login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A200134
Decimal expansion of the negated value of the digamma function at 3/4.
8
1, 0, 8, 5, 8, 6, 0, 8, 7, 9, 7, 8, 6, 4, 7, 2, 1, 6, 9, 6, 2, 6, 8, 8, 6, 7, 6, 2, 8, 1, 7, 1, 8, 0, 6, 9, 3, 1, 7, 0, 0, 7, 5, 0, 3, 9, 3, 3, 3, 1, 3, 6, 4, 5, 0, 6, 8, 0, 3, 3, 4, 9, 6, 7, 2, 1, 1, 1, 4, 0, 3, 8, 9, 5, 4, 3, 6, 4, 4, 3, 1, 8, 4, 4, 0, 5, 1, 9, 6, 3, 1, 6, 0, 9, 9, 4, 4
OFFSET
1,3
FORMULA
Psi(3/4) = -gamma + Pi/2 - 3*log(2) = A000796 - A020777 = 3.14159... - 4.22745...
Pi = gamma(0,1/4) - gamma(0,3/4) = A020777 - A200134, where gamma(n,x) denotes the generalized Stieltjes constants. - Peter Luschny, May 16 2018
EXAMPLE
Psi(3/4) = -1.085860879786472169626886762817...
MAPLE
evalf(-gamma+Pi/2-3*log(2)) ;
MATHEMATICA
RealDigits[ -PolyGamma[3/4], 10, 97] // First (* Jean-François Alcover, Feb 20 2013 *)
N[StieltjesGamma[0, 3/4], 99] (* Peter Luschny, May 16 2018 *)
PROG
(PARI) -psi(3/4) \\ Charles R Greathouse IV, Nov 22 2011
(Magma) SetDefaultRealField(RealField(100)); R:= RealField(); -EulerGamma(R) + Pi(R)/2 - 3*Log(2); // G. C. Greubel, Aug 29 2018
CROSSREFS
KEYWORD
cons,nonn
AUTHOR
R. J. Mathar, Nov 13 2011
STATUS
approved