Ismail Cicek, Ph.D.
- 4 years experience as academician at Istanbul Technical University, Maritime Faculty
- 15 years of experience in the US DOD projects and programs as Systems Enginer, Research Engineer, Mechanical Engineer, Test Manager, Chief Engineer, and VP for Programs Management. Worked in OnBoard Software, MTC Technologies, BAE Systems, Terra Health, and USAF Aeromedical Test Lab (ATL). Dr Cicek's experience includes unmanned aerial vehicle development utilizing the Geographical Information Systems (GIS).
- Lectured graduate level course titled “Integrated Product Verification & Validation”, a PhD course between the Texas Tech University and Raytheon in Systems Engineering graduate program.
EDUCATION:
> Ph.D. in Mechanical Engineering, Texas Tech University (TTU)
> M.S.in Mechanical Engineering, Texas Tech University (TTU)
> B.S., Marine Engineering, Istanbul Technical University (ITU)
> Engineering Technician, Electrical Systems Dept., Kutahya Technical College, Turkey
Address: http://independent.academia.edu/IsmailCicek/About
Email: isaac AT drcicek.com
- 15 years of experience in the US DOD projects and programs as Systems Enginer, Research Engineer, Mechanical Engineer, Test Manager, Chief Engineer, and VP for Programs Management. Worked in OnBoard Software, MTC Technologies, BAE Systems, Terra Health, and USAF Aeromedical Test Lab (ATL). Dr Cicek's experience includes unmanned aerial vehicle development utilizing the Geographical Information Systems (GIS).
- Lectured graduate level course titled “Integrated Product Verification & Validation”, a PhD course between the Texas Tech University and Raytheon in Systems Engineering graduate program.
EDUCATION:
> Ph.D. in Mechanical Engineering, Texas Tech University (TTU)
> M.S.in Mechanical Engineering, Texas Tech University (TTU)
> B.S., Marine Engineering, Istanbul Technical University (ITU)
> Engineering Technician, Electrical Systems Dept., Kutahya Technical College, Turkey
Address: http://independent.academia.edu/IsmailCicek/About
Email: isaac AT drcicek.com
less
InterestsView All (24)
Uploads
Books by Ismail Cicek, Ph.D.
Hereafter, this document will be referred to as the Joint Enroute Care Equipment Test Standard (JECETS). Test methods found in this document can be tailored based on the type of test article
and its performance specifications. Other considerations for tailoring test methods may include, but are not limited to, “single-use” items and medical consumables. In this document, aeromedical equipment is referred to as certified carry-on medical equipment used aboard military aircraft.
Carry-on medical equipment is defined as portable medical equipment used by health care providers during the treatment of ill or injured patients onboard U.S. military dedicated or opportune vehicles whether it is by air, land, or sea.
Aeromedical equipment will have a service specific certification authorizing onboard use for each respective vehicle platform. For the U.S. Army, certification consists of a fleet Airworthiness
Release (AWR) and an Aeromedical Certification Memorandum (ACM). For the U.S. Air Force (USAF), certification consists of concurrence to a Safe-to-Fly (STF) recommendation.
Certification for the U.S. Navy consists of Navy Flight Clearance through Class Desks Managers at Naval Air Systems Command (NAVAIR). In accordance with Army Regulation 40-61 and Air
Force Instruction (AFI) 11-202, the U.S. Army Aeromedical Research Laboratory (USAARL) and USAF Aeromedical Branch (ASC/WNUP) Aeromedical Test Laboratory (ATL) are the primary
organizations for performing airworthiness and STF certification testing.
The test methods described in this document apply to eromedical equipment to be used aboard opportune or dedicated aircraft, as follows:
Fixed-wing: C-17, C-130 E/H, C-130J, KC-10, KC-135, C-21, C-5, and C-27J
Rotary-wing: UH-1, H-60 Series Helicopters (UH-60 and HH-60), and CH-47.
Papers by Ismail Cicek, Ph.D.
Several government standards provide adequate descriptions of acceleration test methods; however, none formally documents a non-destructive test method to qualify equipment as safe-to-fly (STF). Using the USAF fixed-wing aircraft STF test criteria, this article presents a structured process developed by the Aeromedical Test Branch, 77th Aeronautical Systems Group, to assess equipment as STF. Further, it demonstrates the application of this process to meet the acceleration requirements for aeromedical evacuation equipment.
benefits of applying AD to product development. In this model, the AD method is extended to cover the whole product development lifecycle, including the test domain, and new domain characteristic vectors are introduced to systematically capture and manage the input constraints and system components.
The TPDL model helps develop, capture, and present both the big-picture and detailed view of the product development knowledge, including design and requirement traceability knowledge. The objectives of TDPL are to guide the designers, developers, and other members of a transdisciplinary product development team throughout the development effort as well as to help capture, maintain, and manage the knowledge produced during the product development process.
The TDPL model aims to improve the quality of the design, requirements management, change management, project management, and communication between stakeholders as
well as to shorten the development time and reduce the development cost.
normally when exposed to vibration and shock within the integrated system. Commercial-off-the-shelf (COTS) ruggedized portable computers are pre-tested for compliance with these standards; however, re-testing is also needed when mechanical or electrical components are added or modified for installation.
This paper discusses the vibration issues that need to be considered when designing computer equipment for installation on a commercial aircraft, based on the aforementioned standards. A case study is included which provides details of lessons learned during the installation of a COTS ruggedized portable computer on C-5 Aircraft where failures due to vibration did occur.
ÖZET
Gemi Makineleri ĠĢletme Mühendisliği (Marine Engineering) gemi makinelerinin iĢletilmesi ve bakım ve onarımlarının yapılması alanındaki mühendislik dalıdır. Gemi Makineleri ĠĢletme Mühendisi (Marine Engineer) ise gemi makinelerini iĢleten, düzenli ve verimli çalıĢmalarını sağlayan ve tamir ve bakımını yapan zabittir. Klasik olarak gemi makine dairesinde çalıĢacak olan zabitlerin eğitimi bu tanımlarda belirtilen hususlara göre yapılmaktadır. Bu tanımlamalar ıĢığında ve daha ileri anlamda Gemi Makineleri ĠĢletme Mühendisleri makine dairesinde bir arıza olduğunda tecrübeye dayalı olarak karar verirler ve verdikleri bu kararın mühendislik açısından mantıksal veya teknik bir açıklaması vardır. Gemi Makineleri ĠĢletme Mühendisliği eğitiminde bu hususların gözönünde bulundurulması gerekir.
Son 10-15 yılda olan teknolojik geliĢmeler ve küreselleĢmenin getirdiği sosyal geliĢme ve değiĢimlerin klasiklikten uzak olarak çok hızlı bir Ģekilde gerçekleĢmesi Gemi Makineleri ĠĢletme Mühendisliği eğitimini de etkilemekte ve uluslararası çeĢitli organizasyon ve eğitim kuruluĢları arasında ikili iliĢkiler ve eğitim programları oluĢturulmaktadır. Bu değiĢimler Gemi Makineleri ĠĢletme Mühendisliği eğitiminin de yeniden düzenlenmesini ve uluslararası ihtiyaçlara cevap verecek programa sahip olmasını gerektirmektedir.
Bu çalıĢmanın amacı, Gemi Makineleri ĠĢletme Mühendisinin çalıĢma ortamını dikkatlice inceleyerek ve geliĢen teknolojik, ekonomik, sosyal ve kültürel değiĢiklikleri de gözönünde bulundurarak Gemi Makineleri ĠĢletme Mühendislerinin eğitimlerinin nasıl olması gerektiği konusuna ıĢık tutmak ve son yıllarda yaĢanan teknolojik ve sosyal geliĢmeler sonucunda bir ihtiyaç duyularak geliĢtirilen ĠTÜ Denizcilik Fakültesinin SUNY Denizcilik Üniversitesi ile yaptığı çift diplomalı uluslararası eğitimlerden biri olan yeni Gemi Makineleri ĠĢletme Mühendisliği eğitim programını tanıtmaktır.
ÖZET
Günümüzde deniz kazalarının %80‟i insan hatasından kaynaklanmaktadır. Gemilerde meydana gelen hataların birçoğu personelin performans yetersizliği, eğitimsizliği, bilinçsizliği veya meydana gelen olaylara kayıtsız kalmaları sonucu meydana gelmektedir. İleride de makinelerin dizaynı ve işletilmesi insanlar tarafından yapılacağı için bu hataların devam edeceğini kabul etmek gerekir.
Bu bilgiler ışığında, temel mühendislik dallarının entegrasyonu olan Gemi Makineleri İşletme Mühendisliğinde eğitim „İnsan Hatası‟ nı en aza indirme amacına yönelik yapılmalı ve buna göre Eğitim-Öğretim programı ve ders eğitim sistemleri hazırlanmalıdır. Her sektörde olduğu gibi denizcilik sektöründe de belirli gelişmelerin olmasını sağlayabilecek asıl kaynak, personel, yani insan kaynağıdır. Eğitimli personel çalıştırmayan şirketler her zaman için hem maddi hem de manevi zarara uğramaya mahkumdurlar.
İnsan hatalarını minimuma indirmeye yönelik program hazırlayabilmek için öncelikle insan hatalarının nedenlerini ve nasıl olduğunu analiz etmek ve buna bağlı olarak yorum getirmek gereklidir. Bu çalışmada İTÜ Denizcilik Fakültesi Gemi Makineleri İşletme Mühendisliği eğitiminde Makine Dairesi Simülatörünün (MDS) insan hatalarının analiz edilmesinde kullanımı ele alınmıştır. İTÜ Denizcilik Fakültesinde Makine Dairesi Simülatörü kullanılarak “Gemi Makine Dairesi İşletiminde İnsan Faktörü” konusunda yapılan araştırma çalışmaları sunularak çalışma sonuçlarının ne şekilde faydalı olabileceği ve ileride yapılması gereken çalışmaların neler olduğu değerlendirilmiştir.
ÖZET
Günümüzde gemi makine dairesi makine ve ekipmanları değişik firmalar tarafından kendi geliştirdikleri teknoloji ve standardlarına bağlı olarak üretilmektedir. Dolayısıyla makine dairesinde görev alacak adayların eğitimi, bu makine ve sistemlere tam olarak adaptasyon süresini azaltmaya yönelik hazırlanmalıdır. Bu da ancak daha önceden tecrübe edilmesiyle mümkündür. Bu problemler içinde bazıları vardır ki diğer eğitim yöntemleri olan eğitim gemisinde veya ticaret gemisinde uygulamalı eğitim, klasik makine laboratuvarları ve dershane eğitimleri yetersiz kalmaktadır.
“Yönetim Seviyesi” olarak tanımlanan yeterliliklerin sağlanması ancak Gemi Makine Dairesi Simülatörlerinin (MDS) Gemi Makineleri İşletme Mühendisliği eğitiminde kullanılarak gerçek problemlere dayalı olarak oluşturulan problemlerin tekrar edilen eğitimlerle yapılmasıyla mümkündür. Dünyadaki deniz kazalarının %80 inin insan hatasından kaynaklanmasından dolayı bu tür deniz güvenliğine yönelik mühendis eğitimlerinin deniz ticaret sektörüne katkısı büyüktür1.
Bu çalışmada İTÜ Denizcilik Fakültesi Gemi Makineleri İşletme Mühendisliği eğitim programında MDS‟nin diğer eğitim metotları olan Eğitim Gemisi ve Ticaret Gemisi eğitimleriyle birlikte nasıl ve ne şekilde kullanıldığı ele alınmıştır. MDS‟nin Gemi Makineleri İşletme Mühendisliği eğitim programına uygulanmasında temel esas STCW95 İşletim Seviyesi ve Yönetim Seviyesi yeterlilikleri ve bu yeterlilikleri sağlamak için gerekli bilgi ve becerilerin kazandırılması olmuştur. Ayrıca bu çalışmada MDS kullanılarak yapılan eğitimlerde hangi konuların pratik eğitimlerle nasıl verildiği örneklerle gösterilerek sektörde çalışan personelin sürekli eğitiminde de kullanılması önerilmiştir.
Hereafter, this document will be referred to as the Joint Enroute Care Equipment Test Standard (JECETS). Test methods found in this document can be tailored based on the type of test article
and its performance specifications. Other considerations for tailoring test methods may include, but are not limited to, “single-use” items and medical consumables. In this document, aeromedical equipment is referred to as certified carry-on medical equipment used aboard military aircraft.
Carry-on medical equipment is defined as portable medical equipment used by health care providers during the treatment of ill or injured patients onboard U.S. military dedicated or opportune vehicles whether it is by air, land, or sea.
Aeromedical equipment will have a service specific certification authorizing onboard use for each respective vehicle platform. For the U.S. Army, certification consists of a fleet Airworthiness
Release (AWR) and an Aeromedical Certification Memorandum (ACM). For the U.S. Air Force (USAF), certification consists of concurrence to a Safe-to-Fly (STF) recommendation.
Certification for the U.S. Navy consists of Navy Flight Clearance through Class Desks Managers at Naval Air Systems Command (NAVAIR). In accordance with Army Regulation 40-61 and Air
Force Instruction (AFI) 11-202, the U.S. Army Aeromedical Research Laboratory (USAARL) and USAF Aeromedical Branch (ASC/WNUP) Aeromedical Test Laboratory (ATL) are the primary
organizations for performing airworthiness and STF certification testing.
The test methods described in this document apply to eromedical equipment to be used aboard opportune or dedicated aircraft, as follows:
Fixed-wing: C-17, C-130 E/H, C-130J, KC-10, KC-135, C-21, C-5, and C-27J
Rotary-wing: UH-1, H-60 Series Helicopters (UH-60 and HH-60), and CH-47.
Several government standards provide adequate descriptions of acceleration test methods; however, none formally documents a non-destructive test method to qualify equipment as safe-to-fly (STF). Using the USAF fixed-wing aircraft STF test criteria, this article presents a structured process developed by the Aeromedical Test Branch, 77th Aeronautical Systems Group, to assess equipment as STF. Further, it demonstrates the application of this process to meet the acceleration requirements for aeromedical evacuation equipment.
benefits of applying AD to product development. In this model, the AD method is extended to cover the whole product development lifecycle, including the test domain, and new domain characteristic vectors are introduced to systematically capture and manage the input constraints and system components.
The TPDL model helps develop, capture, and present both the big-picture and detailed view of the product development knowledge, including design and requirement traceability knowledge. The objectives of TDPL are to guide the designers, developers, and other members of a transdisciplinary product development team throughout the development effort as well as to help capture, maintain, and manage the knowledge produced during the product development process.
The TDPL model aims to improve the quality of the design, requirements management, change management, project management, and communication between stakeholders as
well as to shorten the development time and reduce the development cost.
normally when exposed to vibration and shock within the integrated system. Commercial-off-the-shelf (COTS) ruggedized portable computers are pre-tested for compliance with these standards; however, re-testing is also needed when mechanical or electrical components are added or modified for installation.
This paper discusses the vibration issues that need to be considered when designing computer equipment for installation on a commercial aircraft, based on the aforementioned standards. A case study is included which provides details of lessons learned during the installation of a COTS ruggedized portable computer on C-5 Aircraft where failures due to vibration did occur.
ÖZET
Gemi Makineleri ĠĢletme Mühendisliği (Marine Engineering) gemi makinelerinin iĢletilmesi ve bakım ve onarımlarının yapılması alanındaki mühendislik dalıdır. Gemi Makineleri ĠĢletme Mühendisi (Marine Engineer) ise gemi makinelerini iĢleten, düzenli ve verimli çalıĢmalarını sağlayan ve tamir ve bakımını yapan zabittir. Klasik olarak gemi makine dairesinde çalıĢacak olan zabitlerin eğitimi bu tanımlarda belirtilen hususlara göre yapılmaktadır. Bu tanımlamalar ıĢığında ve daha ileri anlamda Gemi Makineleri ĠĢletme Mühendisleri makine dairesinde bir arıza olduğunda tecrübeye dayalı olarak karar verirler ve verdikleri bu kararın mühendislik açısından mantıksal veya teknik bir açıklaması vardır. Gemi Makineleri ĠĢletme Mühendisliği eğitiminde bu hususların gözönünde bulundurulması gerekir.
Son 10-15 yılda olan teknolojik geliĢmeler ve küreselleĢmenin getirdiği sosyal geliĢme ve değiĢimlerin klasiklikten uzak olarak çok hızlı bir Ģekilde gerçekleĢmesi Gemi Makineleri ĠĢletme Mühendisliği eğitimini de etkilemekte ve uluslararası çeĢitli organizasyon ve eğitim kuruluĢları arasında ikili iliĢkiler ve eğitim programları oluĢturulmaktadır. Bu değiĢimler Gemi Makineleri ĠĢletme Mühendisliği eğitiminin de yeniden düzenlenmesini ve uluslararası ihtiyaçlara cevap verecek programa sahip olmasını gerektirmektedir.
Bu çalıĢmanın amacı, Gemi Makineleri ĠĢletme Mühendisinin çalıĢma ortamını dikkatlice inceleyerek ve geliĢen teknolojik, ekonomik, sosyal ve kültürel değiĢiklikleri de gözönünde bulundurarak Gemi Makineleri ĠĢletme Mühendislerinin eğitimlerinin nasıl olması gerektiği konusuna ıĢık tutmak ve son yıllarda yaĢanan teknolojik ve sosyal geliĢmeler sonucunda bir ihtiyaç duyularak geliĢtirilen ĠTÜ Denizcilik Fakültesinin SUNY Denizcilik Üniversitesi ile yaptığı çift diplomalı uluslararası eğitimlerden biri olan yeni Gemi Makineleri ĠĢletme Mühendisliği eğitim programını tanıtmaktır.
ÖZET
Günümüzde deniz kazalarının %80‟i insan hatasından kaynaklanmaktadır. Gemilerde meydana gelen hataların birçoğu personelin performans yetersizliği, eğitimsizliği, bilinçsizliği veya meydana gelen olaylara kayıtsız kalmaları sonucu meydana gelmektedir. İleride de makinelerin dizaynı ve işletilmesi insanlar tarafından yapılacağı için bu hataların devam edeceğini kabul etmek gerekir.
Bu bilgiler ışığında, temel mühendislik dallarının entegrasyonu olan Gemi Makineleri İşletme Mühendisliğinde eğitim „İnsan Hatası‟ nı en aza indirme amacına yönelik yapılmalı ve buna göre Eğitim-Öğretim programı ve ders eğitim sistemleri hazırlanmalıdır. Her sektörde olduğu gibi denizcilik sektöründe de belirli gelişmelerin olmasını sağlayabilecek asıl kaynak, personel, yani insan kaynağıdır. Eğitimli personel çalıştırmayan şirketler her zaman için hem maddi hem de manevi zarara uğramaya mahkumdurlar.
İnsan hatalarını minimuma indirmeye yönelik program hazırlayabilmek için öncelikle insan hatalarının nedenlerini ve nasıl olduğunu analiz etmek ve buna bağlı olarak yorum getirmek gereklidir. Bu çalışmada İTÜ Denizcilik Fakültesi Gemi Makineleri İşletme Mühendisliği eğitiminde Makine Dairesi Simülatörünün (MDS) insan hatalarının analiz edilmesinde kullanımı ele alınmıştır. İTÜ Denizcilik Fakültesinde Makine Dairesi Simülatörü kullanılarak “Gemi Makine Dairesi İşletiminde İnsan Faktörü” konusunda yapılan araştırma çalışmaları sunularak çalışma sonuçlarının ne şekilde faydalı olabileceği ve ileride yapılması gereken çalışmaların neler olduğu değerlendirilmiştir.
ÖZET
Günümüzde gemi makine dairesi makine ve ekipmanları değişik firmalar tarafından kendi geliştirdikleri teknoloji ve standardlarına bağlı olarak üretilmektedir. Dolayısıyla makine dairesinde görev alacak adayların eğitimi, bu makine ve sistemlere tam olarak adaptasyon süresini azaltmaya yönelik hazırlanmalıdır. Bu da ancak daha önceden tecrübe edilmesiyle mümkündür. Bu problemler içinde bazıları vardır ki diğer eğitim yöntemleri olan eğitim gemisinde veya ticaret gemisinde uygulamalı eğitim, klasik makine laboratuvarları ve dershane eğitimleri yetersiz kalmaktadır.
“Yönetim Seviyesi” olarak tanımlanan yeterliliklerin sağlanması ancak Gemi Makine Dairesi Simülatörlerinin (MDS) Gemi Makineleri İşletme Mühendisliği eğitiminde kullanılarak gerçek problemlere dayalı olarak oluşturulan problemlerin tekrar edilen eğitimlerle yapılmasıyla mümkündür. Dünyadaki deniz kazalarının %80 inin insan hatasından kaynaklanmasından dolayı bu tür deniz güvenliğine yönelik mühendis eğitimlerinin deniz ticaret sektörüne katkısı büyüktür1.
Bu çalışmada İTÜ Denizcilik Fakültesi Gemi Makineleri İşletme Mühendisliği eğitim programında MDS‟nin diğer eğitim metotları olan Eğitim Gemisi ve Ticaret Gemisi eğitimleriyle birlikte nasıl ve ne şekilde kullanıldığı ele alınmıştır. MDS‟nin Gemi Makineleri İşletme Mühendisliği eğitim programına uygulanmasında temel esas STCW95 İşletim Seviyesi ve Yönetim Seviyesi yeterlilikleri ve bu yeterlilikleri sağlamak için gerekli bilgi ve becerilerin kazandırılması olmuştur. Ayrıca bu çalışmada MDS kullanılarak yapılan eğitimlerde hangi konuların pratik eğitimlerle nasıl verildiği örneklerle gösterilerek sektörde çalışan personelin sürekli eğitiminde de kullanılması önerilmiştir.
The measurements include time history records, mean-square response curves of beam, and the pendulum for different response regimes. Also, sets of experiments were conducted to determine the autoparametric interaction between the two modes of the system in the neighbourhood of the autoparametric region. The outcome of this research reveals the scope and limitations of the beam–pendulum oscillator as a potential vibration-absorbing device in the applications where random disturbance occurs.
"MIL-STD-461G
Requirements for the Control of Electromagnetic Interference Characteristics of Subsystems and Equipment"
and
“MIL-STD-464D
Electromagnetic Environmental Effects, Requirements for Systems”
The Instructors share their experience and knowledge gained by working long years in the field with designing products and performing tests in accordance with such as MIL-STD-810H, RTCA-DO-160, and MIL-STD-461G. The slides are supported by many graphics and test videos for the efficiency and clarity of the information and each session is planned in accordance with the tests described in MIL-STD-461G. Sessions include presentations on platform level requirements, guides, and lessons learned items based on MIL-STD-464D. The training also includes test process and requirements overview in view of DOD Systems Engineering Processes. Dr. Ismail Cicek is the lead instructor of this training and several experienced test personnel and design engineers help complete the training sessions.
The main goal of this training is to have a good understanding of equipment testing in accordance with MIL-STD-464G standard document. The attendees completing this training are expected to gain knowledge in the following areas:.
• Understand MIL-STD-461G Standard Test Sections and Test Procedures
• Understand the MIL-STD-464D platform level requirements and additional material provided
• Be able to write a list of susceptibilities
• Understand the test process goals and activities
• Develop test plans, and schedule tests
• Execute tests
• Understand test results
• Create test reports
• Be able to resolve issues in the test results by means of change recommendations, or accepting the anomalies with risk assessment.
https://www.globaldynamicsystems.com/systems-engineering-training-courses/mil-std-461g-training/.
The calendar of training courses are announced at the following site: https://www.globaldynamicsystems.com/posts/training-calendar-systems-engineering/.
This training is an important step for testing and certifying your airborne equipment and products in accordance with the FAA/EASA test requirements. The training focuses on the test sections described in the standard document: "RTCA-DO-160G Environmental Conditions and Test Procedures for Airborne Equipment © 2010, RTCA, Inc." GDS Engineering R&D, Inc. is an official member of RTCA Organization.
The Instructors share their experience and knowledge gained by working long years in the field with designing products and performing tests in accordance with such as RTCA-DO-160, MIL-STD-810, and MIL-STD-461. The slides are supported by many graphics and test videos for the efficiency and clarity of the information and each session is planned in accordance with the sections in RTCA-DO-160G. Dr. Ismail Cicek is the lead instructor of this training and several experienced test personnel and design engineers help complete the training sessions.
The purpose is to have a good understanding of equipment testing in accordance with RTCA-DO-160G document. The attendees completing this training are expected to have knowledge for the following:
• Understand RTCA-DO-160 test sections and procedures
• Be able to write a list of susceptibilities
• Understand the test process goals and activities
• Develop test plans
• Plan and schedule tests
• Execute tests
• Understand test results
• Create test reports
• Be able to resolve issues in the test results by means of change recommendations, or accepting the anomalies with risk assessment.
The calendar of training courses are announced at the following site: https://www.globaldynamicsystems.com/posts/training-calendar-systems-engineering/
Training focuses on the standard with tailoring examples This training is an important step for testing and certifying your military equipment and products in accordance with MIL-STD-810H, platform test requirements, and other applicable standards and specifications. The training focuses on the test sections described in the standard document:
The Instructors share their experience and knowledge gained by working long years in the field with designing products and performing tests in accordance with such as RTCA-DO-160G, MIL-STD-810H, and MIL-STD-461G. The slides are supported by many graphics and test videos for the efficiency and clarity of the information and each session is planned in accordance with the test methods described in MIL-STD-810H. Dr. Ismail Cicek is the lead instructor of this training and several experienced test personnel and design engineers help complete the training sessions efficiently.
The purpose is to have a good understanding of equipment testing in accordance with MIL-STD-810H document. The attendees completing this training are expected to gain knowledge in the following areas:
• Understand MIL-STD-810H test methods and procedures
• Understand how to apply tailoring in view of Life Cycle Environmental and Mission Profiles
• Be able to write a list of susceptibilities
• Understand the test process goals and activities
• Develop test plans
• Plan and schedule tests
• Execute tests
• Understand test results
• Create test reports
• Be able to resolve issues in the test results by means of change recommendations, or accepting the anomalies with risk assessment.
Project Description & Status
Project Name: Modular Simulation Development of Engine Room Systems for Container Type Ships
Start Date: 1 Nov2015; Duration: 18 mo
Project Manager: Ismail Cicek
Project Name: Ship Main Engine Simulator Development
Start Date: 1 June 2014, Duration: 30 ay
Project Manager: İsmail Çiçek
Simulation of a ship’s engine room and systems in computer environment with modeling and visual tools for use in training of marine engineering cadets.
An ERS can be in various levels and forms
A PC-based simulator – special type (only a portion of engine room is simulated)
A PC-based simulator with all functionality
A full-mission simulator with mimic panels
A full-mission simulator includes all functions of marine engine room machinery and systems.
To develop an initial version of a full-mission ERS with LC touch screen panels located in engine room.
All Engine Room Machinary and Systems are Modeled with Validated Mathematical Models.
Two MS Thesis were completed to utilize the mathematical models in the ERS software (Thesis Advisor: Dr. Ismail Cicek)
Modeling of a Two-Stroke Marine Diesel Engine for Simulator Development, Caglar Dere, May 2015.
A Ship Propulsion System Design and Analysis for use in ERS Development, Naz Gorener, May 2015.
Communication and Control Panel Design and Development For Simultor System, Ali Demir (MS Study in progress).
The mathematical modeling of all engine room systems are currently being developed by 3 PhD’s employed at GDS.
Two platforms were used for validation of mathematical models:
An existing simulator currently being used
A container type ship belong to ARKAS Container Lines
Aeromedical equipment under test is of wide range; varying from patient transport structures to digital measurement devices. Therefore, the testing types of aeromedical equipment vary depending on the types of equipment. For example, a litter for carrying patient does not need to be tested for Electromagnetic Interference (EMI) and Electromagnetic Compatibility (EMC) while this is a required test for an electronic device. The typical STF tests are EMI/EMC, vibrations, temperature (hot, cold, operational, and storage), humidity, altitude, rapid decompression, explosive atmosphere, and acceleration tests. Before performing these laboratory tests ATB performs a performance baseline test and develops a test plan. The findings of baselines testing and the test plan is used to communicate with the aircraft system groups (SGs), as part of lean events, to ensure that the intended tests will fulfill the requirements of each aircraft environment. The ATB performs the tests and also evaluates the equipment in aircraft, called in-flight assessment, for form-fit-functionality evaluation of the equipment under test.
Dr. Ismail Cicek will present the testing process for STF recommendation of aeromedical equipment and he will discuss the acceleration testing requirements and alternative acceleration methods used for testing of the equipment.
This presentation is about the vibration issues that need to be considered when designing computer equipment for installation on military/commercial aircraft, based on the aforementioned standards. A case study is included which provides details of lessons learned during the installation of a COTS ruggedized laptop computer on a C-5 Aircraft where failures due to vibration did occur.
Familiarize with the terminology, material properties, limitations, design methods, and guidelines for the use of steel in ship structures.
- Engineer with Ph.D. (degrees earned in US)
- Industry (DoD) Experience in US (14 years)
- Experience in DoD Systems Engineering (BD, Planning,
- Performance, V&V, Logistics)
- Teaching and industry experience in Turkey
- Team oriented personality
- Leadership deneyimi
- Process’ oriented work skills
- Social skills
1. Some of the Recent Developments at ITUMF
2. JICA-ITUMFProject and Other ITUMF Projects/Activities
3. Use of the Engine Room Simulator (ERS) in Curricula
4. Research studies using ERS
5. Cooperation w/IAMU Universities for research using ERS
1. To propose a useful method to organize the most effective training method for the students of the Marine Engineering departments of IAMU institutions.
2. To make it clear what the difference between the minimum requirement for the marine engineers' competences in accordance with STCW Code A and the requirement to be a qualified marine engineer in view of IAMU objectives.
Virtual instrumentation is breaking down the barriers of developing and maintaining instrumentation systems that challenge the world of test, measurement, and industrial automation. By leveraging off the latest computing technology, virtual instrumentation delivers innovative, scalable solutions that incorporate many different I/O options and maximizes code reuse-- saving you time and money.
The local organizing committee invites you to the 12th International Conference on Engine Room Simulators (ICERS 12). ICERS 12 will be held from November 19th, 2015 to November 20th, 2015 at the Istanbul Technical University Maritime Faculty (ITUMF), Istanbul, Turkey. The conference will be organized in partnership with the Turkish Chamber of Marine Engineers and the Maritime Federation.
ICERS12 intends to be a global forum for researchers and engineers to present and discuss recent ideas about engine room simulators as well as solutions to problems that showcases new development on ERS in all forms whether it be full mission, full task, part-task or desk-top PC based. The aim of ICERS 12 is to provide a venue and opportunity for the Engine Room Simulator (ERS) community including developers, manufacturers, providers, educators, trainers, publishers and everybody with keen interest on ERS to present their knowledge, experiences, views, research results, and products in a global forum with cross-disciplinary interests to bridge the knowledge gap and promote research esteem. The ICERS12 will provide an international forum to address all major topics of current and prospective interest in Engine Room Simulator Research and Development. In addition to scientific seminars, a wide range of social programs including city tours and visits to historical places will be available.
The Local Organizing Committee also encourages companies and institutions to showcase their modern products and equipment in the conference area.