Previous studies have documented that ovarian antral follicle count (AFC) is positively correlate... more Previous studies have documented that ovarian antral follicle count (AFC) is positively correlated with number of healthy follicles and oocytes in ovaries (ovarian reserve), as well as ovarian function and fertility in cattle. However, environmental factors (e.g., nutrition, steroids) during pregnancy in cattle and sheep can reduce AFC in offspring. The role that genetic and environmental factors play in influencing the variability in AFC and, correspondingly, the size of the ovarian reserve, ovarian function, and fertility, are, however, poorly understood. The present study tests the hypothesis that variability in AFC in offspring is influenced not only by genetic merit but also by the dam age and lactation status (lactating cows vs. nonlactating heifers) and milk production during pregnancy. Antral follicle count was assessed by ultrasonography in 445 Irish Holstein-Friesian dairy cows and 522 US Holstein-Friesian dairy heifers. Heritability estimates for AFC (± standard error) we...
The total number of ovarian follicles ≥ 3mm in diameter (antral follicle count, AFC) during folli... more The total number of ovarian follicles ≥ 3mm in diameter (antral follicle count, AFC) during follicular waves varies among cattle of similar age, but AFC is highly repeatable within individuals. We hypothesized that lower AFC could be associated with reduced fertility in cattle. The AFC was assessed by ultrasonography for 2 d consecutively during the first wave of follicular growth of the estrous cycle, 4.6±1.43 d (mean ± SD) after estrus, in 306 Holstein-Friesian dairy cows approximately 70 d postpartum. Cows were classified into 3 groups based on AFC: low (AFC ≤15), intermediate (AFC=16 to 24), and high (AFC ≥25). During the cycle in which AFC was assessed and in subsequent cycles, cows were artificially inseminated (AI) following detection of estrus, and pregnancy status was assessed using ultrasonography. Cows with high AFC had 3.34 times greater odds of being pregnant at the end of the breeding season compared with cows with low AFC; the odds of a successful pregnancy at first s...
• Maternal nutrition during gestation influences the development and function of many biological ... more • Maternal nutrition during gestation influences the development and function of many biological systems in offspring.
The objective was to characterise the hormonal composition of follicular fluid from mares with di... more The objective was to characterise the hormonal composition of follicular fluid from mares with distinct anovulatory-cystic follicles. Follicular fluid was aspirated from six mares that presented with cystic follicles and from pre-ovulatory follicles of five normal mares (controls). Differences in progesterone, oestradiol, testosterone, IGF-I and IGF binding were analysed using Fisher's exact test. There were greater (P < 0.03) follicular fluid oestradiol concentrations in normal follicles and the testosterone concentration of the cystic fluid was greater (P < 0.05) than that of the normal fluid. There also was a greater (P < 0.03) percentage of IGF-I binding and lower (P < 0.02) IGF-I concentrations in the fluid collected from the cystic structures compared with the fluid from normal follicles. Despite the limited number of animals, the fact that fluid aspirated from cystic follicles had higher testosterone and lower oestradiol concentrations could be of diagnostic value when a practitioner wants to distinguish between a cystic and non-cystic persistent follicle. The research reported here also indicates a likely role for the IGF system in the pathogenesis of the development and maintenance of anovulatory follicular structures in mare ovaries.
The objective of this study was to investigate the potential differences among Holstein-Friesian ... more The objective of this study was to investigate the potential differences among Holstein-Friesian (HF), Montbéliarde (MB), Normande (NM), Norwegian Red (NRF), Montbéliarde × Holstein-Friesian (MBX), and Normande × Holstein-Friesian (NMX) across 2 seasonal grass-based systems of milk production. The effects of breed and feeding system on milk production, body weight, body condition score, fertility performance, hormone parameters, ovarian function, and survival were determined by using mixed model methodology, generalized linear models, and survival analysis. The 5-yr study comprised up to 749 lactations on 309 cows in one research herd. The HF produced the greatest yield of solids-corrected milk, the MB and NM produced the least yields, and NRF, MBX, and NMX were intermediate. The NRF had the lowest body weight throughout lactation, the NM had the highest, and the other breeds were intermediate. Body condition score was greatest for MB and NM, least for HF, and intermediate for NRF, MBX, and NMX. The HF had a lower submission rate and overall pregnancy rate compared with the NRF. The NRF survived the longest in the herd, the HF survived the shortest, and the NM, MB, MBX, and NMX were intermediate. Breed of dairy cow had no effect on selected milk progesterone parameters from 5 d postpartum until 26 d after first artificial insemination. Breed of dairy cow did not influence insulin and insulin-like growth factor-1 around parturition or at the start of the breeding season. Animals offered a high-concentrate diet had greater milk yield, but they did not have improved reproductive performance. Differences observed between the different breeds in this study are a likely consequence of the past selection criteria for the respective breeds.
Follicular fluid (FF), an important microenvironment for the development of oocytes, contains man... more Follicular fluid (FF), an important microenvironment for the development of oocytes, contains many proteins that are glycosylated with N-linked glycans. This study aimed i) to present an initial analysis of the N-linked glycan profile of bovine FF using hydrophilic interaction liquid chromatography, anion exchange chromatography, high performance liquid chromatography (HPLC)-based separations and subsequent liquid chromatography-mass spectrometry/mass spectrometry analysis; ii) to determine differences in the N-glycan profile between FF from dominant and subordinate follicles from dairy heifers and lactating dairy cows and iii) to identify alterations in the N-glycan profile of FF during preovulatory follicle development using newly selected, differentiated (preovulatory) and luteinised dominant follicles from dairy heifers and lactating cows. We found that the majority of glycans on bovine FF are based on biantennary hypersialylated structures, where the glycans are sialylated on both the galactose and N-acetylglucosamine terminal sugars. A comparison of FF N-glycans from cows and heifers indicated higher levels of nonsialylated glycans with a lower proportion of sialylated glycans in cows than in heifers. Overall, as the follicle develops from Selection, Differentiation and Luteinisation in both cows and heifers, there is an overall decrease in sialylated structures on FF N-glycans.
Mammals such as cattle, swine, sheep and humans are born with a highly variable number of ovarian... more Mammals such as cattle, swine, sheep and humans are born with a highly variable number of ovarian follicles and oocytes in the ovaries that dwindle during ageing and are never replenished. This variation in the ovarian reserve is reflected in the numbers of antral follicles in the ovaries at all ages after birth. As numbers of follicles in ovaries are determined during gestation, the role of maternal nutrition and health during gestation (at time of ovarian development in their foetuses) has been investigated as factors that may impact oogonia proliferation and thus follicle numbers post-natally. These studies have found that both nutrition and health impact numbers of follicles in their offspring. The idea that numbers of follicles and oocytes in ovaries impact fertility is a long-held belief in reproductive biology. This has recently been tested in cattle, and it has been shown that cows with a relatively high number of antral follicles in ovaries have higher pregnancy rates, shorter calving to conception intervals and fewer artificial inseminations during the breeding season compared with cows with a lower number of follicles, and similarly, heifers with many follicles had higher pregnancy rates than those with fewer follicles. Studies summarized in this review highlight the importance of the maternal environment during gestation in determining the size of the ovarian reserve in their offspring and also the contribution of the ovarian reserve to subsequent fertility in cattle.
We hypothesised that higher serum FSH concentrations in cattle with low v. high follicle numbers ... more We hypothesised that higher serum FSH concentrations in cattle with low v. high follicle numbers during follicular waves are caused by a different capacity of the pituitary gland to produce gonadotropins. Dairy cows with high (≥30; n = 5) and low (≤15; n = 5) follicle numbers were selected and serum concentrations of oestradiol and FSH during an oestrous cycle were measured. Cows were ovariectomised at oestrus and bled frequently up to 8 days after ovariectomy. After 33 days, cows were injected with gonadotropin-releasing hormone (GnRH) and bled intensively up to 8 h after GnRH injection. One day later, animals were injected with follicular fluid (FF) from bovine follicles and were bled intensively up to 2 days after the first injection. Serum concentrations of FSH and LH were measured. After 2 days, cows were killed and their pituitary glands collected. Prior to ovariectomy, serum oestradiol concentrations were similar between groups, whereas FSH concentrations were higher in cattle with low v. high numbers of follicles. No differences were detected in serum gonadotropin concentrations after ovariectomy, GnRH injection or FF challenge between groups. The results indicate that the inherent capacity of the pituitary gland to secrete gonadotropins does not differ between cattle with high v. low numbers of follicles during follicular waves.
The failure of cows to successfully establish pregnancy after insemination is an important limiti... more The failure of cows to successfully establish pregnancy after insemination is an important limiting factor for the efficiency of dairy production systems. The physiological reasons for this are many and pertain to the post partum and early pregnancy periods. Cows that suffer severe negative energy balance after parturition are prone to diseases (including uterine infection) that are, in part, explained by reduced function of the immune system, having negative consequences for subsequent fertility. In high-producing dairy cows, the duration and intensity of oestrus is low as a consequence of low circulating oestradiol concentrations, and after insemination, high embryo mortality is the single biggest factor reducing calving rates. Embryo mortality occurs as consequences of poor oocyte quality (probably caused by the adverse metabolic environment) and by poor maternal uterine environment (probably caused by carry-over effects of uterine infection and low circulating progesterone concentrations). Immediate improvements in the fertility of lactating cows on many farms can be achieved by applying existing knowledge, but longer-term sustained improvement will require additional knowledge in many areas including the physiology of the tissues that contribute to reproduction.
The oviduct provides the environment to support gamete maturation, fertilisation and early embryo... more The oviduct provides the environment to support gamete maturation, fertilisation and early embryo development. As there is a high incidence of early embryonic death in lactating dairy cows, this study compared expression of IGF family members in the oviduct between lactating Holstein-Friesian dairy cows (nZ16, 81G2.4 days in milk) and nulliparous heifers (nZ16, age 1.6G0.07 years) at three stages of the oestrous cycle: A) newly selected dominant follicle in the luteal phase, B) follicular phase before the LH surge and C) pre-ovulatory phase after the LH surge. Expression of IGF1, IGF2, IGF binding protein 2 (IGFBP2), IGFBP3 and IGFBP6 mRNA was determined in the ampulla of the oviduct. Oviduct side (ipsilateral or contralateral) with respect to the dominant follicle did not affect gene expression. Expression of IGF1 and all three IGFBPs increased significantly between the luteal and the pre-ovulatory phases, with no further significant alteration post-LH surge. Concentrations of circulating IGF1 were higher in heifers than in cows, as was the mRNA expression of IGF1, IGFBP3 and IGFBP6. The pre-LH surge rise in IGFBP2 mRNA was only observed in heifers. IGF2 expression was not influenced by either age or stage of cycle. These three IGFBPs are generally considered to inhibit IGF action. These results indicate tight regulation of IGF bioavailability in the oviductal environment around oestrus, with pronounced differences between cows and heifers, which are likely to influence early embryonic development. Further studies are required to assess the implications for embryo survival.
lar mechanisms that contribute to low estradiol concentrations produced by the preovulatory ovari... more lar mechanisms that contribute to low estradiol concentrations produced by the preovulatory ovarian follicle in cattle with a compromised metabolic status are largely unknown. To gain insight into the main metabolic mechanisms affecting preovulatory follicle function, two different animal models were used. Experiment 1 compared Holstein-Friesian nonlactating heifers (n ϭ 17) and lactating cows (n ϭ 16) at three stages of preovulatory follicle development: 1) newly selected dominant follicle in the luteal phase (Selection), 2) follicular phase before the LH surge (Differentiation), and 3) preovulatory phase after the LH surge (Luteinization). Experiment 2 compared newly selected dominant follicles in the luteal phase in beef heifers fed a diet of 1.2 times maintenance (M, n ϭ 8) or 0.4 M (n ϭ 11). Lactating cows and 0.4 M beef heifers had higher concentrations of -hydroxybutyrate, and lower concentrations of glucose, insulin, and IGF-I compared with dairy heifers and 1.2 M beef heifers, respectively. In lactating cows this altered metabolic environment was associated with reduced dominant follicle estradiol and progesterone synthesis during Differentiation and Luteinization, respectively, and in 0.4 M beef heifers with reduced dominant follicle estradiol synthesis. Using a combination of RNA sequencing, Ingenuity Pathway Analysis, and qRT-PCR validation, we identified several important molecular markers involved in steroid biosynthesis, such as the expression of steroidogenic acute regulatory protein (STAR) within developing dominant follicles, to be downregulated by the catabolic state. Based on this, we propose that the adverse metabolic environment caused by lactation or nutritional restriction decreases preovulatory follicle function mainly by affecting cholesterol transport into the mitochondria to initiate steroidogenesis. ovary; estradiol; theca cells; granulosa cells; RNA sequencing THE METABOLIC ENVIRONMENT of females can be affected by both chronic and acute stressors at critical time points of the reproductive cycle and can be deleterious to reproductive function (7, 17). For instance, in beef animals acute dietary restriction
Previous studies have documented that ovarian antral follicle count (AFC) is positively correlate... more Previous studies have documented that ovarian antral follicle count (AFC) is positively correlated with number of healthy follicles and oocytes in ovaries (ovarian reserve), as well as ovarian function and fertility in cattle. However, environmental factors (e.g., nutrition, steroids) during pregnancy in cattle and sheep can reduce AFC in offspring. The role that genetic and environmental factors play in influencing the variability in AFC and, correspondingly, the size of the ovarian reserve, ovarian function, and fertility, are, however, poorly understood. The present study tests the hypothesis that variability in AFC in offspring is influenced not only by genetic merit but also by the dam age and lactation status (lactating cows vs. nonlactating heifers) and milk production during pregnancy. Antral follicle count was assessed by ultrasonography in 445 Irish Holstein-Friesian dairy cows and 522 US Holstein-Friesian dairy heifers. Heritability estimates for AFC (± standard error) we...
The total number of ovarian follicles ≥ 3mm in diameter (antral follicle count, AFC) during folli... more The total number of ovarian follicles ≥ 3mm in diameter (antral follicle count, AFC) during follicular waves varies among cattle of similar age, but AFC is highly repeatable within individuals. We hypothesized that lower AFC could be associated with reduced fertility in cattle. The AFC was assessed by ultrasonography for 2 d consecutively during the first wave of follicular growth of the estrous cycle, 4.6±1.43 d (mean ± SD) after estrus, in 306 Holstein-Friesian dairy cows approximately 70 d postpartum. Cows were classified into 3 groups based on AFC: low (AFC ≤15), intermediate (AFC=16 to 24), and high (AFC ≥25). During the cycle in which AFC was assessed and in subsequent cycles, cows were artificially inseminated (AI) following detection of estrus, and pregnancy status was assessed using ultrasonography. Cows with high AFC had 3.34 times greater odds of being pregnant at the end of the breeding season compared with cows with low AFC; the odds of a successful pregnancy at first s...
• Maternal nutrition during gestation influences the development and function of many biological ... more • Maternal nutrition during gestation influences the development and function of many biological systems in offspring.
The objective was to characterise the hormonal composition of follicular fluid from mares with di... more The objective was to characterise the hormonal composition of follicular fluid from mares with distinct anovulatory-cystic follicles. Follicular fluid was aspirated from six mares that presented with cystic follicles and from pre-ovulatory follicles of five normal mares (controls). Differences in progesterone, oestradiol, testosterone, IGF-I and IGF binding were analysed using Fisher's exact test. There were greater (P < 0.03) follicular fluid oestradiol concentrations in normal follicles and the testosterone concentration of the cystic fluid was greater (P < 0.05) than that of the normal fluid. There also was a greater (P < 0.03) percentage of IGF-I binding and lower (P < 0.02) IGF-I concentrations in the fluid collected from the cystic structures compared with the fluid from normal follicles. Despite the limited number of animals, the fact that fluid aspirated from cystic follicles had higher testosterone and lower oestradiol concentrations could be of diagnostic value when a practitioner wants to distinguish between a cystic and non-cystic persistent follicle. The research reported here also indicates a likely role for the IGF system in the pathogenesis of the development and maintenance of anovulatory follicular structures in mare ovaries.
The objective of this study was to investigate the potential differences among Holstein-Friesian ... more The objective of this study was to investigate the potential differences among Holstein-Friesian (HF), Montbéliarde (MB), Normande (NM), Norwegian Red (NRF), Montbéliarde × Holstein-Friesian (MBX), and Normande × Holstein-Friesian (NMX) across 2 seasonal grass-based systems of milk production. The effects of breed and feeding system on milk production, body weight, body condition score, fertility performance, hormone parameters, ovarian function, and survival were determined by using mixed model methodology, generalized linear models, and survival analysis. The 5-yr study comprised up to 749 lactations on 309 cows in one research herd. The HF produced the greatest yield of solids-corrected milk, the MB and NM produced the least yields, and NRF, MBX, and NMX were intermediate. The NRF had the lowest body weight throughout lactation, the NM had the highest, and the other breeds were intermediate. Body condition score was greatest for MB and NM, least for HF, and intermediate for NRF, MBX, and NMX. The HF had a lower submission rate and overall pregnancy rate compared with the NRF. The NRF survived the longest in the herd, the HF survived the shortest, and the NM, MB, MBX, and NMX were intermediate. Breed of dairy cow had no effect on selected milk progesterone parameters from 5 d postpartum until 26 d after first artificial insemination. Breed of dairy cow did not influence insulin and insulin-like growth factor-1 around parturition or at the start of the breeding season. Animals offered a high-concentrate diet had greater milk yield, but they did not have improved reproductive performance. Differences observed between the different breeds in this study are a likely consequence of the past selection criteria for the respective breeds.
Follicular fluid (FF), an important microenvironment for the development of oocytes, contains man... more Follicular fluid (FF), an important microenvironment for the development of oocytes, contains many proteins that are glycosylated with N-linked glycans. This study aimed i) to present an initial analysis of the N-linked glycan profile of bovine FF using hydrophilic interaction liquid chromatography, anion exchange chromatography, high performance liquid chromatography (HPLC)-based separations and subsequent liquid chromatography-mass spectrometry/mass spectrometry analysis; ii) to determine differences in the N-glycan profile between FF from dominant and subordinate follicles from dairy heifers and lactating dairy cows and iii) to identify alterations in the N-glycan profile of FF during preovulatory follicle development using newly selected, differentiated (preovulatory) and luteinised dominant follicles from dairy heifers and lactating cows. We found that the majority of glycans on bovine FF are based on biantennary hypersialylated structures, where the glycans are sialylated on both the galactose and N-acetylglucosamine terminal sugars. A comparison of FF N-glycans from cows and heifers indicated higher levels of nonsialylated glycans with a lower proportion of sialylated glycans in cows than in heifers. Overall, as the follicle develops from Selection, Differentiation and Luteinisation in both cows and heifers, there is an overall decrease in sialylated structures on FF N-glycans.
Mammals such as cattle, swine, sheep and humans are born with a highly variable number of ovarian... more Mammals such as cattle, swine, sheep and humans are born with a highly variable number of ovarian follicles and oocytes in the ovaries that dwindle during ageing and are never replenished. This variation in the ovarian reserve is reflected in the numbers of antral follicles in the ovaries at all ages after birth. As numbers of follicles in ovaries are determined during gestation, the role of maternal nutrition and health during gestation (at time of ovarian development in their foetuses) has been investigated as factors that may impact oogonia proliferation and thus follicle numbers post-natally. These studies have found that both nutrition and health impact numbers of follicles in their offspring. The idea that numbers of follicles and oocytes in ovaries impact fertility is a long-held belief in reproductive biology. This has recently been tested in cattle, and it has been shown that cows with a relatively high number of antral follicles in ovaries have higher pregnancy rates, shorter calving to conception intervals and fewer artificial inseminations during the breeding season compared with cows with a lower number of follicles, and similarly, heifers with many follicles had higher pregnancy rates than those with fewer follicles. Studies summarized in this review highlight the importance of the maternal environment during gestation in determining the size of the ovarian reserve in their offspring and also the contribution of the ovarian reserve to subsequent fertility in cattle.
We hypothesised that higher serum FSH concentrations in cattle with low v. high follicle numbers ... more We hypothesised that higher serum FSH concentrations in cattle with low v. high follicle numbers during follicular waves are caused by a different capacity of the pituitary gland to produce gonadotropins. Dairy cows with high (≥30; n = 5) and low (≤15; n = 5) follicle numbers were selected and serum concentrations of oestradiol and FSH during an oestrous cycle were measured. Cows were ovariectomised at oestrus and bled frequently up to 8 days after ovariectomy. After 33 days, cows were injected with gonadotropin-releasing hormone (GnRH) and bled intensively up to 8 h after GnRH injection. One day later, animals were injected with follicular fluid (FF) from bovine follicles and were bled intensively up to 2 days after the first injection. Serum concentrations of FSH and LH were measured. After 2 days, cows were killed and their pituitary glands collected. Prior to ovariectomy, serum oestradiol concentrations were similar between groups, whereas FSH concentrations were higher in cattle with low v. high numbers of follicles. No differences were detected in serum gonadotropin concentrations after ovariectomy, GnRH injection or FF challenge between groups. The results indicate that the inherent capacity of the pituitary gland to secrete gonadotropins does not differ between cattle with high v. low numbers of follicles during follicular waves.
The failure of cows to successfully establish pregnancy after insemination is an important limiti... more The failure of cows to successfully establish pregnancy after insemination is an important limiting factor for the efficiency of dairy production systems. The physiological reasons for this are many and pertain to the post partum and early pregnancy periods. Cows that suffer severe negative energy balance after parturition are prone to diseases (including uterine infection) that are, in part, explained by reduced function of the immune system, having negative consequences for subsequent fertility. In high-producing dairy cows, the duration and intensity of oestrus is low as a consequence of low circulating oestradiol concentrations, and after insemination, high embryo mortality is the single biggest factor reducing calving rates. Embryo mortality occurs as consequences of poor oocyte quality (probably caused by the adverse metabolic environment) and by poor maternal uterine environment (probably caused by carry-over effects of uterine infection and low circulating progesterone concentrations). Immediate improvements in the fertility of lactating cows on many farms can be achieved by applying existing knowledge, but longer-term sustained improvement will require additional knowledge in many areas including the physiology of the tissues that contribute to reproduction.
The oviduct provides the environment to support gamete maturation, fertilisation and early embryo... more The oviduct provides the environment to support gamete maturation, fertilisation and early embryo development. As there is a high incidence of early embryonic death in lactating dairy cows, this study compared expression of IGF family members in the oviduct between lactating Holstein-Friesian dairy cows (nZ16, 81G2.4 days in milk) and nulliparous heifers (nZ16, age 1.6G0.07 years) at three stages of the oestrous cycle: A) newly selected dominant follicle in the luteal phase, B) follicular phase before the LH surge and C) pre-ovulatory phase after the LH surge. Expression of IGF1, IGF2, IGF binding protein 2 (IGFBP2), IGFBP3 and IGFBP6 mRNA was determined in the ampulla of the oviduct. Oviduct side (ipsilateral or contralateral) with respect to the dominant follicle did not affect gene expression. Expression of IGF1 and all three IGFBPs increased significantly between the luteal and the pre-ovulatory phases, with no further significant alteration post-LH surge. Concentrations of circulating IGF1 were higher in heifers than in cows, as was the mRNA expression of IGF1, IGFBP3 and IGFBP6. The pre-LH surge rise in IGFBP2 mRNA was only observed in heifers. IGF2 expression was not influenced by either age or stage of cycle. These three IGFBPs are generally considered to inhibit IGF action. These results indicate tight regulation of IGF bioavailability in the oviductal environment around oestrus, with pronounced differences between cows and heifers, which are likely to influence early embryonic development. Further studies are required to assess the implications for embryo survival.
lar mechanisms that contribute to low estradiol concentrations produced by the preovulatory ovari... more lar mechanisms that contribute to low estradiol concentrations produced by the preovulatory ovarian follicle in cattle with a compromised metabolic status are largely unknown. To gain insight into the main metabolic mechanisms affecting preovulatory follicle function, two different animal models were used. Experiment 1 compared Holstein-Friesian nonlactating heifers (n ϭ 17) and lactating cows (n ϭ 16) at three stages of preovulatory follicle development: 1) newly selected dominant follicle in the luteal phase (Selection), 2) follicular phase before the LH surge (Differentiation), and 3) preovulatory phase after the LH surge (Luteinization). Experiment 2 compared newly selected dominant follicles in the luteal phase in beef heifers fed a diet of 1.2 times maintenance (M, n ϭ 8) or 0.4 M (n ϭ 11). Lactating cows and 0.4 M beef heifers had higher concentrations of -hydroxybutyrate, and lower concentrations of glucose, insulin, and IGF-I compared with dairy heifers and 1.2 M beef heifers, respectively. In lactating cows this altered metabolic environment was associated with reduced dominant follicle estradiol and progesterone synthesis during Differentiation and Luteinization, respectively, and in 0.4 M beef heifers with reduced dominant follicle estradiol synthesis. Using a combination of RNA sequencing, Ingenuity Pathway Analysis, and qRT-PCR validation, we identified several important molecular markers involved in steroid biosynthesis, such as the expression of steroidogenic acute regulatory protein (STAR) within developing dominant follicles, to be downregulated by the catabolic state. Based on this, we propose that the adverse metabolic environment caused by lactation or nutritional restriction decreases preovulatory follicle function mainly by affecting cholesterol transport into the mitochondria to initiate steroidogenesis. ovary; estradiol; theca cells; granulosa cells; RNA sequencing THE METABOLIC ENVIRONMENT of females can be affected by both chronic and acute stressors at critical time points of the reproductive cycle and can be deleterious to reproductive function (7, 17). For instance, in beef animals acute dietary restriction
Uploads
Papers by Siobhan Walsh