Papers by Thomas M Vandyk
Abstract The Luoquan Formation provides a record of the Ediacaran‐Cambrian glaciation in the Nort... more Abstract The Luoquan Formation provides a record of the Ediacaran‐Cambrian glaciation in the North China Craton. The sedimentary record is well expressed in the Henan Province along the central China orogen, and includes a rich archive of striated pavements, diamictites, and dropstone‐bearing laminites. A reappraisal of the sedimentological evolution of the Luoquan Formation notes the following features. First, striated pavements with crosscutting striations do not necessarily record multiple phases of glacial (re)advance, but more likely originate through the development of sticky spots in a palaeo‐ice stream setting. The development of obstacles, basal adfreezing, or porosity variations in the subglacial substrate resulted in curvilinear and bifurcating striae, which can superficially be mistaken for crosscutting striae in isolated sections. Second, “massive” diamictites as previously described are in fact commonly weakly stratified, and there is a continuum from dropstone‐bearing rhythmically bedded shales and siltstones, through stratified diamictites to massive diamictites. This continuum is believed indicative of deposition by rain out from debris rich ice for those diamictites with less pronounced stratification, in contrast to the mass flow hypothesis previously suggested. Third, the presence of large‐scale, recumbent folds with associated thrusts is described at the type section. The suite of large‐scale deformation structures, measuring >30 m in amplitude, is sealed by undeformed diamictites. The deformation structures are interpreted to reflect soft‐sediment deformation produced through ice bulldozing. Integrating these observations, it is proposed that the Luoquan Formation was deposited in a large proglacial lake setting, with a range of ice contact to ice distal environments recognised.
The Death Valley area of California, USA, exposes an outstanding record of a Neoproterozoic (Cryo... more The Death Valley area of California, USA, exposes an outstanding record of a Neoproterozoic (Cryogenian) glaciated margin: the Kingston Peak Formation. Despite the quality of the exposure, however, the outcrops of glaciogenic strata are fragmentary, forming isolated, laterally offset outcrop belts at the western extremity of the Basin and Range province. Excellent evidence for glacially modulated sedimentation includes (1) ice-rafted dropstones in most ranges, (2) thick diamictites bearing a variety of exotic (extrabasinal) clasts, (3) striated clasts and (4) local occurrences of glacitectonic deformation structures at the basin margins. In tandem with this, there is a distinct signature of slope collapse processes in many ranges, including (1) up to kilometre-scale olistoliths, (2) extensional growth fault arrays, (3) dramatic proximal-distal thickness changes and (4) basalt occurrences. New sedimentological observations reinforce long-held views of rifting superimposed on glaciation (or vice versa), with both processes contributing to a complex record whereby rift and glacial processes vie for stratigraphic supremacy. We consider that a mechanism of diamictite accumulation in a series of rift-shoulder minibasins produced greatly contrasting successions across the Death Valley area, under the incontrovertible influence of hinterland ice sheets.
A B S T R A C T The Kingston Peak Formation of the Death Valley area, California, allows valuable... more A B S T R A C T The Kingston Peak Formation of the Death Valley area, California, allows valuable insight into both regional Cordilleran stratigraphy and the number of glacial cycles preserved in the Cryogenian record. In the Kingston Range, the eponymous strata have been previously interpreted to record both Sturtian and Marinoan pan-glacial events. In the context of a search for a Global Boundary Stratotype Section and Point (GSSP) for the Cryogenian, we provide the first detailed description of the thickest diamictite-bearing interval in the western USA. Two clast-poor, muddy diamictite intervals within the succession-one at the base, and one near the top-have been used to support Sturtian and Marinoan events previously. However, new data from the southern part of the Kingston Range suggest that the upper diamictite interval is genetically related to underlying strata. The deposits are interpreted as glaciogenic debris flow deposits which probably represent the proximal tract of a subaqueous fan. Medial to distal portions of this fan are dominated by turbidites, which were transported down a consistent SE-oriented palaeoslope. Lowermost beds of the upper diamictite interval are intercalated with graded sand-stones and sandy, matrix supported conglomerates. The graded beds (turbidites) and matrix-supported con-glomerates (debrites) testify to a subaqueous setting, with the compositionally and texturally distinct diamictites indicating a glacial origin.
Acta Geologica Sinica (English Edition), 2018
WU Guanghui, YUAN Yajuan, HUANG Shaoying, Thomas Matthew Vandyk, XIAO Yang, CAI Quan and LUO Bin... more WU Guanghui, YUAN Yajuan, HUANG Shaoying, Thomas Matthew Vandyk, XIAO Yang, CAI Quan and LUO Bingxu
Abstract
Recent studies, focused on dihedral angles and intersection processes, have increased understandings of conjugate fault mechanisms. We present new 3-D seismic data and microstructural core analysis in a case study of a large conjugate strike-slip fault system from the intracratonic Tarim Basin, NW China. Within our study area, "X" type NE and NW trending faults occur within Cambrian-Ordovician carbonates. The dihedral angles of these conjugate faults have narrow ranges, 19° to 62° in the Cambrian and 26° to 51° in the Ordovician, and their modes are 42° and 44° respectively. These data are significantly different from the ~60° predicted by the Coulomb fracture criterion. It is concluded that: (1) The dihedral angles of the conjugate faults were not controlled by confining pressure, which was low and associated withshallow burial; (2) As dihedral angles were not controlled by pressure they can be used to determine the shortening direction during faulting; (3) Sequential slip may have played an important role in forming conjugate fault intersections; (4) The conjugate fault system of the Tarim basin initiated as rhombic joints; these subsequently developed into sequentially active "X" type conjugate faults; followed by preferential development of the NW-trending faults; then reactivation of the NE trending faults. This intact rhombic conjugate fault system presents new insights into mechanisms of dihedral angle development, with particular relevance to intracratonic basins.
Available at: http://www.geojournals.cn/dzxben/ch/reader/view_abstract.aspx?file_no=2018endzxb01005&flag=1
Olistolith production and magmatism are processes commonly associated with extensional tectonic s... more Olistolith production and magmatism are processes commonly associated with extensional tectonic settings, such as rift basins. We present a cautionary exemplar from one such Precambrian basin, in which we reinterpret metabasite bodies, previously documented as sills, to be olistoliths. We nevertheless demonstrate that, on the basis of field observation alone, the previous but erroneous sill interpretation is parsimonious. Indeed, it is only by using isotopic age and compositional analysis that the true identities of these metabasite olistoliths are revealed. We present new data from metabasites and metasedimentary strata of the Kingston Peak Formation (Cryogenian) and Crystal Spring Formation (Mesoproterozoic) of Death Valley, USA. These include field observations, U–Pb apatite ages, U–Pb zircon ages (detrital and igneous) and whole-rock geochemistry. These data also provide a new maximum age for the base of the Pahrump Group and suggest that the Crystal Spring Diabase was more tholeiitic than previously thought. Similar sill/olistolith misinterpretations may have occurred elsewhere, potentially producing erroneous age and tectonic-setting interpretations of surrounding strata. This is particularly relevant in Precambrian rocks, where fossil age constraints are rare. This is illustrated herein using a potential example from the Neoproterozoic literature of the Lufilian belt, Africa. We caution others against Precambrian olistoliths masquerading as sills.
Supplementary material: Details of a meta-igneous boulder from P12 of the Silurian Hills, LA-ICP-MS and whole-rock geochemistry methods and standards, and U–Pb apatite and zircon isotopic data, including standards and selected cathodoluminescence images, are available at https://doi.org/10.6084/m9.figshare.c.3990639
Multiple intercalations of glacially derived and slope-derived diamictites testify to the drawbac... more Multiple intercalations of glacially derived and slope-derived diamictites testify to the drawbacks of correlating Neoproterozoic diamictites more widely, but shed new light on the close interrelationship of these processes in the Cryogenian world. In the Neoproterozoic of Death Valley, California (USA), rifting of Rodinia occurred concomitantly with a major gla-cial event that deposited the Kingston Peak Formation. A new sedimentologic investigation of this formation in the Silurian Hills demonstrates, for the first time, that some diamictites are ultimately of glacial origin. Abundant dropstone textures occur in interstratified heterolithic deposits, with clasts of identical composition (gneiss, schist, granite, metabasite, quartzite) to those of boulder-bearing diamictites suggesting a common source (the glacial conveyor belt). In stark contrast, megaclast-bearing diamictites, yielding clasts of carbonate and siliciclastic preglacial strata as much as 100 m across, are interpreted as olistostromes. The occurrence of syn-sedimentary faults within the succession allows glacial versus slope-derived material to be distinguished for the first time.
Uploads
Papers by Thomas M Vandyk
Abstract
Recent studies, focused on dihedral angles and intersection processes, have increased understandings of conjugate fault mechanisms. We present new 3-D seismic data and microstructural core analysis in a case study of a large conjugate strike-slip fault system from the intracratonic Tarim Basin, NW China. Within our study area, "X" type NE and NW trending faults occur within Cambrian-Ordovician carbonates. The dihedral angles of these conjugate faults have narrow ranges, 19° to 62° in the Cambrian and 26° to 51° in the Ordovician, and their modes are 42° and 44° respectively. These data are significantly different from the ~60° predicted by the Coulomb fracture criterion. It is concluded that: (1) The dihedral angles of the conjugate faults were not controlled by confining pressure, which was low and associated withshallow burial; (2) As dihedral angles were not controlled by pressure they can be used to determine the shortening direction during faulting; (3) Sequential slip may have played an important role in forming conjugate fault intersections; (4) The conjugate fault system of the Tarim basin initiated as rhombic joints; these subsequently developed into sequentially active "X" type conjugate faults; followed by preferential development of the NW-trending faults; then reactivation of the NE trending faults. This intact rhombic conjugate fault system presents new insights into mechanisms of dihedral angle development, with particular relevance to intracratonic basins.
Available at: http://www.geojournals.cn/dzxben/ch/reader/view_abstract.aspx?file_no=2018endzxb01005&flag=1
Supplementary material: Details of a meta-igneous boulder from P12 of the Silurian Hills, LA-ICP-MS and whole-rock geochemistry methods and standards, and U–Pb apatite and zircon isotopic data, including standards and selected cathodoluminescence images, are available at https://doi.org/10.6084/m9.figshare.c.3990639
Abstract
Recent studies, focused on dihedral angles and intersection processes, have increased understandings of conjugate fault mechanisms. We present new 3-D seismic data and microstructural core analysis in a case study of a large conjugate strike-slip fault system from the intracratonic Tarim Basin, NW China. Within our study area, "X" type NE and NW trending faults occur within Cambrian-Ordovician carbonates. The dihedral angles of these conjugate faults have narrow ranges, 19° to 62° in the Cambrian and 26° to 51° in the Ordovician, and their modes are 42° and 44° respectively. These data are significantly different from the ~60° predicted by the Coulomb fracture criterion. It is concluded that: (1) The dihedral angles of the conjugate faults were not controlled by confining pressure, which was low and associated withshallow burial; (2) As dihedral angles were not controlled by pressure they can be used to determine the shortening direction during faulting; (3) Sequential slip may have played an important role in forming conjugate fault intersections; (4) The conjugate fault system of the Tarim basin initiated as rhombic joints; these subsequently developed into sequentially active "X" type conjugate faults; followed by preferential development of the NW-trending faults; then reactivation of the NE trending faults. This intact rhombic conjugate fault system presents new insights into mechanisms of dihedral angle development, with particular relevance to intracratonic basins.
Available at: http://www.geojournals.cn/dzxben/ch/reader/view_abstract.aspx?file_no=2018endzxb01005&flag=1
Supplementary material: Details of a meta-igneous boulder from P12 of the Silurian Hills, LA-ICP-MS and whole-rock geochemistry methods and standards, and U–Pb apatite and zircon isotopic data, including standards and selected cathodoluminescence images, are available at https://doi.org/10.6084/m9.figshare.c.3990639