Stapp car crash : conference : proceedings, 43rd, San Diego, Cal., October 25-27, 1999, Oct 1, 1999
Linear viscoelastic material parameters of porcine brain tissue and two brain substitute material... more Linear viscoelastic material parameters of porcine brain tissue and two brain substitute materials for use in mechanical head models (edible bone gelatin and dielectric silicone gel) were determined in small deformation, oscillatory shear experiments. Frequencies to 1000 Hertz could be obtained using the Time/Temperature Superposition principle. Brain tissue material parameters (i.e. dynamic modulus (phase angle) of 500 (10 degrees) and 1250 Pa (27 degrees) at 0.1 and 260 Hz respectively) are within the range of data reported in literature. The gelatin behaves much stiffer (modulus on the order of 100 kPa) and does not show viscous behavior. Silicone gel resembles brain tissue at low frequencies but becomes more stiff and more viscous at higher frequencies (dynamic modulus (phase angle) 245 Pa (7 degrees) and 5100 Pa (56 degrees) at 0.1 and 260 Hz respectively). Furthermore, the silicone gel behaves linearly for strains up to at least 10%, whereas brain tissue exhibits non-linear behavior for strains larger than 1%.
Uploads
Papers by Gerrit Peters