கோளம்
வடிவவியலில் கோளம் அல்லது உருண்டை(Sphere) என்பது முப்பரிமாண வெளியில் அமைந்த ஒரு உருண்டையான வடிவியல் பொருளாகும். இதன் வடிவம் ஓர் உருண்டையான பந்து போன்றது. இருபரிமாணத்தில் உள்ள வட்டத்தைப் போலவே கோளமும் அதன் மையத்தைப் பொறுத்து சமச்சீரானது. கோளத்தின் மேற்பரப்பின்மீது அமையும் அனைத்துப் புள்ளிகளும் கோளத்தின் மையத்திலிருந்து சமதூரத்தில் இருக்கும். இச்சமதூரம், கோளத்தின் ஆரம் எனப்படும். கோளத்தினுள்ளே அமையும் மிகப் பெரிய நேர்கோட்டின் தூரம் கோளத்தின் விட்டம் எனப்படும், இது கோளத்தின் மையம் வழியாகச் செல்லும். மேலும் இது கோளத்தின் ஆரத்தைப்போல் இருமடங்காக இருக்கும். பூமி, உருண்டை(globe, ball) என்ற பொருளுடைய கிரேக்க மொழிச் சொல்லான σφαῖρα—ஸ்ஃபைரா என்பதிருந்து ஆங்கிலத்தில் ஸ்ஃபியர் எனக் கோளத்திற்கு பெயரிடப்பட்டுள்ளது.
கோளத்தின் கனஅளவு
[தொகு]முப்பரிமாணத்தில் கோளத்தின் உட்பகுதியின் கனஅளவு:
இங்கு r என்பது கோளத்தின் ஆரம் மற்றும் , மாறிலி. இந்த வாய்ப்பாடு முதன்முதலில் ஆர்க்கிமிடீசால் கண்டுபிடிக்கப்பட்டது. ஆர்க்கிமிடீஸ் ஒரு கோளத்தின் கனஅளவானது, அதைச் சுற்றி வரையப்பட்ட உருளையின் கனஅளவில் 2/3 பங்கு இருக்கும் என்பதைக் கண்டறிந்தார். (தொடர்ந்து இக்கருத்து கேவலியரியின் கொள்கையில் (Cavalieri's principle) வலியுறுத்தப்பட்டுள்ளது.) இப்பொழுது நவீன கணிதத்தில், இந்த வாய்ப்பாட்டைத் தொகையிடல் மூலமாகக் கணமுடியும்.
(எ-கா) முடிவிலா எண்ணிக்கையிலான வட்டத்தகடுகளின் கனஅளவுகளின் கூடுதலை வட்டுத் தொகையிடுவதன் மூலம் கோளத்தின் கனஅளவைக் காண முடியும். இத்தகடுகள் நுண்ணிய தடிமன் உடையவைகளாகவும் மையங்கள் x -அச்சில் x = 0 (அதாவது தகட்டின் ஆரம் r -ஆக இருக்குமிடம்)-லிருந்து, x = r (தகட்டின் ஆரம் 0 -ஆக இருக்குமிடம்) வரை இருக்கும்படியாக வரிசையாக அடுத்தடுத்து மிகவும் நெருக்கமாக அடுக்கப்பட்டிருக்கும்.
தரப்பட்ட ஒரு x -ன் மதிப்பிற்கு, கூடும்கனஅளவு (incremental volume) (δV)-ஆனது x -ல் அமையும் வட்டத்தகட்டின் குறுக்கு வெட்டுமுகத்தின் பரப்பு மற்றும் அத்தகட்டின் தடிமன் (δx) இரண்டின் பெருக்குத்தொகைக்குச் சமமாகும்:
கோளத்தின் மொத்த கனஅளவு இத்தகைய எல்லாத் தகடுகளின் கூடும்கனஅளவுகளின் கூடுதலுக்குச் சமமாக இருக்கும்:
δx -ன் மதிப்பு பூச்சியத்தை நோக்கி நெருங்கும் எல்லை நிலையில் [1] இதன் மதிப்பு பின்வரும் தொகையீடாக மாறும்:
x,-ன் எந்தவொரு மதிப்பிற்கும் x, y மற்றும் r ஆதிப்புள்ளியில் அமையும் ஒரு செங்கோண முக்கோணத்தை அமைக்கும். எனவே பித்தகோரசு தேற்றத்தின்படி:
எனவே y -ஐ x -ன் சார்பாகப் பிரதியிட:
கோளத்தின் கன அளவு:
இதே வாய்ப்பாட்டை வேறுமுறையில் கோள ஆயதொலைவுகளைப் பயன்படுத்திக் காணலாம்.
உயர் பரிமாணங்களில் கோளம்(அல்லது மீக்கோளம்) என்பது வழக்கமாகn-கோளம் அல்லது n-உருண்டை என அழைக்கப்படுகிறது.
பெரும்பாலான நடைமுறைப் பயன்பாடுகளுக்கு கோளத்தின் கனஅளவை, அது வரையப்பட்டுள்ள கனசதுரத்தின் கன அளவில் 52.4% என தோராயமாகக் கணக்கிடலாம்.
ஏனெனில் மேலும் ஒரு கனசதுரத்துக்குள் வரையக்கூடிய மிகப்பெரிய கோளத்தின் விட்டம் கனசதுரத்தின் பக்கநீளத்திற்குச் சமமாக இருக்கும்.
கோளத்தின் விட்டம் = கனசதுரத்தின் பக்கம் =
கனசதுரத்தின் கனஅளவு =
கோளத்தின் கனஅளவு:
எடுத்துக்காட்டாக, 1 m பக்கஅளவுள்ள கனசதுரத்தின் கன அளவு 1 m3
. எனவே அந்த கனசதுரத்துக்குள் வரையப்படும் மிகப்பெரிய கோளத்தின் விட்டம் 1 m ஆகும். இக்கோளத்தின் கன அளவு கிட்டத்தட்ட 0.524 m3
ஆகும்..
கோளத்தின் மேற்பரப்பு
[தொகு]கோளத்தின் மேற்பரப்பு காணும் வாய்ப்பாடு:
இந்த வாய்ப்பாட்டை முதலில் கண்டுபிடித்த ஆர்க்கிமிடீஸ், ஒரு கோளத்தை அதைச் சுற்றி வரையப்பட்ட உருளையின் பக்கப்பரப்பின்மீது வீழ்த்தினாலும் பரப்பில் மாற்றமில்லை என்ற கருத்தை அடைப்படையாகக் கொண்டு இவ்வாய்ப்பாட்டை நிறுவியுள்ளார். கோளத்தின் கனஅளவு காணும் வாய்ப்பாட்டை r -ஐப் பொறுத்து வகையிடுதல் மூலமும் மேற்பரப்பு காணும் வாய்ப்பாட்டைப் பெற முடியும். ஏனெனில் மையங்கள் ஒரே புள்ளியில் இருக்குமாறு, ஆரம் 0 முதல் ஆரம் r வரையுள்ள நுண்ணிய தடிமன் கொண்ட எண்ணற்ற கோளவடிவ ஓடுகளை ஒன்றுக்குள் ஒன்றாக மிகநெருக்கமாக அடுக்கி வைக்கப்பட்டுள்ளதாக எடுத்துக் கொண்டால் இக்கோளவடிவ ஓடுகளின் கனஅளவுகளின் கூடுதலாகக் கோளத்தின் கனஅளவைக் கருதலாம். இக்கோளவடிவ ஓடுகளின் தடிமனை நுண்ணிய அளவாக எடுத்துக் கொள்வதால் ஓடுகளின் உள் மேற்பரப்பிற்கும் வெளி மேற்பரப்பிற்கும் உள்ள வித்தியாசமும் மிக நுண்ணிய அளவுள்ளதாகத்தான் இருக்கும். ஆரம் r -ஆக உள்ள இடத்திலுள்ள கோளவடிவ ஓட்டின் சிறிய கனஅளவானது, ஆரம் r -லுள்ள மேற்பரப்பு மற்றும் நுண்ணிய தடிமன் இரண்டின் பெருக்குத்தொகையாகும்.
தரப்பட்ட ஆரம் r -ல், கூடும்கனஅளவு (δV) -ன் மதிப்பு, ஆரம் r -இடத்திலுள்ள ஓட்டின் மேற்பரப்பு (A(r)) மற்றும் ஓட்டின் தடிமன் (δr) இரண்டின் பெருக்குத்தொகையாகும்:
கோளத்தின் மொத்த கன அளவு:
δr -ன் மதிப்பு பூச்சியத்தை நோக்கி அணுகும் எல்லை நிலையில் [1] இக்கனஅளவு:
ஏற்கனவே முன்பு நாம் கண்டுபிடித்திருக்கும் கோளத்தின் கனஅளவின் வாய்ப்பாட்டை V -க்கு பதிலிட:
இருபுறமும் r -ஐப் பொறுத்து வகையிட, A -ன் மதிப்பு r -ன் சார்பாகக் கிடைக்கிறது:
சுருக்கமாக:
மற்றொரு வகையில் கோளத்தின் சிறுமேற்பரப்பு:
கோள ஆயதொலைவுகளில்:
- .
கார்ட்டீசியன் ஆயதொலைவுகளில்:
- .
மொத்த மேற்பரப்புக் காணத் தொகையிட:
R3 -ல் சமன்பாடுகள்
[தொகு]பகுமுறை வடிவவியலில், மையம் (x0, y0, z0) மற்றும் ஆரம் r -உடைய கோளமானது,
- என்றவாறு அமையும் புள்ளிகள் (x, y, z) -ன் இயங்குவரையாகும்.
கோளத்தின்மீது அமையும் புள்ளிகளைக் கோளத்தின் ஆரம் r -ஐ துணையலகாகக் கொண்டு பின்வருமாறு எழுதலாம்.
ஆதிப்புள்ளியை மையமாகக் கொண்ட கோளத்தின் வகைக்கெழுச் சமன்பாடு:
இச்சமன்பாட்டிலிருந்து, கோளத்தின் மீது நகரும் ஒரு புள்ளியின் நிலைவெக்டரும் திசைவேக வெக்டரும் எப்பொழுதும் ஒன்றுக்கொன்று செங்குத்தாகவே அமையும் என்பதைக் காணலாம்.
oblate spheroid | prolate spheroid |
ஒரு வட்டத்தை அதன் விட்டத்தைப் பொறுத்து சுழற்றுவதால் கிடைக்கும் வடிவமாகவும் கோளத்தை வரையறுக்கலாம். வட்டத்திற்குப் பதில் ஒரு நீள்வட்டத்தைச் சுழற்றும்போது ஒரு கோளவுரு கிடைக்கும். நீள்வட்டத்தின் பேரச்சைப் பொறுத்து சுழற்றினால் தட்டையான கோளவுரு (prolate spheroid) மற்றும் சிற்றச்சைப் பொறுத்து சுழற்றினால் நெட்டையான கோளவுரு (oblate spheroid ) கிடைக்கும்.
அரைக்கோளம்
[தொகு]ஒரு கோளமானது அதன் மையத்தின் வழியே செல்லும் எந்தவொரு தளத்தினாலும் இரண்டு சமமான அரைக்கோளங்களாகப் பிரிக்கப்படுகிறது. இரு தளங்கள் கோளத்தின் மையத்தின் வழியே செல்லுமானால் அவை கோளத்தை நான்கு சமமான பிறைகளாகப்(lunes) பிரிக்கும். இப்பிறைகளின் உச்சிகள் அந்த இரு தளங்களும் வெட்டிக்கொள்ளும் கோட்டின்(கோளத்தின் விட்டம்) முனைகளாக இருக்கும்.
கோளத்தை வெட்டும் இரு தளங்களும் கோளத்தின் மையத்தின் வழிச் செல்லாவிட்டால் அவற்றால் வெட்டப்பட்ட பகுதி கோளப்பகுதி எனப்படும்.[2]
பிற பரிமாணங்களுக்குப் பொதுமைப்படுத்துதல்
[தொகு]கோளங்களை எந்தவொரு உயர் பரிமாணத்துக்கும் பொதுமைப்படுத்தலாம். n ஒரு இயல் எண் எனில், ஒரு n-கோளம்(Sn) என்பது, (n + 1)-பரிமாண யூக்ளிடின் வெளியில், அவ்வெளியின் மையத்திலிருந்து r அளவு மாறாத தூரத்தில் அமையும் புள்ளிகளின் தொகுப்பாகும். இங்கு r ஒரு நேர்ம மெய்யெண்ணாகும்.
- ஒரு 0-கோளம் என்பது மெய்யெண்கோட்டில் அமையும் இடைவெளி (−r, r) -ன் ஓரப் புள்ளிகள்.
- 1-கோளம் என்பது r அளவு ஆரமுள்ள ஒரு வட்டம்.
- 2-கோளம் என்பது சாதாரணக் கோளமாகும்.
- 3-கோளம் என்பது 4-பரிமாண யூக்ளிடின் வெளியில் அமையும் கோளம்.
n > 2 எனில், கோளங்கள் மீக்கோளங்கள்(hypersphere) என சிலசமயங்களில் அழைக்கப்படுகின்றன.
1 அலகு ஆரமுள்ள (n − 1)-கோளத்தின் மேற்பரப்பு:
இங்கு Γ(z) -ஆய்லரின் காமா சார்பாகும்(Euler's Gamma function).
மேற்பரப்பின் மற்றொரு வாய்ப்பாடு:
கன அளவு, மேற்பரப்பில் மடங்காகும் அல்லது:
கனசதுரத்துடன் தொடர்பு
[தொகு]ஒவ்வொரு கோளத்திற்குள்ளும் பல கனசெவ்வகங்கள் வரையலாம். அவ்வாறு ஒரு கோளத்திற்குள் வரையக்கூடிய மிகப்பெரிய கனசெவ்வகம் ஒரு கனசதுரமாக அமையும்.
மேற்கோள்கள்
[தொகு]- ↑ 1.0 1.1 Pages 141, 149. E.J. Borowski, J.M. Borwein (1989). Collins Dictionary of Mathematics. பன்னாட்டுத் தரப்புத்தக எண் 0-00-434347-6.
- ↑ Weisstein, Eric W., "Spheric section", MathWorld.
- William Dunham. "Pages 28, 226", The Mathematical Universe: An Alphabetical Journey Through the Great Proofs, Problems and Personalities, பன்னாட்டுத் தரப்புத்தக எண் 0-471-17661-3.
வெளி இணைப்புகள்
[தொகு]- Calculate volume of sphere பரணிடப்பட்டது 2011-09-29 at the வந்தவழி இயந்திரம்
- Sphere (PlanetMath.org website)
- Weisstein, Eric W., "Sphere", MathWorld.
- Mathematica/Uniform Spherical Distribution
- Outside In.Retrieved on 2007-11-24. பரணிடப்பட்டது 2007-09-01 at the வந்தவழி இயந்திரம் (computer animation showing how the inside of a sphere can turn outside.)
- Surface area of sphere proof.