Here is a function that handles both pd.Series
and pd.Dataframes
. You can mask/drop, choose the axis and finally choose to drop with 'any' or 'all' 'NaN'. It is not optimized in term of computation time, but it has the advantage to be robust and pretty clear.
import numpy as np
import pandas as pd
# To mask/drop successive values in pandas
def Mask_Or_Drop_Successive_Identical_Values(df, drop=False,
keep_first=True,
axis=0, how='all'):
'''
#Function built with the help of:
# 1) https://stackoverflow.com/questions/48428173/how-to-change-consecutive-repeating-values-in-pandas-dataframe-series-to-nan-or
# 2) https://stackoverflow.com/questions/19463985/pandas-drop-consecutive-duplicates
Input:
df should be a pandas.DataFrame of a a pandas.Series
Output:
df of ts with masked or dropped values
'''
# Mask keeping the first occurrence
if keep_first:
df = df.mask(df.shift(1) == df)
# Mask including the first occurrence
else:
df = df.mask((df.shift(1) == df) | (df.shift(-1) == df))
# Drop the values (e.g. rows are deleted)
if drop:
return df.dropna(axis=axis, how=how)
# Only mask the values (e.g. become 'NaN')
else:
return df
Here is a test code to include in the script:
if __name__ == "__main__":
# With time series
print("With time series:\n")
ts = pd.Series([1,1,2,2,3,2,6,6,float('nan'), 6,6,float('nan'),float('nan')],
index=[0,1,2,3,4,5,6,7,8,9,10,11,12])
print("#Original ts:")
print(ts)
print("\n## 1) Mask keeping the first occurrence:")
print(Mask_Or_Drop_Successive_Identical_Values(ts, drop=False,
keep_first=True))
print("\n## 2) Mask including the first occurrence:")
print(Mask_Or_Drop_Successive_Identical_Values(ts, drop=False,
keep_first=False))
print("\n## 3) Drop keeping the first occurrence:")
print(Mask_Or_Drop_Successive_Identical_Values(ts, drop=True,
keep_first=True))
print("\n## 4) Drop including the first occurrence:")
print(Mask_Or_Drop_Successive_Identical_Values(ts, drop=True,
keep_first=False))
# With dataframes
print("With dataframe:\n")
df = pd.DataFrame(np.random.randn(15, 3))
df.iloc[4:9,0]=40
df.iloc[8:15,1]=22
df.iloc[8:12,2]=0.23
print("#Original df:")
print(df)
print("\n## 5) Mask keeping the first occurrence:")
print(Mask_Or_Drop_Successive_Identical_Values(df, drop=False,
keep_first=True))
print("\n## 6) Mask including the first occurrence:")
print(Mask_Or_Drop_Successive_Identical_Values(df, drop=False,
keep_first=False))
print("\n## 7) Drop 'any' keeping the first occurrence:")
print(Mask_Or_Drop_Successive_Identical_Values(df, drop=True,
keep_first=True,
how='any'))
print("\n## 8) Drop 'all' keeping the first occurrence:")
print(Mask_Or_Drop_Successive_Identical_Values(df, drop=True,
keep_first=True,
how='all'))
print("\n## 9) Drop 'any' including the first occurrence:")
print(Mask_Or_Drop_Successive_Identical_Values(df, drop=True,
keep_first=False,
how='any'))
print("\n## 10) Drop 'all' including the first occurrence:")
print(Mask_Or_Drop_Successive_Identical_Values(df, drop=True,
keep_first=False,
how='all'))
And here is the expected result:
With time series:
#Original ts:
0 1.0
1 1.0
2 2.0
3 2.0
4 3.0
5 2.0
6 6.0
7 6.0
8 NaN
9 6.0
10 6.0
11 NaN
12 NaN
dtype: float64
## 1) Mask keeping the first occurrence:
0 1.0
1 NaN
2 2.0
3 NaN
4 3.0
5 2.0
6 6.0
7 NaN
8 NaN
9 6.0
10 NaN
11 NaN
12 NaN
dtype: float64
## 2) Mask including the first occurrence:
0 NaN
1 NaN
2 NaN
3 NaN
4 3.0
5 2.0
6 NaN
7 NaN
8 NaN
9 NaN
10 NaN
11 NaN
12 NaN
dtype: float64
## 3) Drop keeping the first occurrence:
0 1.0
2 2.0
4 3.0
5 2.0
6 6.0
9 6.0
dtype: float64
## 4) Drop including the first occurrence:
4 3.0
5 2.0
dtype: float64
With dataframe:
#Original df:
0 1 2
0 -1.890137 -3.125224 -1.029065
1 -0.224712 -0.194742 1.891365
2 1.009388 0.589445 0.927405
3 0.212746 -0.392314 -0.781851
4 40.000000 1.889781 -1.394573
5 40.000000 -0.470958 -0.339213
6 40.000000 1.613524 0.271641
7 40.000000 -1.810958 -1.568372
8 40.000000 22.000000 0.230000
9 -0.296557 22.000000 0.230000
10 -0.921238 22.000000 0.230000
11 -0.170195 22.000000 0.230000
12 1.460457 22.000000 -0.295418
13 0.307825 22.000000 -0.759131
14 0.287392 22.000000 0.378315
## 5) Mask keeping the first occurrence:
0 1 2
0 -1.890137 -3.125224 -1.029065
1 -0.224712 -0.194742 1.891365
2 1.009388 0.589445 0.927405
3 0.212746 -0.392314 -0.781851
4 40.000000 1.889781 -1.394573
5 NaN -0.470958 -0.339213
6 NaN 1.613524 0.271641
7 NaN -1.810958 -1.568372
8 NaN 22.000000 0.230000
9 -0.296557 NaN NaN
10 -0.921238 NaN NaN
11 -0.170195 NaN NaN
12 1.460457 NaN -0.295418
13 0.307825 NaN -0.759131
14 0.287392 NaN 0.378315
## 6) Mask including the first occurrence:
0 1 2
0 -1.890137 -3.125224 -1.029065
1 -0.224712 -0.194742 1.891365
2 1.009388 0.589445 0.927405
3 0.212746 -0.392314 -0.781851
4 NaN 1.889781 -1.394573
5 NaN -0.470958 -0.339213
6 NaN 1.613524 0.271641
7 NaN -1.810958 -1.568372
8 NaN NaN NaN
9 -0.296557 NaN NaN
10 -0.921238 NaN NaN
11 -0.170195 NaN NaN
12 1.460457 NaN -0.295418
13 0.307825 NaN -0.759131
14 0.287392 NaN 0.378315
## 7) Drop 'any' keeping the first occurrence:
0 1 2
0 -1.890137 -3.125224 -1.029065
1 -0.224712 -0.194742 1.891365
2 1.009388 0.589445 0.927405
3 0.212746 -0.392314 -0.781851
4 40.000000 1.889781 -1.394573
## 8) Drop 'all' keeping the first occurrence:
0 1 2
0 -1.890137 -3.125224 -1.029065
1 -0.224712 -0.194742 1.891365
2 1.009388 0.589445 0.927405
3 0.212746 -0.392314 -0.781851
4 40.000000 1.889781 -1.394573
5 NaN -0.470958 -0.339213
6 NaN 1.613524 0.271641
7 NaN -1.810958 -1.568372
8 NaN 22.000000 0.230000
9 -0.296557 NaN NaN
10 -0.921238 NaN NaN
11 -0.170195 NaN NaN
12 1.460457 NaN -0.295418
13 0.307825 NaN -0.759131
14 0.287392 NaN 0.378315
## 9) Drop 'any' including the first occurrence:
0 1 2
0 -1.890137 -3.125224 -1.029065
1 -0.224712 -0.194742 1.891365
2 1.009388 0.589445 0.927405
3 0.212746 -0.392314 -0.781851
## 10) Drop 'all' including the first occurrence:
0 1 2
0 -1.890137 -3.125224 -1.029065
1 -0.224712 -0.194742 1.891365
2 1.009388 0.589445 0.927405
3 0.212746 -0.392314 -0.781851
4 NaN 1.889781 -1.394573
5 NaN -0.470958 -0.339213
6 NaN 1.613524 0.271641
7 NaN -1.810958 -1.568372
9 -0.296557 NaN NaN
10 -0.921238 NaN NaN
11 -0.170195 NaN NaN
12 1.460457 NaN -0.295418
13 0.307825 NaN -0.759131
14 0.287392 NaN 0.378315