Vai al contenuto

Régola ëd Leibniz

Da Wikipedia.
Revision al 12:10, 11 Luj 2008 ëd Borichèt (discussion | contribussion) (dimostrassion)
(dif.) ←Version pì veja | vardé la version corenta (dif.) | Revision pì neuve→ (dif.)
Vos an lenga piemontèisa
Për amprende a dovré 'l sistema dle parlà locaj ch'a varda sì.

Dàite le fonsion reaj ëd variàbil real e , derivàbij an e definìa la fonsion prodot , la régola ëd Leibniz a fortiss che a l'é derivàbil an e che soa derivà a l'é .

An dovrand ij diferensiaj, costa ugualiansa a peul ëscrivse .

La dimostrassion

[modìfica | modifiché la sorgiss]

Për minca h>0 con ch'a aparten sia al domini d'f che a col ëd g, a valo j'ugualianse

.

Dagià che g a l'é derivàbil an , a l'é ëdcò continua ambelelì e donca

.