I have two huge vectors item_clusters and beta. The element item_clusters [ i ] is the cluster id to which the item i belongs. The element beta [ i ] is a score given to the item i. Scores are {-1, 0, 1, 2, 3}.
Whenever the score of a particular item is 0, I have to impute that with the average non-zero score of other items belonging to the same cluster. What is the fastest possible way to to this?
This is what I have tried so far. I converted the item_clusters to a matrix clusters_to_items such that the element clusters_to_items [ i ][ j ] = 1 if the cluster i contains item j, else 0. After that I am running the following code.
# beta (1x1.3M) csr matrix
# num_clusters = 1000
# item_clusters (1x1.3M) numpy.array
# clust_to_items (1000x1.3M) csr_matrix
alpha_z = []
for clust in range(0, num_clusters):
alpha = clust_to_items[clust, :]
alpha_beta = beta.multiply(alpha)
sum_row = alpha_beta.sum(1)[0, 0]
num_nonzero = alpha_beta.nonzero()[1].__len__() + 0.001
to_impute = sum_row / num_nonzero
Z = np.repeat(to_impute, beta.shape[1])
alpha_z = alpha.multiply(Z)
idx = beta.nonzero()
alpha_z[idx] = beta.data
interact_score = alpha_z.tolist()[0]
# The interact_score is the required modified beta
# This is used to do some work that is very fast
The problem is that this code has to run 150K times and it is very slow. It will take 12 days to run according to my estimate.
Edit: I believe, I need some very different idea in which I can directly use item_clusters, and do not need to iterate through each cluster separately.
ufunc
.