Ch'as consìdera n'ansem M.
As ciama partission d'M minca famija ëd sot-ansem d'M ch'a l'abia le propietà sì-dapress:
- gnun element d' a l'é veuid;
- doi element qualsëssìa d' a son sempe disgionzù;
- M a l'é l'union ëd tuti j'element d'.
Donca na famija ëd sot-ansem nen veuid d'M a l'é na partission d'M si e mach si minca element d'M a aparten precisaman a un element d'.
- Consideroma un pian α. Le rete ëd na fassa 'd rete paralele a formo na partission d'α, dagià che minca pont dël pian a aparten a un-a e mach un-a dle rete dla fassa.
- Pijoma l'ansem M={4,5,6,8,9,10}. Ij sot-ansem
- A={4,6,8,10},B={6,9},C={5,10}
- a formo nen na partission d'M, përchè bele che , ij tre sot-ansem a son nen doi a doi disgionzù.
- Gnanca
- A={4,8},B={3,10},C={5,9}
- a formo na partission, përchè .
Consideroma na partission ëd n'ansem A e definioma ansima a A la relassion an butand si e mach si x,y a aparten-o al midem element d'.
La relassion a l'é na relassion d'equivalensa, ch'as dis assossià a la partission .
|
|