15. група хемијских елемената
Пниктогени | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
| |||||||||||
↓ Периода | |||||||||||
2 | Азот (N) 7 Других неметала | ||||||||||
3 | Фосфор (P) 15 Других неметала | ||||||||||
4 | Арсен (As) 33 Металоид | ||||||||||
5 | Антимон (Sb) 51 Металоид | ||||||||||
6 | Бизмут (Bi) 83 Других метала | ||||||||||
7 | Московијум (Mc) 115 други метал | ||||||||||
Легенда
| |||||||||||
Група | 15 |
Периода | |
2 | 7 N |
3 | 15 P |
4 | 33 As |
5 | 51 Sb |
6 | 83 Bi |
7 | 115 Uup |
15. група хемијских елемената или пниктогени[1] је једна од 18 група у периодном систему елемената.[2] Ова група је такође позната и као породица азота. Састоји се од елемената азот (N), фосфор (P), арсен (As), антимон (Sb), бизмут (Bi) и можда хемијски некарактерисани синтетички елемент московијум (Mc). У овој групи се налазе два неметала два металоида и два слабa метала. Сви елементи ове групе се јављају у природи сем унунпентијума који је вештачки добијен. У овој групи сви елементи су у чврстом агрегатном стању. Атомске масе ових елемената крећу се између 14,01 и 288. Ова група носи називе: азотова група хемијских елемената и VА група хемијских елемената.
У савременој IUPAC нотацији назива се Група 15. У CAS и старом IUPAC систему то је називано Група VA, односно Група VB (изговара се „група пет А“ и „група пет Б“, „V“ за римски број 5).[3] У области физике полупроводника, она се и даље обично назива Група V.[4] „Петица“ („V“) у историјским именима потиче од „пентаваленције“ азота, која се огледа у стехиометрији једињења као што је N2O5. Такође су се звана пентели.
Својства
[уреди | уреди извор]Хемијска својства
[уреди | уреди извор]Попут осталих група, и чланови ове групе показују сличности у својствима, попут броја валентних електрона, што значи да се слично понашају.
Z | Елемент | Електрона по љусци |
---|---|---|
7 | азот | 2, 5 |
15 | фосфор | 2, 8, 5 |
33 | арсеник | 2, 8, 18, 5 |
51 | антимон | 2, 8, 18, 18, 5 |
83 | бизмут | 2, 8, 18, 32, 18, 5 |
115 | московијум | 2, 8, 18, 32, 32, 18, 5
(предвиђено)
|
Сви елементи имају 5 електрона у валентним љускама: 2 електрона у s подљусци и 3 неспарена електрона у p подљусци. Потребна су им 3 електрона како би достигли правило октета у валентној љусци, те су стога претежно тровалентни. најважнији елементи ове групе су азот (N), који је, као двоатомни молекул, главни састојак ваздуха, и fosfor (P), koji, uz азот, ima ključnu ulogu za sav život na planetu.
Једињења
[уреди | уреди извор]Једињења елемената азотове групе понекад имају егзотична својства (дијамагнетизам или чак парамагнетизам на собној температури, прозирност, и стварање електричне струје при загрејавању. Једињења облика REaMbPnc; где је RE ретки земни метал (сви лантаноиди, скандијум и итријум); M је елемент угљеникове или борове групе; а Pn је елемент азотне групе осим азота; имају необична везна својства између јонских и ковалентних.[5]
Елементи азотне групе изузетно су стабилни у једињењима, јер због своје електронске конфигурације, стварају двоструке и троструке ковалентне везе. Управо ово својство заслужно је за њихову потенцијалну токсичност, најочитију у једињењима фосфора, арсена или антимона. Кад њихова једињења реагују с разним једињењима унутар људског тела, стварају се слободни радикали које јетра не може лако да разгради, па се тамо накупљају.
Прва три елемента азотне групе: азот, фосфор, и арсен имају оксидацијски број −3. Антимон и бизмут могу имати оксидацијски број +3 (чиме губе електроне p-подљуске) или +5 (чиме губе електроне p- и s-подљуске).[6]
Елементи азотне групе могу реаговати с водоником, при чему стварају хидриде (попут азотних хидрида одн. амонијака).
Оксидациона стања
[уреди | уреди извор]Лаки пниктогени (азот, фосфор и арсен) имају тенденцију да формирају -3 наелектрисања када се редукују, довршавајући свој октет. Када су оксидовани или јонизовани, пниктогени обично попримају оксидационо стање од +3 (губећи сва три електрона p-љуске у валентној љусци) или +5 (губивши сва три p-љуске и оба електрона s-љуске у валентној љусци). Међутим, тежи пниктогени имају већу вероватноћу да формирају оксидационо стање +3 него лакши због тога што електрони s-љуске постају све више стабилизовани.[6]
−3 оксидационо стање
[уреди | уреди извор]Пниктогени могу да реагују са водоником да би формирали пниктоген хидриде као што је амонијак. Идући низ групу, до фосфана (фосфина), арсана (арсина), стибана (стибина) и коначно бизмутана (бизмутина), сваки пниктоген хидрид постаје прогресивно мање стабилан (нестабилнији), токсичнији и има мањи водоник-водоник угао (од 107,8° у амонијаку[7] до 90,48° у бизмутану).[8] (Такође, технички, само амонијак и фосфан имају пниктоген у -3 оксидационом стању, јер је за остатак, пниктоген мање електронегативан од водоника.)
Кристалне чврсте материје које садрже у потпуности редуковане пниктогене укључују итријум нитрид, калцијум фосфид, натријум арсенид, индијум антимонид, па чак и двоструке соли као што је алуминијум галијум индијум фосфид. Ово укључује III-V полупроводнике, укључујући галијум-арсенид, други најраспрострањенији полупроводник после силицијума.
+3 оксидационо стање
[уреди | уреди извор]Азот формира ограничен број стабилних III једињења. Азот(III) оксид се може изоловати само на ниским температурама, а азотаста киселина је нестабилна. Азот трифлуорид је једини стабилан азот трихалид, при чему су азот трихлорид, азот трибромид и азот тријодид експлозивни - азот тријодид је толико осетљив на удар да га додир пера детонира (последња три заправо садрже азот у -3 оксидационом стању). Фосфор формира +III оксид који је стабилан на собној температури, фосфорну киселину и неколико трихалида, иако је тријодид нестабилан. Арсен формира +III једињења са кисеоником као арсенити, арсенитна киселина и арсеник(III) оксид, и формира сва четири трихалида. Антимон формира антимон(III) оксид и антимонит, али не и оксикиселине. Његови трихалиди, антимон трифлуорид, антимон трихлорид, антимон трибромид и антимон тријодид, као и сви пниктоген трихалиди, имају тригоналну пирамидалну молекуларну геометрију.
Оксидационо стање +3 је најчешће оксидационо стање бизмута јер је његова способност да формира оксидационо стање +5 ометана релативистичким својствима на тежим елементима, ефекти који су још израженији код московијума. Бизмут(III) формира оксид, оксихлорид, оксинитрат и сулфид. Предвиђа се да се московијум(III) понаша слично као бизмут(III). Такође се предвиђа се да московијум формира сва четири трихалида, од којих су сви осим трифлуорида растворљиви у води. Такође је предвиђено да формира оксихлорид и оксибромид у +III оксидационом стању.
+5 оксидационо стање
[уреди | уреди извор]За азот, +5 стање обично служи само као формално објашњење молекула као што је N2O5, пошто висока електронегативност азота узрокује да се електрони деле скоро равномерно. Пниктогена једињења са координационим бројем 5 су хипервалентна. Азот(V) флуорид је само теоретски концепт и није синтетисан. „Право“ +5 стање је чешће за суштински нерелативистичке типичне пниктогене фосфора, арсена и антимона, као што је приказано у њиховим оксидима, фосфор(V) оксид, арсеник(V) оксид и антимон(V) оксид, и њихови флуориди, фосфор(V) флуорид, арсен(V) флуорид, антимон(V) флуорид. Они такође формирају сродне флуорид-анјоне, хексафлуорофосфат, хексафлуороарсенат, хексафлуорантимонат, који функционишу као некоординациони анјони. Фосфор чак формира мешовите оксид-халиде, познате као оксихалиди, као што је фосфор оксихлорид, и мешане пентахалиде, као што је фосфор трифлуородихлорид. Пентаметилпниктоген(V) једињења постоје за арсен, антимон и бизмут. Међутим, за бизмут, +5 оксидационо стање то постаје ретко због релативистичке стабилизације 6s орбитала познате као ефекат инертног пара, тако да се 6s електрони нерадо хемијски везују. Ово узрокује да бизмут(V) оксид буде нестабилан[9] и бизмут(V) флуорид да буде реактивнији од осталих пниктоген пентафлуорида, што га чини изузетно моћним средством за флуорисање.[10] Овај ефекат је још израженији за московијум, спречавајући га да постигне +5 оксидационо стање.
Друга оксидациона стања
[уреди | уреди извор]- Азот формира различита једињења са кисеоником у којима азот може попримити различита оксидациона стања, укључујући +II, +IV, па чак и нека једињења мешане валентности и веома нестабилно +VI оксидационо стање.
- У хидразину, дифосфану и органским дериватима њих двоје, атоми азота или фосфора имају -2 оксидационо стање. Слично, диимид, који има два атома азота двоструко везана један за други, и његови органски деривати имају азот у оксидационом стању од -1.
- Слично, реалгар има везе арсен-арсен, тако да је оксидационо стање арсена +II.
- Кореспондирајуће једињење за антимон је Sb2(C6H5)4, где је оксидационо стање антимона +II.
- Фосфор има +1 оксидационо стање у хипофосфорастој киселини и +4 оксидационо стање у хипофосфорној киселини.
- Антимон тетроксид је једињење мешовите валенције, где је половина атома антимона у +3 оксидационом стању, а друга половина у +5 оксидационом стању.
- Очекује се да ће московијум имати ефекат инертног пара и за 7s и за 7p1/2 електроне, пошто је енергија везивања усамљеног 7p3/2 електрона приметно нижа од оне код 7p1/2 електрона. Предвиђа се да ће ово довести до тога да +I буде уобичајено оксидационо стање за московијум, иако се такође јавља у мањој мери за бизмут и азот.[11]
Физичка својства
[уреди | уреди извор]Азотна група састоји се од два неметала (један гасовити, други чврст), два полуметала, и једног метала. Сви су елементи чврстог агрегатног стања при собној температури осим гасовитог азота. Азот и бизмут, иако су у истој групи, имају изражено различита физичка својства. На собној температури, на пример, азот је прозиран неметални плин, док је бизмут сребрна чврста материја изражених металних својстава.[12]
Густине елемената повећавају се повећањем периоде[12], према табели[13]:
Елемент | Густина при СТП | Топљење/°C | Врење/°C | Кристална структура |
---|---|---|---|---|
Азот | 0,001251 g/cm3 | -210 | -196 | шестоугаона |
Фосфор | 1,82 g/cm3 | 44 | 280 | кубна |
Арсен | 5,72 g/cm3 | 603 (сублимира) | Ромбоидни паралелопипед | |
Антимон | 6,68 g/cm3 | 631 | 1587 | |
Бизмут | 9.79 g/cm3 | 271 | 1564 |
Нуклеарна својства
[уреди | уреди извор]Сви пниктогени до антимона имају најмање један стабилан изотоп; бизмут нема стабилне изотопе, али има примордијални радиоизотоп са временом полураспада много дужим од старости универзума (209Bi); и сви познати изотопи московијума су синтетички и високо радиоактивни. Поред ових изотопа, у природи се јављају трагови 13N, 32P, и 33P, заједно са различитим изотопима бизмута (осим 209Bi) у ланцима распада торијума и уранијума.
Добијање
[уреди | уреди извор]Азот
[уреди | уреди извор]Азот[14] се добија фракцијском дестилацијом ваздуха.[14]
Фосфор
[уреди | уреди извор]Фосфор се добија редукцијом фосфата уз присуство угљеника у електролучној пећи.[15]
Арсен
[уреди | уреди извор]Арсен се добија загревањем минерала арсенопирита уз присуство кисеоника. Ово ствара As4O6, из којег се угљеничном редукцијом добија арсен. Метални арсен је могуће добити и загрејавањем арсенопирита на 650 до 700 °C без кисеоника.[16]
Антимон
[уреди | уреди извор]Код сулфидних руда, начин на који се производи антимон зависи од количине антимона у сировој руди. Ако руда садржи 25% до 45% антимона по маси, тада се сирови антимон производи топљењем руде у високој пећи. Ако руда садржи 45% до 60% тежински антимона, антимон се добија загревањем руде, што је такође познато као ликвидација. Руде са више од 60 % мас. антимона хемијски се премештају гвозденим струготинама из растопљене руде, што резултира нечистим металом.
Ако оксидна руда антимона садржи мање од 30 % мас. aнтимона, руда се редукује у високој пећи. Ако руда садржи приближно 50 % мас. aнтимона, руда се уместо тога редукује у ревербераторној пећи.
Руде антимона са мешаним сулфидима и оксидима се топе у високој пећи.[17]
Бизмут
[уреди | уреди извор]Минерали бизмута се јављају у природи, посебно у облику сулфида и оксида, али је економичније произвести бизмут као нуспродукт топљења руда олова или, као у Кини, руда волфрама и цинка.[18]
Московијум
[уреди | уреди извор]Може се произвести неколико атома московијума појединачном применом акцелератора честица испаљивањем снопа јона калцијума-48 на америциум док се језгра не стопе.[19]
Примена
[уреди | уреди извор]- Течни азот користи се као криогена течност.[12]
- Азот, главни састојак амонијака, кључан је за живот биљака.[12]
- Фосфор се користи за израду шибица и експлозива.[12]
- Фосфатна ђубрива су кључан део узгоја биљака.[12]
- Арсен се у прошлости користио за израду зелене боје, али открићем његове токсичности, престао се користити за израду боје.[12]
- Арсен се у органским једињењима понекад користи у храни за кокошке.[12]
- Легуре антимона и олова користе се у изради неких метака.[12]
- Prosečni čovek (70 kg) у телу садржи 1,8 kg азота, 480 грама фосфора, 7 mg арсена, 2 mg антимона и мање од 500 микрограма бизмута.[20]
Отровност
[уреди | уреди извор]Азот није отрован, али удисање чистог азота узрокује гушење.[21] Мехурићи азота у крви узрокују декомпресијску болест. Многа једињења азота, попут азотног цијанида или разних експлозива веома су опасна.[20]
Бели фосфор, алотропска модификација фосфора, веома је отрован, смртна доза је 1 милиграм по килограму телесне тежине.[12] Бели је фосфор веома запаљив. Нека органска једињења фосфора могу блокирати одређене ензиме људског тела, што може довести до смрти.[20]
Елементарни арсен је отрован, као и многа његова неорганска једињења; међутим, нека органска једињења арсена могу убрзати раст кокошака.[12] Смртна доза арсена за одраслог човека је 200 милиграма.[20]
Антимон је благо токсичан.[21] У већим дозама, антимон узрокује повраћање,[12] након чега се жртва привидно опорави, али умре након пар дана. Антимон се веже на ензиме, и тешко га је уклонити из тела. Стибин, SbH3 је знатно токсичнији од чистог антимона.[20]
Бизмут није токсичан, али превелика конзумација може оштетити јетру.[20] Конзумација топљивих бизмутових соли може зацрнити зубно месо.[12]
Референце
[уреди | уреди извор]- ^ Međunarodna unija za čistu i primenjenu hemiju (2005). Nomenclature of Inorganic Chemistry (IUPAC Recommendations 2005). Cambridge (UK): Royal Society of Chemistry – International Union of Pure and Applied Chemistry. ISBN 0-85404-438-8. p. 51. Electronic version.
- ^ Connelly, NG; Damhus, T, ур. (2005). „section IR-3.5: Elements in the periodic table” (PDF). Nomenclature of Inorganic Chemistry: IUPAC Recommendations 2005. Cambridge, United Kingdom: RSC Publishing. стр. 51. ISBN 978-0-85404-438-2. Архивирано из оригинала (PDF) 19. 04. 2018. г. Приступљено 05. 06. 2021.
- ^ Fluck, E (1988). „New notations in the periodic table” (PDF). Pure and Applied Chemistry. 60 (3): 431—6. S2CID 96704008. doi:10.1351/pac198860030431.
- ^ Adachi, S., ур. (2005). Properties of Group-IV, III-V and II-VI Semiconductors. Wiley Series in Materials for Electronic & Optoelectronic Applications. 15. Hoboken, New Jersey: John Wiley & Sons. Bibcode:2005pgii.book.....A. ISBN 978-0470090329.
- ^ "Pnicogen – Molecule of the Month". University of Bristol
- ^ а б Boudreaux, Kevin A. "Group 5A — The Pnictogens" Архивирано на сајту Wayback Machine (8. август 2016). Department of Chemistry, Angelo State University, Texas
- ^ Greenwood, N.N.; Earnshaw, A. (1997). Chemistry of the Elements (2nd изд.). Oxford: Butterworth-Heinemann. стр. 423. ISBN 0-7506-3365-4.
- ^ Jerzembeck W, Bürger H, Constantin L, Margulès L, Demaison J, Breidung J, Thiel W (2002). „Bismuthine BiH3: Fact or Fiction? High-Resolution Infrared, Millimeter-Wave, and Ab Initio Studies”. Angew. Chem. Int. Ed. 41 (14): 2550—2552. PMID 12203530. doi:10.1002/1521-3773(20020715)41:14<2550::AID-ANIE2550>3.0.CO;2-B.
- ^ Scott, Thomas; Eagleson, Mary (1994). Concise encyclopedia chemistry. Walter de Gruyter. стр. 136. ISBN 978-3-11-011451-5.
- ^ Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (II изд.). Oxford: Butterworth-Heinemann. стр. 561—563. ISBN 0080379419.
- ^ Keller, O. L. Jr.; C. W. Nestor, Jr. (1974). „Predicted properties of the superheavy elements. III. Element 115, Eka-bismuth” (PDF). Journal of Physical Chemistry. 78 (19): 1945. doi:10.1021/j100612a015.
- ^ а б в г д ђ е ж з и ј к л Gray, Theodore (2010). The Elements.
- ^ Jackson, Mark (2001), Periodic Table Advanced, ISBN 1572225424
- ^ а б Sanderson, R. Thomas (1. 2. 2019). „Nitrogen: chemical element”. Encyclopædia Britannica.
- ^ „Phosphorus: chemical element”. Encyclopædia Britannica. 11. 10. 2019.
- ^ "arsenic (As) | chemical element". Encyclopædia Britannica.
- ^ Butterman, C.; Carlin, Jr., J.F. (2003). Mineral Commodity Profiles: Antimony. United States Geological Survey.
- ^ Bell, Terence. „Metal Profile: Bismuth”. About.com. Архивирано из оригинала 5. 7. 2012. г.
- ^ Oganessian, Yu Ts; Utyonkov, V K (9. 3. 2015). „Superheavy Element Research”. Reports on Progress in Physics. 78 (3): 3. PMID 25746203. doi:10.1088/0034-4885/78/3/036301.
- ^ а б в г д ђ Emsley, John (2011), Nature's Building Blocks, ISBN 978-0-19-960563-7
- ^ а б Kean, Sam (2011), The Disappearing Spoon