login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A254967
Triangle of iterated absolute differences of lucky numbers read by antidiagonals upwards.
6
1, 2, 3, 2, 4, 7, 0, 2, 2, 9, 0, 0, 2, 4, 13, 0, 0, 0, 2, 2, 15, 2, 2, 2, 2, 4, 6, 21, 2, 0, 2, 0, 2, 2, 4, 25, 2, 0, 0, 2, 2, 0, 2, 6, 31, 0, 2, 2, 2, 0, 2, 2, 4, 2, 33, 0, 0, 2, 0, 2, 2, 0, 2, 2, 4, 37, 0, 0, 0, 2, 2, 0, 2, 2, 0, 2, 6, 43, 2, 2, 2, 2, 0, 2
OFFSET
0,2
COMMENTS
This sequence is related to the lucky numbers (cf. A000959) in the same way as A036262 is related to the prime numbers;
LINKS
Eric Weisstein's World of Mathematics, Lucky number.
Wikipedia, Lucky number
FORMULA
T(n,0) = A054978(n).
T(2*n,n) = A254969(n).
T(n,n-1) = A031883(n) for n > 0.
T(n,n) = A000959(n+1).
T(n,k) = abs(T(n,k+1) - T(n-1,k)) for 0 <= k < n.
EXAMPLE
. 0: 1
. 1: 2 3
. 2: 2 4 7
. 3: 0 2 2 9
. 4: 0 0 2 4 13
. 5: 0 0 0 2 2 15
. 6: 2 2 2 2 4 6 21
. 7: 2 0 2 0 2 2 4 25
. 8: 2 0 0 2 2 0 2 6 31
. 9: 0 2 2 2 0 2 2 4 2 33
. 10: 0 0 2 0 2 2 0 2 2 4 37
. 11: 0 0 0 2 2 0 2 2 0 2 6 43
. 12: 2 2 2 2 0 2 2 0 2 2 0 6 49
. 13: 0 2 0 2 0 0 2 0 0 2 4 4 2 51 .
MATHEMATICA
nmax = 13; (* max index for triangle rows *)
imax = 25; (* max index for initial lucky array L *)
L = Table[2i + 1, {i, 0, imax}];
For[n = 2, n < Length[L], r = L[[n++]]; L = ReplacePart[L, Table[r*i -> Nothing, {i, 1, Length[L]/r}]]];
T[n_, n_] := If[n+1 <= Length[L], L[[n+1]], Print["imax should be increased"]; 0];
T[n_, k_] := T[n, k] = Abs[T[n, k+1] - T[n-1, k]];
Table[T[n, k], {n, 0, nmax}, {k, 0, n}] // Flatten (* Jean-François Alcover, Sep 22 2021 *)
PROG
(Haskell)
a254967 n k = a254967_tabl !! n !! k
a254967_row n = a254967_tabl !! n
a254967_tabl = diags [] $
iterate (\lds -> map abs $ zipWith (-) (tail lds) lds) a000959_list
where diags uss (vs:vss) = (map head wss) : diags (map tail wss) vss
where wss = vs : uss
CROSSREFS
Cf. A054978 (left edge), A254969 (central terms), A000959 (right edge), A031883, A036262.
Sequence in context: A192298 A341098 A353330 * A229012 A207606 A303845
KEYWORD
nonn,tabl
AUTHOR
Reinhard Zumkeller, Feb 11 2015
STATUS
approved