login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A143583
Apéry-like numbers: a(n) = (1/C(2n,n))*Sum_{k=0..n} C(2k,k)*C(4k,2k)*C(2n-2k,n-k)*C(4n-4k,2n-2k).
37
1, 12, 164, 2352, 34596, 516912, 7806224, 118803648, 1818757924, 27972399792, 431824158864, 6686855325888, 103814819552016, 1615296581684928, 25180747436810304, 393189646497706752, 6148451986328464164, 96269310864931432368, 1509065592479205772304
OFFSET
0,2
COMMENTS
These numbers bear some analogy to the Apéry numbers A005258. They appear in the evaluation of the spectral zeta function of the non-commutative harmonic oscillator zeta_Q(s) at s = 2 and satisfy a recurrence relation similar to the one satisfied by the Apéry numbers.
LINKS
K. Kimoto and M. Wakayama, Apéry-like numbers arising from special values of spectral zeta functions for non-commutative harmonic oscillators, arXiv:math/0603700 [math.NT], 2006; Kyushu J. Math. Vol. 60, 2006, 383-404.
Ji-Cai Liu and He-Xia Ni, Supercongruences for Almkvist--Zudilin sequences, arXiv:2004.07652 [math.NT], 2020. See Gn.
Stéphane Ouvry and Alexios Polychronakos, Lattice walk area combinatorics, some remarkable trigonometric sums and Apéry-like numbers, arXiv:2006.06445 [math-ph], 2020.
Zhi-Hong Sun, New congruences involving Apéry-like numbers, arXiv:2004.07172 [math.NT], 2020. See Gn.
Zhi-Hong Sun, Congruences for two types of Apery-like sequences, arXiv:2005.02081 [math.NT], 2020.
FORMULA
a(n) = (1/C(2n,n))*sum {k = 0..n} C(2k,k)*C(4k,2k)*C(2n-2k,n-k)*C(4n-4k,2n-2k).
Recurrence relation:
a(0) = 1, a(1) = 12, n^2*a(n) = 4*(8*n^2-8*n+3)*a(n-1) - 256*(n-1)^2*a(n-2).
Congruences:
For odd prime p, a(m*p^r) = a(m*p^(r-1)) (mod p^r) for any m,r in N.
a(n) ~ 16^n/(Pi*sqrt(Pi*n)) * (log(n) + gamma + 6*log(2)), where gamma is the Euler-Mascheroni constant (A001620). - Vaclav Kotesovec, Oct 11 2013
a(n) = sum {k = 0..n} 4^(n-k) C(2k,k)^2*C(2n-2k,n-k). - Tito Piezas III, Dec 12 2014
a(n) = hypergeom([1/2,1/2,n+1],[1,n+3/2],1)*2^(5*n+1)*n!/((2*n+1)!!*Pi) - G. A. Edgar, Dec 10 2016
a(n) = binomial(4*n,2*n)*hypergeom([1/4,3/4,-n,-n], [1,1/4-n,3/4-n], 1). - Peter Luschny, May 14 2020
From Peter Luschny, Nov 12 2022: (Start)
a(n) = 16^n*Sum_{k=0..n} (-1)^k*binomial(-1/2, k)^2*binomial(n, k).
a(n) = 16^n*hypergeom([1/2, 1/2, -n], [1, 1], 1). (End)
EXAMPLE
G.f. = 1 + 12*x + 164*x^2 + 2352*x^3 + 34596*x^4 + 516912*x^5 + ...
MAPLE
a := n -> 1/binomial(2*n, n)*add(binomial(2*k, k)*binomial(4*k, 2*k)*binomial(2*n-2*k, n-k)*binomial(4*n-4*k, 2*n-2*k), k = 0..n): seq(a(n), n = 0..25);
series( 2*EllipticK(4*x^(1/2))/(Pi*sqrt(1-16*x)), x=0, 20); # Mark van Hoeij, Apr 06 2013
A143583 := n -> 16^n*hypergeom([1/2, 1/2, -n], [1, 1], 1):
seq(simplify(A143583(n)), n = 0..18); # Peter Luschny, Nov 12 2022
MATHEMATICA
Table[1/Binomial[2*n, n]*Sum[Binomial[2*k, k]*Binomial[4*k, 2*k]*Binomial[2*n-2*k, n-k]*Binomial[4*n-4*k, 2*n-2*k], {k, 0, n}], {n, 0, 20}] (* Vaclav Kotesovec, Oct 11 2013 *)
CROSSREFS
Cf. A005258.
The Apéry-like numbers [or Apéry-like sequences, Apery-like numbers, Apery-like sequences] include A000172, A000984, A002893, A002895, A005258, A005259, A005260, A006077, A036917, A063007, A081085, A093388, A125143 (apart from signs), A143003, A143007, A143413, A143414, A143415, A143583, A183204, A214262, A219692, A226535, A227216, A227454, A229111 (apart from signs), A260667, A260832, A262177, A264541, A264542, A279619, A290575, A290576. (The term "Apery-like" is not well-defined.)
Sequence in context: A024221 A093152 A282010 * A231541 A203372 A193104
KEYWORD
easy,nonn
AUTHOR
Peter Bala, Aug 25 2008
STATUS
approved