for the treatment of headache, bronchitis, and nervous systems disorders including depression. Aim of the study: To investigate the antidepressant-like and neuroprotective effects of Aloysia gratissima aqueous extract (AE) and the involvement of l-arginine-nitric oxide (NO)-cyclic guanosine monophosphate (cGMP) pathway. Materials and methods: The antidepressant-like effect of AE was evaluated through behavioral despair in forced swimming test (FST) and tail suspension test (TST). Swiss albino mice were treated by oral route and after 1 h were analyzed the time of immobility in the FST and TST. In addition, the neuroprotective effect of AE against glutamate excitotoxicity was evaluate through cell viability of hippocampal slices, phosphorylation of Akt, and the immunocontent of inducible oxide nitric synthase (iNOS) were investigated by western blotting. Results: The immobility time in the FST and TST were reduced by AE (100-1000 and 10-300 mg/kg, respectively). The antidepressant-like effect of AE in the TST was prevented by the pretreatment with N-methyl-d-aspartate (NMDA), l-arginine or sildenafil. The subeffective dose of AE produced a synergistic antidepressant-like effect with MK-801 (an antagonist of NMDA receptor), methylene blue, l-NNA (an inhibitor of NO synthase) or ODQ (an inhibitor of soluble guanylate cyclase). In ex vivo experiments, pretreatment with AE prevented the loss of cell viability induced by glutamate, thus affording neuroprotection. Glutamate toxicity caused a decreased Akt phosphorylation and an increased iNOS expression. Conclusions: The present study provides convincing evidence of neuroprotection and the involvement of the l-arginine-NO-cGMP pathway in the antidepressant-like effect of AE. Therefore, AE could be of potential interest for the treatment of depressive disorders and neurological conditions associated with glutamate excitotoxicity.
1. Guanosine-5 -monophosphate (GMP) was evaluated as a neuroprotective agent against the damage o... more 1. Guanosine-5 -monophosphate (GMP) was evaluated as a neuroprotective agent against the damage observed in rat hippocampal slices submitted to an in vitro model of ischemia with or without the presence of the ionotropic glutamate receptor agonist, Kainic acid (KA).
Statins are inhibitors of the 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, thereby ... more Statins are inhibitors of the 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, thereby inhibiting cell synthesis of cholesterol and isoprenoids. Moreover, several studies have been evaluating pleiotropic effects of statins, mainly because they present neuroprotective effects in various pathological conditions. However, knowledge about behavioral effects of statins per se is relatively scarce. Considering these facts, we aimed to analyze behavioral responses of atorvastatin or simvastatin-treated mice in the open field test, elevated plus maze and object location test. Atorvastatin treatment for 7 consecutive days at 1 mg/Kg or 10 mg/Kg (v.o.) or simvastatin 10 mg/Kg or 20 mg/Kg enhanced cognitive performance in object location test when compared to control group (saline-treated mice). Simvastatin effects on mice performance in the object location test was abolished by post-training infusion of the beta-adrenoceptor antagonist propranolol. Atorvastatin and simvastatin did not change the behavioral response in open field and elevated plus-maze (EPM) tests in any of used doses. These data demonstrate the positive effects of both statins in cognitive processes in mice, without any alteration in locomotor parameters in the open field test or anxiolytic-like behavior in EPM. In conclusion, we demonstrate that atorvastatin and simvastatin per se improves the cognitive performance in a rodent model of spatial memory and this effect is related to beta-adrenergic receptors modulation.
Changes on cyclic adenosine monophosphate (cAMP) levels in response to adenosine and glutamate an... more Changes on cyclic adenosine monophosphate (cAMP) levels in response to adenosine and glutamate and the subtype of glutamate receptors involved in this interaction were studied in slices of optic tectum from 3-day-old chicks. cAMP accumulation mediated by adenosine (100 µM) was abolished by 8-phenyltheophylline (15 uM). Glutamate and the glutamatergic agonists kainate or trans-d,l-1-aminocyclopentane-1,3-dicarboxylic acid (trans-ACPD) did not evoke cAMP
Creatine is the substrate for creatine kinase in the synthesis of phosphocreatine (PCr). This ene... more Creatine is the substrate for creatine kinase in the synthesis of phosphocreatine (PCr). This energetic system is endowed of antioxidant and neuroprotective properties and plays a pivotal role in brain energy homeostasis. The purpose of this study was to investigate the neuroprotective effect of creatine and PCr against 6-hydroxydopamine (6-OHDA)-induced mitochondrial dysfunction and cell death in rat striatal slices, used as an in vitro Parkinson's model. The possible involvement of the signaling pathway mediated by phosphatidylinositol-3 kinase (PI3K), protein kinase B (Akt), and glycogen synthase kinase-3b (GSK3b) was also evaluated. Exposure of striatal slices to 6-OHDA caused a significant disruption of the cellular homeostasis measured as 3-(4,5 dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide reduction, lactate dehydrogenase release, and tyrosine hydroxylase levels. 6-OHDA exposure increased the levels of reactive oxygen species and thiobarbituric acid reactive substances production and decreased mitochondrial membrane potential in rat striatal slices. Furthermore, 6-OHDA decreased the phosphorylation of Akt (Serine 473 ) and GSK3b (Serine 9 ). Coincubation with 6-OHDA and creatine or PCr reduced the effects of 6-OHDA toxicity. The protective effect afforded by creatine or PCr against 6-OHDA-induced toxicity was reversed by the PI3K inhibitor LY294002. In conclusion, creatine and PCr minimize oxidative stress in striatum to afford neuroprotection of dopaminergic neurons.
The exact mechanisms by which 3-nitropropionic acid (3-NP), a naturally occurring plant and funga... more The exact mechanisms by which 3-nitropropionic acid (3-NP), a naturally occurring plant and fungal neurotoxin, exerts its neurotoxic effects are not fully understood. However, blockage of ATP synthesis by the irreversible inhibition of succinate dehydrogenase activity, increased production of free radicals, and secondary excitotoxicity have been implicated in its actions. In the present study, synaptic vesicle preparations from brain of
International Journal of Developmental Neuroscience, 1995
Abslraet--Accumulation of cyclic adenosine monophosphate (cAMP) elicited by adenosine was studied... more Abslraet--Accumulation of cyclic adenosine monophosphate (cAMP) elicited by adenosine was studied in slices and membrane preparations of optic tectum from chicks aged 1-13 days post-hatch. Accumulation of cAMP promoted by adenosine declined with age, the highest value being observed in three-day-old chicks and the lowest in ll-day-old chicks. However, when the slices were incubated with adenosine and the phosphodiesterase inhibitor-Ro 20-1724 the differences between the two ages were abolished, suggesting a higher phosphodiesterase activity in ll-day-old chicks. In membrane preparations, although basal adenylate cyclase activity was lower in three-day-old chicks, the guanylyl-imidodiphosphate (Gpp(NH)p) concentration curves for stimulation of adenylate cyclase activity indicated a higher sensitivity of G protein to Gpp(NH)p at this age. This hypothesis was reinforced by the observation that the binding of [3H]Gpp(NH)p to the membrane preparation was greater in three-day-old animals. In spite of these differences, the percentage of adenylate cyclase activity stimulation by 2-chloroadenosine (2CADO)+Gpp(NH)p was the same at both ages. These findings suggest that the decreased response evoked by adenosine during development is probably due to increased phosphodiesterase activity and a lower sensitivity of adenylate cyclase activity to Gpp(NH)p.
Metabotropic glutamate receptors (mGluRs) have been shown to modulate adenylate cyclase activity ... more Metabotropic glutamate receptors (mGluRs) have been shown to modulate adenylate cyclase activity via G-proteins. In the present study we report similar results to the previously observed in the literature, showing that glutamate and the metabotropic agonists, 1S,3R-ACPD or quisqualate induced cAMP accumulation in hippocampal slices of young rats. Moreover, guanine nucleotides GTP, GDP or GMP, inhibited the glutamate-induced cAMP accumulation. By measuring LDH activity in the buffer surrounding the slices, we showed that the integrity of the slices was maintained, indicating that the effect of guanine nucleotides was extracellular. GMP, GDPbeta-S or Gpp(NH)p abolished quisqualate-induced cAMP accumulation. GDPbeta-S or Gpp(NH)p but not GMP inhibited 1S,3R-ACPD-induced cAMP accumulation. The response evoked by glutamate was also abolished by the mGluR antagonists: L-AP3 abolished glutamate-induced cAMP accumulation in a dose-dependent manner and MCPG was effective only at the 2 mM dose. DNQX was ineffective. We are reporting here, an inhibition induced by guanine nucleotides, via an extracellular site (s), similar to the observed with classical glutamate antagonists on a cellular response evoked by mGluR agonists.
Binding properties of the subtypes of adenosine A2 receptors in membrane preparations and the eff... more Binding properties of the subtypes of adenosine A2 receptors in membrane preparations and the effects of adenosine receptor ligands on c AMP accumulation in slices from the optic tectum of neonatal chicks have been investigated. [ 3 H]2-[4-(2-p-carboxyethyl)phenylamino]-5'-N-ethylcarboxaminoadenosine (CGS 21680), a selective ligand for adenosine A2a receptors, did not bind to optic tectal membranes, as observed with rat striatal membranes. CGS 21680 also did not induce cyclic AMP accumulation in optic tectum slices. However, 5'-N-ethylcarboxamidoadenosine (NECA), 2-chloro-adenosine or adenosine induced a 2.5-to 3-fold increase on cyclic AMP accumulation in this preparation. [ 3 H]NECA binds to fresh non-washed-membranes obtained from optic tectum of chicks, displaying one population of binding sites, which can be displaced by NECA, 8-phenyltheophylline, 2-chloro-adenosine, but is not affected by CGS 21680. The estimated K D value was 400.90 + 80.50 nM and the B max was estimated to be 2.51 ± 0.54 pmol/mg protein. Guanine nucleotides, which modulate G-proteins activity intracellularly, are also involved in the inhibition of glutamate responses by acting extracellularly. Moreover, we have previously reported that guanine nucleotides potentiate, while glutamate inhibits, adenosineinduced cyclic AMP accumulation in slices from optic tectum of chicks. However, the guanine nucleotides, GMP or GppNHp and the metabotropic glutamate receptors agonist, 1S,3R-ACPD did not alter the [ 3 H]NECA binding observed in fresh non-washed-membranes. Therefore, the adenosine A2 receptor found in the optic tectum must be the adenosine A2b receptor which is available only in fresh membrane preparations, and its not modulated by guanine nucleotides or glutamate analogs.
Guanine nucleotides (GN) have been implicated in many intracellular mechanisms. Extracellular act... more Guanine nucleotides (GN) have been implicated in many intracellular mechanisms. Extracellular actions, probably as glutamate receptor antagonists, have also been recently attributed to these compounds. GN may have a neuroprotective role by inhibiting excitotoxic events evoked by glutamate. Effects of extracellular GN on adenosine-evoked cellular responses have also been reported. However, the exact mechanism of such interaction is not known. In the present study, we showed that GN potentiated adenosine-induced cAMP accumulation in slices of hippocampus from young rats. However, neither GMP nor the metabotropic glutamate receptor agonist, 1S,3R-ACPD, inhibited the binding of the adenosine receptor agonist [ 3 H]NECA (when binding to adenosine A2 receptors), or the binding of the adenosine A2a receptor agonist [ 3 H]CGS 21680 in hippocampal membrane preparations. GppNHp, probably by interacting with G-proteins, decreased [ 3 H]CGS 21680 binding. [ 3 H]GMP binding was assayed in order to evaluate the GN sites which are not G-proteins. [ 3 H]GMP binding was inhibited by GMP and GppNHp, but not by 1S,3R-ACPD. The interaction of endogenous adenosine with the GMP-binding sites was determined by incubating membranes in the presence or absence of adenosine deaminase (ADA). NECA, CADO, CGS 21680 and CPA (only at the highest concentration used) increased GMP binding in the presence of ADA. However, in the absence of ADA, the control levels of GMP binding were as high as in the presence of added ADA plus adenosine agonists, indicating that endogenous adenosine modulates the binding of GMP. If this site has a neuroprotective role, adenosine may be increasing its neuromodulator and proposed protective action.
1. Guanosine-5 -monophosphate (GMP) was evaluated as a neuroprotective agent against the damage o... more 1. Guanosine-5 -monophosphate (GMP) was evaluated as a neuroprotective agent against the damage observed in rat hippocampal slices submitted to an in vitro model of ischemia with or without the presence of the ionotropic glutamate receptor agonist, Kainic acid (KA).
Guanine derivates have been implicated in many relevant extracellular roles, such as modulation o... more Guanine derivates have been implicated in many relevant extracellular roles, such as modulation of glutamate transmission, protecting neurons against excitotoxic damage. Guanine derivatives are spontaneously released to the extracellular space from cultured astrocytes during oxygenglucose deprivation (OGD) and may act as trophic factors, glutamate receptors blockers or glutamate transport modulators, thus promoting neuroprotection. The aim of this study was to evaluate the mechanisms involved in the neuroprotective role of the nucleoside guanosine in rat hippocampal slices submitted to OGD, identifying a putative extracellular binding site and the intracellular signaling pathways related to guanosine-induced neuroprotection. Cell damage to hippocampal slices submitted to 15 min of OGD followed by 2 h of reperfusion was decreased by the addition of guanosine (100 mM) or guanosine-5 0 -monophosphate (GMP, 100 mM). The neuroprotective effect of guanosine was not altered by the addition of adenosine receptor antagonists, nucleosides transport inhibitor, glutamate receptor antagonists, glutamate transport inhibitors, and a non-selective Na + and Ca 2+ channel blocker. However, in a Ca 2+ -free medium (by adding EGTA), guanosine was ineffective. Nifedipine (a Ca 2+ channel blocker) increased the neuroprotective effect of guanosine and 4-aminopyridine, a K + channel blocker, reversed the neuroprotective effect of guanosine. Evaluation of the intracellular signaling pathways associated with guanosine-induced neuroprotection showed the involvement of PKA, PKC, MEK and PI-3K pathways, but not CaMKII. Therefore, this study shows guanosine is acting via K + channels activation, depending on extracellular Ca 2+ levels and via modulation of the PKA, PKC, MEK and/or PI-3K pathways. #
Inosine is an endogenous nucleoside that has antiinflammatory and antinociceptive properties. Ino... more Inosine is an endogenous nucleoside that has antiinflammatory and antinociceptive properties. Inosine is a metabolite of adenosine, and some of its actions suggest the involvement of adenosine A1 receptors (A1Rs). The purpose of this study was to better understand mechanisms of inosineinduced antinociception by investigating the role of A1Rs and purine metabolism inhibitors. Inosine antinociception was evaluated using the formalin test in mice. An A1R-selective antagonist (DPCPX), A1R knockout mice (gene deletion) and mice with A1R reduced expression (antisense oligonucleotides) were used to assess the role of A1Rs in the antinociceptive action of inosine. Binding assays were performed to compare the affinity of inosine and adenosine for A1Rs. Finally, the role of adenosine and inosine breakdown was assessed using deoxycoformycin (DCF) and forodesine (FDS) as enzymatic inhibitors of adenosine deaminase and purine nucleoside phosphorylase, respectively. Inosine induced antinociception in the formalin test when given by systemic, spinal and peripheral routes. Systemically, inosine exhibited a potency similar to adenosine, and its effects were inhibited by DPCPX. Inosine did not induce antinociception in A1R knockout mice or in mice with reduced A1R expression. In binding studies, inosine bound to A1Rs with an affinity similar to adenosine. DCF had no effect on inosine actions. FDS augmented the antinociceptive effect of a low systemic dose of inosine and, at a higher dose, induced antinociception by itself. Collectively, these data indicate that inosine is an agonist for A1Rs with antinociceptive properties and a potency similar to adenosine and can be considered another endogenous ligand for this receptor.
Oxygen-glucose deprivation (OGD ) is widely used as an in vitro model for stroke, showing similar... more Oxygen-glucose deprivation (OGD ) is widely used as an in vitro model for stroke, showing similarities with the in vivo models of brain ischemia. In order to perform OGD, cell or tissue cultures, such as primary neurons or organotypic slices, and acutely prepared tissue slices are usually incubated in a glucose-free medium under a deoxygenated atmosphere, for example in a hypoxic chamber. Here, we describe the step-by-step procedure to expose cultures and acute slices to OGD, focusing on the most suitable methods for assessing cellular death and/or viability. OGD is a simple yet highly useful technique, not only for the elucidation of the role of key cellular and molecular mechanisms underlying brain ischemia, but also for the development of novel neuroprotective strategies.
Brain tolerance or resistance can be achieved by interventions before and after injury through po... more Brain tolerance or resistance can be achieved by interventions before and after injury through potential toxic agents used in low stimulus or dose. For brain diseases, the neuroprotection paradigm desires an attenuation of the resulting motor, cognitive, emotional, or memory deficits following the insult. Preconditioning is a well-established experimental and clinical translational strategy with great beneficial effects, but limited applications. NMDA receptors have been reported as protagonists in the adjacent cellular mechanisms contributing to the development of brain tolerance. Postconditioning has recently emerged as a new neuroprotective strategy, which has shown interesting results when applied immediately, i.e. several hours to days, after a stroke event. Investigations using chemical postconditioning are still incipient, but nevertheless represent an interesting and promising clinical strategy. In the present review pre-and postconditioning are discussed as neuroprotective paradigms and the focus of our attention lies on the participation of NMDA receptors proteins in the processes related to neuroprotection.
ABSTRACT Aloysia gratissima (Gill. et Hook) Tronc. (Verbenaceae) is native to South America with ... more ABSTRACT Aloysia gratissima (Gill. et Hook) Tronc. (Verbenaceae) is native to South America with folk therapeutic applications for a wide range of diseases. The polyphenolic and carotenoid profile, toxicity, and antioxidant activity of aqueous extract of Aloysia gratissima were investigated. HPLC analyses showed high amounts of ferulic acid, trans-cinnamic acid and p-coumaric acid, and also trans-β- carotene and lutein which fluctuated throughout the seasons. Furthermore, the extract investigated not only exerted antioxidant activity but also inhibited lipid peroxidation. Toxicity was achieved only at the highest dose tested. Therefore, A. gratissima is a potential species for medicinal purposes.
There is extensive evidence indicating the influence of seizures on emotional responses observed ... more There is extensive evidence indicating the influence of seizures on emotional responses observed in human and animals, but so far few studies are focusing on the behavioral profile of animals that do not have seizures despite being treated with convulsant agents. We aimed to establish the behavioral profile, biochemical, and electrographic features of rats submitted to the pilocarpine model of temporal lobe epilepsy Rats treated with pilocarpine (20 to 350 mg/kg, i.p.) that did not develop status epilepticus or spontaneous recurrent seizures were evaluated 1 month later in the elevated plus maze (EPM), T-maze (ETM), open-field (OF), and step-down avoidance tests. Electroencephalographic (EEG), glutamate uptake, and hippocampal neuronal death assays were also performed Pilocarpine (150 or 350 mg/kg) promoted anxiogenic-like effects in rats evaluated in the EPM, ETM, and OF tests, whereas only the highest dose evoked spike-wave discharges during EEG recordings. Hippocampal theta rhythm was increased by pilocarpine 150 or 350 mg/kg and only the highest dose reduced the L-[(3)H]-glutamate uptake and cell viability on hippocampal slices. Subconvulsant doses of pilocarpine promote long-lasting alterations on neural circuitry, reflected by an increased theta activity in the hippocampus and an anxiety-like profile of rats evaluated 1 month after the treatment which is independent of seizure occurrence and is not related to changes in glutamate uptake or hippocampal damage. These results prompt us to suggest that a systemic administration of subconvulsant doses of pilocarpine could be useful as a new tool to model trait anxiety in rats.
N-methyl-d-aspartate (NMDA) preconditioning is induced by subtoxic doses of NMDA and it promotes ... more N-methyl-d-aspartate (NMDA) preconditioning is induced by subtoxic doses of NMDA and it promotes a transient state of resistance against subsequent lethal insults. Interestingly, this mechanism of neuroprotection depends on adenosine A1 receptors (A1R), since blockade of A1R precludes this phenomenon. In this study we evaluated the consequences of NMDA preconditioning on the hippocampal A1R biology (i.e. expression, binding properties and functionality). Accordingly, we measured A1R expression in NMDA preconditioned mice (75mg/kg, i.p.; 24h) and showed that neither the total amount of receptor, nor the A1R levels in the synaptic fraction was altered. In addition, the A1R binding affinity to the antagonist [(3)H] DPCPX was slightly increased in total membrane extracts of hippocampus from preconditioned mice. Next, we evaluated the impact of NMDA preconditioning on A1R functioning by measuring the A1R-mediated regulation of glutamate uptake into hippocampal slices and on behavioral re...
Familial hypercholesterolemia is caused by inherited genetic abnormalities that directly or indir... more Familial hypercholesterolemia is caused by inherited genetic abnormalities that directly or indirectly affect the function of the low-density lipoprotein (LDL) receptor. This condition is characterized by defective catabolism of LDL which results in increased plasma cholesterol concentrations and premature coronary artery disease. Nevertheless, there is increasing preclinical and clinical evidence indicating that familial hypercholesterolemia subjects show a particularly high incidence of mild cognitive impairment. Moreover, the LDL receptor (LDLr) has been implicated as the main central nervous system apolipoprotein E receptor that regulates amyloid deposition in distinct mouse models of β-amyloidosis. In this regard, herein we hypothesized that the lack of LDLr would enhance the susceptibility to amyloid-β-(Aβ)-induced neurotoxicity in mice. Using the acute intracerebroventricular injection of aggregated Aβ(1-40) peptide (400 pmol/mouse), a useful approach for the investigation of...
Ethnopharmacological relevance: Aloysia gratissima (Gill. et Hook) Tronc. (Verbenaceae) is used t... more Ethnopharmacological relevance: Aloysia gratissima (Gill. et Hook) Tronc. (Verbenaceae) is used traditionally for the treatment of headache, bronchitis, and nervous systems disorders including depression. Aim of the study: To investigate the antidepressant-like and neuroprotective effects of Aloysia gratissima aqueous extract (AE) and the involvement of l-arginine-nitric oxide (NO)-cyclic guanosine monophosphate (cGMP) pathway. Materials and methods: The antidepressant-like effect of AE was evaluated through behavioral despair in forced swimming test (FST) and tail suspension test (TST). Swiss albino mice were treated by oral route and after 1 h were analyzed the time of immobility in the FST and TST. In addition, the neuroprotective effect of AE against glutamate excitotoxicity was evaluate through cell viability of hippocampal slices, phosphorylation of Akt, and the immunocontent of inducible oxide nitric synthase (iNOS) were investigated by western blotting. Results: The immobility time in the FST and TST were reduced by AE (100-1000 and 10-300 mg/kg, respectively). The antidepressant-like effect of AE in the TST was prevented by the pretreatment with N-methyl-d-aspartate (NMDA), l-arginine or sildenafil. The subeffective dose of AE produced a synergistic antidepressant-like effect with MK-801 (an antagonist of NMDA receptor), methylene blue, l-NNA (an inhibitor of NO synthase) or ODQ (an inhibitor of soluble guanylate cyclase). In ex vivo experiments, pretreatment with AE prevented the loss of cell viability induced by glutamate, thus affording neuroprotection. Glutamate toxicity caused a decreased Akt phosphorylation and an increased iNOS expression. Conclusions: The present study provides convincing evidence of neuroprotection and the involvement of the l-arginine-NO-cGMP pathway in the antidepressant-like effect of AE. Therefore, AE could be of potential interest for the treatment of depressive disorders and neurological conditions associated with glutamate excitotoxicity.
1. Guanosine-5 -monophosphate (GMP) was evaluated as a neuroprotective agent against the damage o... more 1. Guanosine-5 -monophosphate (GMP) was evaluated as a neuroprotective agent against the damage observed in rat hippocampal slices submitted to an in vitro model of ischemia with or without the presence of the ionotropic glutamate receptor agonist, Kainic acid (KA).
Statins are inhibitors of the 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, thereby ... more Statins are inhibitors of the 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase, thereby inhibiting cell synthesis of cholesterol and isoprenoids. Moreover, several studies have been evaluating pleiotropic effects of statins, mainly because they present neuroprotective effects in various pathological conditions. However, knowledge about behavioral effects of statins per se is relatively scarce. Considering these facts, we aimed to analyze behavioral responses of atorvastatin or simvastatin-treated mice in the open field test, elevated plus maze and object location test. Atorvastatin treatment for 7 consecutive days at 1 mg/Kg or 10 mg/Kg (v.o.) or simvastatin 10 mg/Kg or 20 mg/Kg enhanced cognitive performance in object location test when compared to control group (saline-treated mice). Simvastatin effects on mice performance in the object location test was abolished by post-training infusion of the beta-adrenoceptor antagonist propranolol. Atorvastatin and simvastatin did not change the behavioral response in open field and elevated plus-maze (EPM) tests in any of used doses. These data demonstrate the positive effects of both statins in cognitive processes in mice, without any alteration in locomotor parameters in the open field test or anxiolytic-like behavior in EPM. In conclusion, we demonstrate that atorvastatin and simvastatin per se improves the cognitive performance in a rodent model of spatial memory and this effect is related to beta-adrenergic receptors modulation.
Changes on cyclic adenosine monophosphate (cAMP) levels in response to adenosine and glutamate an... more Changes on cyclic adenosine monophosphate (cAMP) levels in response to adenosine and glutamate and the subtype of glutamate receptors involved in this interaction were studied in slices of optic tectum from 3-day-old chicks. cAMP accumulation mediated by adenosine (100 µM) was abolished by 8-phenyltheophylline (15 uM). Glutamate and the glutamatergic agonists kainate or trans-d,l-1-aminocyclopentane-1,3-dicarboxylic acid (trans-ACPD) did not evoke cAMP
Creatine is the substrate for creatine kinase in the synthesis of phosphocreatine (PCr). This ene... more Creatine is the substrate for creatine kinase in the synthesis of phosphocreatine (PCr). This energetic system is endowed of antioxidant and neuroprotective properties and plays a pivotal role in brain energy homeostasis. The purpose of this study was to investigate the neuroprotective effect of creatine and PCr against 6-hydroxydopamine (6-OHDA)-induced mitochondrial dysfunction and cell death in rat striatal slices, used as an in vitro Parkinson's model. The possible involvement of the signaling pathway mediated by phosphatidylinositol-3 kinase (PI3K), protein kinase B (Akt), and glycogen synthase kinase-3b (GSK3b) was also evaluated. Exposure of striatal slices to 6-OHDA caused a significant disruption of the cellular homeostasis measured as 3-(4,5 dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide reduction, lactate dehydrogenase release, and tyrosine hydroxylase levels. 6-OHDA exposure increased the levels of reactive oxygen species and thiobarbituric acid reactive substances production and decreased mitochondrial membrane potential in rat striatal slices. Furthermore, 6-OHDA decreased the phosphorylation of Akt (Serine 473 ) and GSK3b (Serine 9 ). Coincubation with 6-OHDA and creatine or PCr reduced the effects of 6-OHDA toxicity. The protective effect afforded by creatine or PCr against 6-OHDA-induced toxicity was reversed by the PI3K inhibitor LY294002. In conclusion, creatine and PCr minimize oxidative stress in striatum to afford neuroprotection of dopaminergic neurons.
The exact mechanisms by which 3-nitropropionic acid (3-NP), a naturally occurring plant and funga... more The exact mechanisms by which 3-nitropropionic acid (3-NP), a naturally occurring plant and fungal neurotoxin, exerts its neurotoxic effects are not fully understood. However, blockage of ATP synthesis by the irreversible inhibition of succinate dehydrogenase activity, increased production of free radicals, and secondary excitotoxicity have been implicated in its actions. In the present study, synaptic vesicle preparations from brain of
International Journal of Developmental Neuroscience, 1995
Abslraet--Accumulation of cyclic adenosine monophosphate (cAMP) elicited by adenosine was studied... more Abslraet--Accumulation of cyclic adenosine monophosphate (cAMP) elicited by adenosine was studied in slices and membrane preparations of optic tectum from chicks aged 1-13 days post-hatch. Accumulation of cAMP promoted by adenosine declined with age, the highest value being observed in three-day-old chicks and the lowest in ll-day-old chicks. However, when the slices were incubated with adenosine and the phosphodiesterase inhibitor-Ro 20-1724 the differences between the two ages were abolished, suggesting a higher phosphodiesterase activity in ll-day-old chicks. In membrane preparations, although basal adenylate cyclase activity was lower in three-day-old chicks, the guanylyl-imidodiphosphate (Gpp(NH)p) concentration curves for stimulation of adenylate cyclase activity indicated a higher sensitivity of G protein to Gpp(NH)p at this age. This hypothesis was reinforced by the observation that the binding of [3H]Gpp(NH)p to the membrane preparation was greater in three-day-old animals. In spite of these differences, the percentage of adenylate cyclase activity stimulation by 2-chloroadenosine (2CADO)+Gpp(NH)p was the same at both ages. These findings suggest that the decreased response evoked by adenosine during development is probably due to increased phosphodiesterase activity and a lower sensitivity of adenylate cyclase activity to Gpp(NH)p.
Metabotropic glutamate receptors (mGluRs) have been shown to modulate adenylate cyclase activity ... more Metabotropic glutamate receptors (mGluRs) have been shown to modulate adenylate cyclase activity via G-proteins. In the present study we report similar results to the previously observed in the literature, showing that glutamate and the metabotropic agonists, 1S,3R-ACPD or quisqualate induced cAMP accumulation in hippocampal slices of young rats. Moreover, guanine nucleotides GTP, GDP or GMP, inhibited the glutamate-induced cAMP accumulation. By measuring LDH activity in the buffer surrounding the slices, we showed that the integrity of the slices was maintained, indicating that the effect of guanine nucleotides was extracellular. GMP, GDPbeta-S or Gpp(NH)p abolished quisqualate-induced cAMP accumulation. GDPbeta-S or Gpp(NH)p but not GMP inhibited 1S,3R-ACPD-induced cAMP accumulation. The response evoked by glutamate was also abolished by the mGluR antagonists: L-AP3 abolished glutamate-induced cAMP accumulation in a dose-dependent manner and MCPG was effective only at the 2 mM dose. DNQX was ineffective. We are reporting here, an inhibition induced by guanine nucleotides, via an extracellular site (s), similar to the observed with classical glutamate antagonists on a cellular response evoked by mGluR agonists.
Binding properties of the subtypes of adenosine A2 receptors in membrane preparations and the eff... more Binding properties of the subtypes of adenosine A2 receptors in membrane preparations and the effects of adenosine receptor ligands on c AMP accumulation in slices from the optic tectum of neonatal chicks have been investigated. [ 3 H]2-[4-(2-p-carboxyethyl)phenylamino]-5'-N-ethylcarboxaminoadenosine (CGS 21680), a selective ligand for adenosine A2a receptors, did not bind to optic tectal membranes, as observed with rat striatal membranes. CGS 21680 also did not induce cyclic AMP accumulation in optic tectum slices. However, 5'-N-ethylcarboxamidoadenosine (NECA), 2-chloro-adenosine or adenosine induced a 2.5-to 3-fold increase on cyclic AMP accumulation in this preparation. [ 3 H]NECA binds to fresh non-washed-membranes obtained from optic tectum of chicks, displaying one population of binding sites, which can be displaced by NECA, 8-phenyltheophylline, 2-chloro-adenosine, but is not affected by CGS 21680. The estimated K D value was 400.90 + 80.50 nM and the B max was estimated to be 2.51 ± 0.54 pmol/mg protein. Guanine nucleotides, which modulate G-proteins activity intracellularly, are also involved in the inhibition of glutamate responses by acting extracellularly. Moreover, we have previously reported that guanine nucleotides potentiate, while glutamate inhibits, adenosineinduced cyclic AMP accumulation in slices from optic tectum of chicks. However, the guanine nucleotides, GMP or GppNHp and the metabotropic glutamate receptors agonist, 1S,3R-ACPD did not alter the [ 3 H]NECA binding observed in fresh non-washed-membranes. Therefore, the adenosine A2 receptor found in the optic tectum must be the adenosine A2b receptor which is available only in fresh membrane preparations, and its not modulated by guanine nucleotides or glutamate analogs.
Guanine nucleotides (GN) have been implicated in many intracellular mechanisms. Extracellular act... more Guanine nucleotides (GN) have been implicated in many intracellular mechanisms. Extracellular actions, probably as glutamate receptor antagonists, have also been recently attributed to these compounds. GN may have a neuroprotective role by inhibiting excitotoxic events evoked by glutamate. Effects of extracellular GN on adenosine-evoked cellular responses have also been reported. However, the exact mechanism of such interaction is not known. In the present study, we showed that GN potentiated adenosine-induced cAMP accumulation in slices of hippocampus from young rats. However, neither GMP nor the metabotropic glutamate receptor agonist, 1S,3R-ACPD, inhibited the binding of the adenosine receptor agonist [ 3 H]NECA (when binding to adenosine A2 receptors), or the binding of the adenosine A2a receptor agonist [ 3 H]CGS 21680 in hippocampal membrane preparations. GppNHp, probably by interacting with G-proteins, decreased [ 3 H]CGS 21680 binding. [ 3 H]GMP binding was assayed in order to evaluate the GN sites which are not G-proteins. [ 3 H]GMP binding was inhibited by GMP and GppNHp, but not by 1S,3R-ACPD. The interaction of endogenous adenosine with the GMP-binding sites was determined by incubating membranes in the presence or absence of adenosine deaminase (ADA). NECA, CADO, CGS 21680 and CPA (only at the highest concentration used) increased GMP binding in the presence of ADA. However, in the absence of ADA, the control levels of GMP binding were as high as in the presence of added ADA plus adenosine agonists, indicating that endogenous adenosine modulates the binding of GMP. If this site has a neuroprotective role, adenosine may be increasing its neuromodulator and proposed protective action.
1. Guanosine-5 -monophosphate (GMP) was evaluated as a neuroprotective agent against the damage o... more 1. Guanosine-5 -monophosphate (GMP) was evaluated as a neuroprotective agent against the damage observed in rat hippocampal slices submitted to an in vitro model of ischemia with or without the presence of the ionotropic glutamate receptor agonist, Kainic acid (KA).
Guanine derivates have been implicated in many relevant extracellular roles, such as modulation o... more Guanine derivates have been implicated in many relevant extracellular roles, such as modulation of glutamate transmission, protecting neurons against excitotoxic damage. Guanine derivatives are spontaneously released to the extracellular space from cultured astrocytes during oxygenglucose deprivation (OGD) and may act as trophic factors, glutamate receptors blockers or glutamate transport modulators, thus promoting neuroprotection. The aim of this study was to evaluate the mechanisms involved in the neuroprotective role of the nucleoside guanosine in rat hippocampal slices submitted to OGD, identifying a putative extracellular binding site and the intracellular signaling pathways related to guanosine-induced neuroprotection. Cell damage to hippocampal slices submitted to 15 min of OGD followed by 2 h of reperfusion was decreased by the addition of guanosine (100 mM) or guanosine-5 0 -monophosphate (GMP, 100 mM). The neuroprotective effect of guanosine was not altered by the addition of adenosine receptor antagonists, nucleosides transport inhibitor, glutamate receptor antagonists, glutamate transport inhibitors, and a non-selective Na + and Ca 2+ channel blocker. However, in a Ca 2+ -free medium (by adding EGTA), guanosine was ineffective. Nifedipine (a Ca 2+ channel blocker) increased the neuroprotective effect of guanosine and 4-aminopyridine, a K + channel blocker, reversed the neuroprotective effect of guanosine. Evaluation of the intracellular signaling pathways associated with guanosine-induced neuroprotection showed the involvement of PKA, PKC, MEK and PI-3K pathways, but not CaMKII. Therefore, this study shows guanosine is acting via K + channels activation, depending on extracellular Ca 2+ levels and via modulation of the PKA, PKC, MEK and/or PI-3K pathways. #
Inosine is an endogenous nucleoside that has antiinflammatory and antinociceptive properties. Ino... more Inosine is an endogenous nucleoside that has antiinflammatory and antinociceptive properties. Inosine is a metabolite of adenosine, and some of its actions suggest the involvement of adenosine A1 receptors (A1Rs). The purpose of this study was to better understand mechanisms of inosineinduced antinociception by investigating the role of A1Rs and purine metabolism inhibitors. Inosine antinociception was evaluated using the formalin test in mice. An A1R-selective antagonist (DPCPX), A1R knockout mice (gene deletion) and mice with A1R reduced expression (antisense oligonucleotides) were used to assess the role of A1Rs in the antinociceptive action of inosine. Binding assays were performed to compare the affinity of inosine and adenosine for A1Rs. Finally, the role of adenosine and inosine breakdown was assessed using deoxycoformycin (DCF) and forodesine (FDS) as enzymatic inhibitors of adenosine deaminase and purine nucleoside phosphorylase, respectively. Inosine induced antinociception in the formalin test when given by systemic, spinal and peripheral routes. Systemically, inosine exhibited a potency similar to adenosine, and its effects were inhibited by DPCPX. Inosine did not induce antinociception in A1R knockout mice or in mice with reduced A1R expression. In binding studies, inosine bound to A1Rs with an affinity similar to adenosine. DCF had no effect on inosine actions. FDS augmented the antinociceptive effect of a low systemic dose of inosine and, at a higher dose, induced antinociception by itself. Collectively, these data indicate that inosine is an agonist for A1Rs with antinociceptive properties and a potency similar to adenosine and can be considered another endogenous ligand for this receptor.
Oxygen-glucose deprivation (OGD ) is widely used as an in vitro model for stroke, showing similar... more Oxygen-glucose deprivation (OGD ) is widely used as an in vitro model for stroke, showing similarities with the in vivo models of brain ischemia. In order to perform OGD, cell or tissue cultures, such as primary neurons or organotypic slices, and acutely prepared tissue slices are usually incubated in a glucose-free medium under a deoxygenated atmosphere, for example in a hypoxic chamber. Here, we describe the step-by-step procedure to expose cultures and acute slices to OGD, focusing on the most suitable methods for assessing cellular death and/or viability. OGD is a simple yet highly useful technique, not only for the elucidation of the role of key cellular and molecular mechanisms underlying brain ischemia, but also for the development of novel neuroprotective strategies.
Brain tolerance or resistance can be achieved by interventions before and after injury through po... more Brain tolerance or resistance can be achieved by interventions before and after injury through potential toxic agents used in low stimulus or dose. For brain diseases, the neuroprotection paradigm desires an attenuation of the resulting motor, cognitive, emotional, or memory deficits following the insult. Preconditioning is a well-established experimental and clinical translational strategy with great beneficial effects, but limited applications. NMDA receptors have been reported as protagonists in the adjacent cellular mechanisms contributing to the development of brain tolerance. Postconditioning has recently emerged as a new neuroprotective strategy, which has shown interesting results when applied immediately, i.e. several hours to days, after a stroke event. Investigations using chemical postconditioning are still incipient, but nevertheless represent an interesting and promising clinical strategy. In the present review pre-and postconditioning are discussed as neuroprotective paradigms and the focus of our attention lies on the participation of NMDA receptors proteins in the processes related to neuroprotection.
ABSTRACT Aloysia gratissima (Gill. et Hook) Tronc. (Verbenaceae) is native to South America with ... more ABSTRACT Aloysia gratissima (Gill. et Hook) Tronc. (Verbenaceae) is native to South America with folk therapeutic applications for a wide range of diseases. The polyphenolic and carotenoid profile, toxicity, and antioxidant activity of aqueous extract of Aloysia gratissima were investigated. HPLC analyses showed high amounts of ferulic acid, trans-cinnamic acid and p-coumaric acid, and also trans-β- carotene and lutein which fluctuated throughout the seasons. Furthermore, the extract investigated not only exerted antioxidant activity but also inhibited lipid peroxidation. Toxicity was achieved only at the highest dose tested. Therefore, A. gratissima is a potential species for medicinal purposes.
There is extensive evidence indicating the influence of seizures on emotional responses observed ... more There is extensive evidence indicating the influence of seizures on emotional responses observed in human and animals, but so far few studies are focusing on the behavioral profile of animals that do not have seizures despite being treated with convulsant agents. We aimed to establish the behavioral profile, biochemical, and electrographic features of rats submitted to the pilocarpine model of temporal lobe epilepsy Rats treated with pilocarpine (20 to 350 mg/kg, i.p.) that did not develop status epilepticus or spontaneous recurrent seizures were evaluated 1 month later in the elevated plus maze (EPM), T-maze (ETM), open-field (OF), and step-down avoidance tests. Electroencephalographic (EEG), glutamate uptake, and hippocampal neuronal death assays were also performed Pilocarpine (150 or 350 mg/kg) promoted anxiogenic-like effects in rats evaluated in the EPM, ETM, and OF tests, whereas only the highest dose evoked spike-wave discharges during EEG recordings. Hippocampal theta rhythm was increased by pilocarpine 150 or 350 mg/kg and only the highest dose reduced the L-[(3)H]-glutamate uptake and cell viability on hippocampal slices. Subconvulsant doses of pilocarpine promote long-lasting alterations on neural circuitry, reflected by an increased theta activity in the hippocampus and an anxiety-like profile of rats evaluated 1 month after the treatment which is independent of seizure occurrence and is not related to changes in glutamate uptake or hippocampal damage. These results prompt us to suggest that a systemic administration of subconvulsant doses of pilocarpine could be useful as a new tool to model trait anxiety in rats.
Uploads
Papers by Carla Tasca