login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A341098
Number of partitions of n into 10 distinct squarefree parts.
6
1, 1, 1, 1, 2, 3, 2, 4, 6, 8, 7, 10, 14, 17, 17, 22, 32, 35, 37, 47, 62, 71, 72, 91, 114, 132, 136, 167, 205, 234, 247, 293, 355, 398, 426, 497, 590, 661, 708, 819, 956, 1066, 1141, 1306, 1501, 1672, 1791, 2030, 2318, 2559, 2747, 3081, 3490, 3835, 4115
OFFSET
72,5
MAPLE
b:= proc(n, i, t) option remember; `if`(n=0,
`if`(t=0, 1, 0), `if`(i<1 or t<1, 0, b(n, i-1, t)+
`if`(numtheory[issqrfree](i), b(n-i, min(n-i, i-1), t-1), 0)))
end:
a:= n-> b(n$2, 10):
seq(a(n), n=72..126); # Alois P. Heinz, Feb 04 2021
MATHEMATICA
b[n_, i_, t_] := b[n, i, t] = If[n == 0,
If[t == 0, 1, 0], If[i < 1 || t < 1, 0, b[n, i - 1, t] +
If[SquareFreeQ[i], b[n - i, Min[n - i, i - 1], t - 1], 0]]];
a[n_] := b[n, n, 10];
Table[a[n], {n, 72, 126}] (* Jean-François Alcover, Feb 24 2022, after Alois P. Heinz *)
KEYWORD
nonn
AUTHOR
Ilya Gutkovskiy, Feb 04 2021
STATUS
approved